Fixed Point Results in Fuzzy Menger Space

Manoj Kumar Shukla¹, Surendra Kumar Garg²

¹Department of Mathematics, Institute for Excellence in Higher Education, Bhopal, (MP)
²Department of Mathematics, Shri Ram Institute of Technology, Jabalpur, (MP), India

Abstract: This paper presents some common fixed point theorems for occasionally weakly compatible mappings in Fuzzy menger spaces.

Keywords: Occasionally weakly compatible mappings, Fuzzy Menger space, Weak compatible mapping, Semi-compatible mapping, Implicit function, common fixed point.

Subject Classification: AMS (2000) 47H25

1. Introduction

The study of fixed point theorems in probabilistic metric spaces is an active area of research. The theory of probabilistic metric spaces was introduced by Menger [5] in 1942 and since then the theory of probabilistic metric spaces has developed in many directions, especially in nonlinear analysis and applications. In 1966, Sehgal [9] initiated the study of contraction mapping theorems in probabilistic metric spaces. Since then several generalizations of fixed point theorems in probabilistic metric space have been obtained by several authors including Sehgal and Bharucha-Reid [10], Sherwood [11], and Istratescu and Roventa [2]. The study of fixed point theorems in probabilistic metric spaces is useful in the study of existence of solutions of operator equations in probabilistic metric space and functional analysis. The development of fixed point theory in probabilistic metric spaces is due to Schweizer and Sklar [8]. Singh, Pant and Talwar [14] introduced the concept of weakly commuting mappings in probabilistic metric spaces. Using the ideas of point wise R-weak commutativity and reciprocal continuity of mappings [1,4,7,13], Kumar and Chugh [3] established some common fixed point theorems in probabilistic metric spaces. In 2005, Mihet [6] proved a fixed point theorem concerning probabilistic contractions satisfying an implicit relation. Shrivastav et al [12] proved fixed point result in fuzzy probabilistic metric space. The purpose of the present paper is to prove a common fixed point theorem for six mappings via pointwise R-weakly commuting mappings in fuzzy probabilistic metric spaces satisfying contractive type implicit relations. Further, as a bi-product we obtain several fixed point results as corollaries of our main result.

2. Preliminary Notes

Let us define and recall some definitions:

Definition 2.1: A fuzzy probabilistic metric space (FPM space) is an ordered pair (X, F) consisting of a nonempty set X and a mapping F from XxX into the collections of all distribution functions Fα∈R for all α ∈ [0, 1]. For x, y ∈ X we denote the distribution function Fα(x,y) by Fα(x,y) and Fα(x,y)(u) is the value of Fα(x,y) at u in R.

The functions Fα(x,y) for all α ∈ [0,1] assumed to satisfy the following conditions:

a) Fα(x,y)(u) = 1 ∀ u > 0 if x = y,
b) Fα(x,y)(0) = 0 ∀ x, y in X,
c) Fα(x,y) = Fα(y,x) ∀ x, y in X,
d) If Fα(x,y)(u) = 1 and Fα(y,z)(v) = 1 then Fα(x,z)(u+v) = 1 ∀ x, y, z in X and u, v > 0.

Definition 2.2: A commutative, associative and non-decreasing mapping t : [0,1] × [0,1] → [0,1] is a t-norm if and only if t(a,1) = a ∀ a ∈ [0,1], t(0,0) = 0 and t(c,d) ≥ t(a,b) for c ≥ a, d ≥ b.

Definition 2.3: A Fuzzy Menger space is a triplet (X, F, t), where (X, F) is a FPM-space, t is a t-norm and the generalised triangle inequality

Fα(x,y)(u+v) ≥ t(Fα(x,z)(u), Fα(y,z)(v)) holds for all x, y, z in X and u, v > 0 and α ∈ [0, 1].

The concept of neighbourhoods in Fuzzy Menger space is introduced as

Definition 2.4: Let (X, F, t) be a Fuzzy Menger space. If x ∈ X, ε > 0 and λ ∈ (0,1) - neighbourhood of x, called Uε(λ), is defined by

Uε(λ) = {y ∈ X : Fα(ε,λ)(y) > (1-λ)}

An (ε,λ)-topology in X is the topology induced by the family {Uε(λ) : x ∈ X, ε > 0, α ∈ [0, 1] and λ ∈ (0,1)} of neighbourhoods.

Remark: If t is continuous, then Fuzzy Menger space (X, F, t) is a Hausdorff space in (ε,λ)-topology.

Let (X, F, t) be a complete Fuzzy Menger space and A ⊆ X. Then A is called a bounded set if

lim t → ∞ Fα(x,y)(u) = 1

u → ∞, x,y ∈ A

Definition 2.5: A sequence {xn} in (X, F, t) is said to be convergent to a point x in X if for every ε > 0 and λ > 0, there exists an integer N = N(ε,λ) such that xn ∈ Uε(λ) for all n ≥ N or equivalently Fα(xn, x; ε) > 1 - λ for all n ≥ N and α ∈ [0,1].
Definition 2.6: A sequence \(\{x_n\} \) in \((X, F_{2, \alpha}, t)\) is said to be Cauchy sequence if for every \(\varepsilon > 0 \) and \(\lambda > 0 \), there exists an integer \(N=N(\varepsilon, \lambda) \) such that \(F_{2, \alpha}(x_n, x_m; \varepsilon) > 1-\lambda, \forall \ n, \ m \geq N \) for all \(\alpha \in [0,1] \).

Definition 2.7: A Fuzzy F-Menger space \((X, F_{2, \alpha}, t)\) with the continuous \(t \)-norm is said to be complete if every Cauchy sequence \(x_n \) in \(X \) converges to a point in \(X \) for all \(\alpha \in [0,1] \).

Definition 2.8: Let \((X, F_{2, \alpha}, t)\) be a Fuzzy F-Menger space. Two mappings \(f, g: X \to X \) are said to be weakly compatible if they commute at coincidence point for all \(\alpha \in [0,1] \).

Definition 2.9: Let \((X, F_{2, \alpha}, t)\) be a Fuzzy F-Menger space. Two mappings \(f, g: X \to X \) are said to be compatible if and only if \(F_{2, \alpha}(x_n, x_{n+1}; \varepsilon) \to 0 \) for all \(\alpha \in [0,1] \) and \(\varepsilon > 0 \) whenever \(\{x_n\} \) is a Cauchy sequence.

Definition 2.10: Two mappings \(f \) and \(g \) of a Fuzzy F-Menger space \((X, F_{2, \alpha})\) are said to be pointwise R-weakly commuting if given \(x \in X \), there exists \(R > 0 \) such that \(F_{2, \alpha}(f(x), g(y)) \geq F_{2, \alpha}(f(x), f(y)) + F_{2, \alpha}(g(y), g(x)) \) for all \(x, y \in X \) and \(\alpha \in [0,1] \).

Definition 2.11: Let \((X, F_{2, \alpha}, t)\) be a Fuzzy F-Menger space. Two mappings \(f \) and \(g \) are said to be weakly compatible if and only if \(F_{2, \alpha}(f(x), g(x)) \to 1 \) for all \(t > 0 \) when \(\{x_n\} \) is a Cauchy sequence.

Definition 2.12: A pair of mappings \(f \) and \(g \) is called weakly compatible if they commute at coincidence points.

Definition 2.13: Two mappings \(f \) and \(g \) of a set \(X \) are occasionally weakly compatible (owc) if there is a point \(x \) in \(X \) which is a coincidence point of \(f \) and \(g \) at which \(f \) and \(g \) commute.

Definition 2.14: A function \(\phi: [0, \infty) \to [0, \infty) \) is said to be a \(\Phi \)-function if it satisfies the following conditions:

(i) \(\phi(0) = 0 \) if and only if \(t = 0 \),

(ii) \(\phi \) is strictly increasing and \(\phi(t) \to \infty \) as \(t \to \infty \),

(iii) \(\phi \) is left continuous in \((0,\infty)\) and \(\phi \) is continuous at 0.

An altering distance function with the additional property that \(h(t) \to \infty \) as \(t \to \infty \), generates a \(\Phi \)-function in the following way:

\[
\phi(t) = \begin{cases}
\sup \{s: h(s) < t \} & \text{if } t > 0 \\
0 & \text{if } t = 0
\end{cases}
\]

It can be easily seen that \(\phi \) is a \(\Phi \)-function.

Lemma 2.3: Let \(\{x_n\} \) be a sequence in F-Menger space \((X, F_{2, \alpha}, t)\) where \(t \) is continuous and \(\forall (x, y) \in X \), \(F_{2, \alpha}((x, y), (t/R)) \geq F_{2, \alpha}(x, y,t) \) for all \(\alpha \in (0,1) \).

Lemma 2.4: Let \(X \) be a set, \(f, g \) be owc self maps of \(X \). If \(f \) and \(g \) have a unique point of coincidence, \(w = fx = gx \), then \(w \) is the unique common fixed point of \(f \) and \(g \).

3. Main Results

Theorem 3.1: Let \((X, F_{2, \alpha}, t)\) be a complete F-Menger space and \(p, q, f \) and \(g \) be self mappings of \(X \). Let pairs \(\{p, f\} \) and \(\{q, g\} \) be owc. If there exists \(h(t) \to \infty \) such that \(F_{2, \alpha}(h(t), h(t)) \geq \min \{ F_{2, \alpha}(f(x), g(x)) (t), F_{2, \alpha}(f(x), f(x)) (t), F_{2, \alpha}(g(x), g(x)) (t) \} \) for all \(x, y \in X \).

Proof: Let the pairs \(\{p, f\} \) and \(\{q, g\} \) be owc, so there are points \(w, z \in X \) such that \(w = fx = gx \) and \(z = gy \). Suppose that \(w \neq z \).

Therefore \(px = qy \), i.e. \(px = fx = qy = gy \). Assume that \(w \neq z \). We have

\[
F_{2, \alpha}((w, z), (t)) \geq \min \{ F_{2, \alpha}(f(x), g(x)) (t), F_{2, \alpha}(f(x), f(x)) (t), F_{2, \alpha}(g(x), g(x)) (t) \} \]

Therefore we have \(w = z \) by lemma 2.4 and \(w \) is a common fixed point of \(f \) and \(g \).
Theorem 3.2: Let \((X,F^2_{a,t})\) be a complete Fuzzy F-Menger space and let \(p, q, f, g\) be self mappings of \(X\). Let pairs \(\{p, f\}\) and \(\{q, g\}\) be owc. If there exists \(t \in (0, 1)\) such that
\[
F^2_{a}(px,py)(ht) \geq \phi \left(\frac{F^2_{a}(fx,fy)(t), F^2_{a}(fx,px)(t), F^2_{a}(qy,py)(t), F^2_{a}(qy,qx)(t)}{t} \right) \quad \cdots \cdots (2)
\]
for all \(x, y \in X\) and \(\phi(0, 1) \in (0, 1)\) such that \(\phi(t,1,1,t) > t\) for all \(0 < t < 1\), then there exists a unique common fixed point of \(p, f, q, g\).

Proof: Let the pairs \(\{p, f\}\) and \(\{q, g\}\) be owc, so there are points \(x, y \in X\) such that \(px = qx = qy = gy\). We claim that \(px = qy\). By inequality (2) we have
\[
F^2_{a}(px,py)(ht) \geq \phi \left(\frac{F^2_{a}(fx,fy)(t), F^2_{a}(fx,px)(t), F^2_{a}(qy,py)(t), F^2_{a}(qy,qx)(t)}{t} \right)
\]
which implies that \(px = qy\). By inequality (3) we have
\[
F^2_{a}(px,py)(ht) \geq \phi \left(\frac{F^2_{a}(px,py)(t)}{t} \right) \geq \phi \left(\frac{F^2_{a}(px,py)(t)}{t} \right) \geq \phi \left(\frac{F^2_{a}(px,py)(t)}{t} \right) \geq \phi \left(\frac{F^2_{a}(px,py)(t)}{t} \right)
\]
for all \(x, y \in X\) and \(t > 0\), then there exists a unique common fixed point of \(p, f, q, g\).

Corollary 3.4: Let \((X,F^2_{a,t})\) be a complete Fuzzy F-Menger space and let \(p, q, f, g\) be self mappings of \(X\). Let pairs \(\{p, f\}\) and \(\{q, g\}\) be owc. If there exists \(t \in (0, 1)\) such that
\[
F^2_{a}(px,py)(ht) \geq F^2_{a}(fx,fy)(t) \quad \cdots \cdots (4)
\]
for all \(x, y \in X\) and \(t > 0\), then there exists a unique common fixed point of \(p, f, q, g\).

Proof: The proof follows from corollary 3.3

Theorem 3.5: Let \((X,F^2_{a,t})\) be a complete Fuzzy F-Menger space for all \(t \in [0, 1]\). Then self mappings \(f\) and \(g\) of \(X\) have a common fixed point in \(X\) if and only if there exists a self mapping \(p\) of \(X\) such that the following conditions are satisfied

(i) \(pX \subseteq gX \cap fX\)
(ii) the pairs \(\{p, f\}\) and \(\{p, g\}\) are weakly compatible,
(iii) there exists a point \(h \in (0, 1)\) such that for every \(x, y \in X\) and \(t > 0\)
\[
F^2_{a}(px,py)(ht) \geq \min \{F^2_{a}(px,gy)(t), F^2_{a}(px,fx)(t), F^2_{a}(px,qy)(t), F^2_{a}(px,qx)(t)\} \quad \cdots \cdots (3)
\]
Then, \(p, f\) and \(g\) have a unique common fixed point.

Proof: Since compatible implies owc, the result follows from corollary 3.3

Theorem 3.6: Let \((X,F^2_{a,t})\) be a complete F- Menger space and let \(p, f\) and \(q, g\) be self mappings of \(X\). Let pairs \(\{p, f\}\) and \(\{q, g\}\) be owc. If there exists \(t \in (0, 1)\) for all \(x, y \in X\) and \(t > 0\)
\[
F^2_{a}(px,py)(ht) \geq \alpha F^2_{a}(px,py)(t) + \beta \min \{F^2_{a}(px,py)(t), F^2_{a}(px,qy)(t), F^2_{a}(px,qx)(t), F^2_{a}(px,fx)(t)\} \quad \cdots \cdots (5)
\]
for all \(x, y \in X\) where \(\alpha, \beta > 0, \alpha + \beta > 1\). Then there exists a unique common fixed point of \(p, f\) and \(g\).

Proof: Let the pairs \(\{p, f\}\) be owc, so there are points \(x, y \in X\) such that \(px = qx = qy = gy\). We claim that \(px = qy\). By inequality (6) we have
\[
F^2_{a}(px,py)(ht) \geq \alpha F^2_{a}(px,py)(t) + \beta \min \{F^2_{a}(px,py)(t), F^2_{a}(px,qy)(t), F^2_{a}(px,qx)(t), F^2_{a}(px,fx)(t)\}
\]
for all \(x, y \in X\) where \(\alpha, \beta > 0, \alpha + \beta > 1\). Then there exists a unique common fixed point of \(p, f\) and \(g\).

References

[2] V.I. Istrătescu and I. Săcuiu, Fixed point theorem for contraction mappings on probabilistic metric spaces,

