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Abstract: In the present paper we consider a discrete random variate which takes a finite number of values 𝟏, 𝟐, 𝟑……… . 𝒏 and find 
the maximum entropy probability distribution under certain conditions.  
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1. Introduction 

We shall apply Lagrange’s method of undermined 
multipliers to maximize Kapur’s entropy 
(𝐾1,𝐾2, 𝐾3, 𝐾4, 𝐾5, 𝐾6) subject to one or more conditions of
the type. 
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Shannon [2] has defined measure of entropy as  

𝐻 𝑝1, 𝑝2, 𝑝3 ………  =  𝑃𝑖𝑙𝑛𝑃𝑖
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This measure of entropy has been generalized by Kapur 
[1]in following manner. 
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2. Kapur [1, Chapter 2] in his famous treatise discussed 
various Probability Distribution for Shannon’s measure of
entropy, being a natural entropy under (a) No constraint and 
(b) when arithmetic mean alone is prescribed. The natural 
question arises what happens if Shannon’s measure of
entropy is replaced by 𝐾1,𝐾2, 𝐾3, 𝐾4𝑜𝑟𝐾5? In this paper we
have obtained analogous result. Kapur’s results in chapter 2 
becomes the particular case of own results. 

3. We will discuss the case in which the discrete variate 
takes only a finite set of values. Let these values are 
1,2,3………𝑛

3.1 Kapur [1] obtained the following result 
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Then 

𝑝1=𝑝2 = 𝑝3 =  ………𝑝𝑛 =
1

𝑛
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i.e. the variate follows the uniform distribution. 
We will obtain following result. 

If Kapur’s measure 𝐾1,𝐾2, 𝐾3, 𝐾4 , 𝐾5 are maximized subject 
to (7) then (8) holds, i.e. the variate follows the uniform 
distribution. 

Proof for 𝐾1 Our problem is to maximize 
1 −  𝑝𝑖

∝

𝑓(∝)
, ………                                  . (9)

where𝑓 1 = 0 𝑎𝑛𝑑𝑓′  1 = 1
The Lagrangian is

𝐿 ≡
 𝑃𝑖

∝𝑛
𝑖=1

𝑓 ∝ 
+ 𝜆   𝑝𝑖 − 1

𝑛

𝑖=1

 ……             10 

Maximizing this, 𝜕𝐿
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or
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Therefore the variate follows the uniform distribution 
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Therefore the variate follows the uniform distribution 
similar technique adopted for 𝐾3, 𝐾4&𝐾5. 
4Kapur [4] obtained following result 

Let the prescribed arithmetic mean be𝑚(1 < 𝑚 < 𝑛) them 
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where𝑎 and 𝑏 are determined by using the constraints 
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and 𝑎  𝑖𝑏𝑖𝑛
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In this note we replace Shannon’s measure of entropy by 𝐾5. 
We obtain following result 
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𝐴and𝐵 coincides with 𝑎 and 𝑏 defined by (17) and (18) 
when 𝑀 = 1. Thus our result generalizes result of Kapur 
[1] by using Kapur’smeasure 𝐾4. 

Proof of our result 
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This establishes the result 
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