
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 8, August 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Image Compression Techniques Based on

Transform Coding

Elhadi Amir Elhadi
1
, Dr. Abu Obeida Mohamed Alhassan

2

Department Of Communication Engineering, Al-Neelain University

Abstract: In this paper we attempted to implement basic JPEG compression using only basic Matlab functions. This included going

from a basic grayscale bitmap image all the way to a fully encoded file readable by standard image readers. we will show that are have

implemented the majority of the paper, including much of the final binary coding. Although we never obtained a fully completed image

from our functions, I came very close.

Keywords:

1. Introduction

Image compression is used to minimize the amount of

memory needed to represent an image. Images often require

a large number of bits to represent them, and if the image

needs to be transmitted or stored, it is impractical to do so

without somehow reducing the number of bits. The problem

of transmitting or storing an image affects all of us daily. TV

and fax machines are both examples of image transmissions,

and digital video players and web pictures of Catherine

Zeta-Jones are examples of image storage.

Three techniques of image compression that we have

discuses later are pixel coding, predictive coding, and

transform coding. The idea behind pixel coding is to encode

each pixel independently. The pixel values that occur more

frequently are assigned shorter code words (fewer bits), and

those pixel values that are more rare are assigned longer

code words. This makes the average code word length

decrease.

Predictive coding is based upon the principle that images are

most likely smooth, so if pixel b is physically close to pixel

a, the value of pixel b will be similar to the value of pixel a.

When compressing an image using predictive coding,

quantized past values are used to predict future values, and

only the new info (or more specifically, the error between

the value of pixels a and b) is coded.

The image compression technique most often used is

transform coding. A typical image's energy often varies

significantly throughout the image, which makes

compressing it in the spatial domain difficult; however,

images tend to have a compact representation in the

frequency domain packed around the low frequencies, which

makes compression in the frequency domain more efficient

and effective. Transform coding is an image compression

technique that first switches to the frequency domain, then

does its compressing. The transform coefficients should be

decor related, to reduce redundancy and to have a maximum

amount of information stored in the smallest space. These

coefficients are then coded as accurately as possible to not

lose information. In this project, we will use transform

coding.

2. Methodology

Figure 1: Original image of boy.256

In order to implement the image compression algorithm we

c hose, we divided the process into various step s:

 calculate the sums and differences of every row of the

image

 calculate the sums and differences of every column of

the resulting matrix

 repeat this process until we get down to squares of 16x16

 quantize the final matrix using different bit

allocation schemes

 write the quantized matrix out to a binary file

The first two steps are accomplished using simple loops in

Matlab. Specifically, we wrote two different functions - row

thing for calculating sums and differences of individual rows

and clothing for calculating sums and differences of

individual columns.

In order to keep the energy of the image the same, we

multiplied each sum and difference by a factor of 1/sqrt(2).

Performing these two operations once will result in an image

that is split into four parts, with the up per left hand quadrant

being the sums of sums region (see Figure 2).

Paper ID: ART20161042 DOI: 10.21275/ART20161042 1167

http://www.owlnet.rice.edu/~elec539/Projects99/JAMK/proj1/functions.html
http://www.owlnet.rice.edu/~elec539/Projects99/JAMK/proj1/functions.html
http://www.owlnet.rice.edu/~elec539/Projects99/JAMK/proj1/functions.html

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 8, August 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: Sums and differences after one iteration

The third step involves repeating the previous two steps until

we get down to a small enough final images. The function

squishier accomplishes this task. This function performs the

sums and differences of rows and columns, in alternating

order, until the final sums of sums image is of size 16x16.

The resulting image can be seen in the following figure (due

to the normalized display, the various quadrants are not too

visible, but contain various edge information):

Figure 3: Final sums and differences matrix

The next step is quantization. This is performed during the

writing to a binary file (see proceeding discussion of writing

to a file); however, we wrote a distinct quantization function

to analyze this step statistically (MSE and PS NR -- see the

Results section), as well as for our own educational benefit

(!). The quantization function, quant, is also called in

squishier. Our quantization scheme simply assigns different

numbers of bits to different regions, using masks (for

example, [b16, b32, b64, b128, b256], where b16 is the

quantization level for the upper left 16x16 matrix, b32 is for

the next 32x32 matrix surrounding the first one, etc.). We

used a number of different bit allocation masks (see next

section) in order to determine which scheme is better.

The quantization function takes in as arguments not only the

input matrix, but also the mask, i.e. the number of bits to be

used to represent each region in the compression scheme.

This allows us to modify and test out difference bit

allocation algorithms easily. The quantized image looks

similar to Figure 3, although depending on the mask used,

the level of details may vary.

Once we have generated the compressed matrix, we are

ready to transfer it to a binary file for storage (and, in the

process, quantize it). We use the write Matlab command,

specifying the number of bits with which to quantize. The

function bit performs this operation.

Once the file is saved, we can use the file-size information to

evaluate the success of the compression technique.

Additionally, a further use of the lossless gzip command in

Unix can show how thoroughly the image could really be

stored. The next section also shows some of these results.

With compression complete, we are ready to decompress

and examine the errors introduced by compression. To

reverse our compression scheme, we take the following

steps:

 reverse-quantize back to original levels

 undo the sums and differences calculation for each column

of the matrixundo the sums and differences calculation for

each row of the resulting matrix

 repeat this process on successively larger square matrices

until we get back to a 256x256 matrix

Quantizing the matrix back to its original levels is easy: just

quantize the compressed image back to eight bits, or bit shift

8-(first quantization level). The function iquant performs this

operation. The inverse sums and differences calculations are

made by adding and subtracting various pairs of numbers in

the matrix and dividing by two. These values are

renormalized, and placed in their appropriate positions in the

target matrix. The two functions row thing and clothing

accomplish e this task. These operations are performed first

on the columns, and then on the rows of succeedingly larger

sections of the matrix until the entire 256x256 matrix have

been decompressed. This process is done with the function

unsquisher. Once this is done, we have reconstructed our

image. Figure 4 shows the reconstructed image using the

mask [8 6 4 2 0].

Figure 4: Reconstructed image using mask [8 6 4 2 0]

Paper ID: ART20161042 DOI: 10.21275/ART20161042 1168

http://www.owlnet.rice.edu/~elec539/Projects99/JAMK/proj1/functions.html
http://www.owlnet.rice.edu/~elec539/Projects99/JAMK/proj1/functions.html
http://www.owlnet.rice.edu/~elec539/Projects99/JAMK/proj1/functions.html
http://www.owlnet.rice.edu/~elec539/Projects99/JAMK/proj1/proj1.html
http://www.owlnet.rice.edu/~elec539/Projects99/JAMK/proj1/functions.html
http://www.owlnet.rice.edu/~elec539/Projects99/JAMK/proj1/functions.html
http://www.owlnet.rice.edu/~elec539/Projects99/JAMK/proj1/functions.html
http://www.owlnet.rice.edu/~elec539/Projects99/JAMK/proj1/functions.html
http://www.owlnet.rice.edu/~elec539/Projects99/JAMK/proj1/functions.html
http://www.owlnet.rice.edu/~elec539/Projects99/JAMK/proj1/functions.html

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 8, August 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3. Result

We tested our wavelet transform coder on a few different

images to see if some images would compress better (i.e.

with less error) than others. In addition to the boy.256

image, which is relatively smooth and does not have too

many edges, we also used the following three images:

Figure 5: Image with sharp edges and high contrast

Figure 6: Blurry satellite image

Figure 7: Image with low contrast

We ran our coder with vario us different masks (thus

resulting in different numbers of bits per pixel) on each of

these images. For each run, we determined the mean-square

error (MSE) as well as the peak signal-to-noise ratio

(PSNR). The following two graphs show the results of these

tests:

Figure 8: Mean-square error plot

Paper ID: ART20161042 DOI: 10.21275/ART20161042 1169

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 8, August 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 9: Peak signal-to- noise ratio plot

As we can see, the boy.256 image seem to perform the best

out of the four while the madrill.256 image seem to perform

the worst. We show a nice linear increase in PSNR with

additional bits-per-pixel. Note we get a PSNR of greater

than 20 for all images even with less than 1 bit per pixel.

In addition to the MES and PSNR results, we also analyzed

the results of the compression (since that is what the

assignment is called). For this analysis, we used the mask [8

6 4 2 0] (the same mask used in the representative images

above) in the coding scheme because it gave us really good

approximations of the original image. For comparison

purposes, it is useful to note that the JPEG compression

standard has a compression ratio of 40:1.

4. Conclusion

The JPEG algorithm was created to compress photographic

images, and it does this very well, with high compression

ratios. It also allows a user to choose between high quality

output images, or very small output images. The algorithm

compresses images in 4 distinct phases, and does so in time,

or better. It also inspired many other algorithms that

compress images and video, and do so in a fashion very

similar to JPEG. Most of the variants of JPEG take the basic

concepts of the JPEG algorithm and apply them to more

specific problems.

Due to the immense number of JPEG images that exist, this

algorithm will probably

(Note: All numbers in units of bytes.) be in use for at least

10 more years. This is despite the fact that better algorithms

for compressing images exist, and even better ones than

those will be ready in the near future.

Image Original

File

After Our

Coder

Compression

Ratio

Gzipped Final

Ratio

boy.256 65536 5440 12.1:1 822 79.7:1

mandrill.256 65536 5440 12.1:1 670 79.8:1

bridge.256 65536 5440 12.1:1 972 67.4:1

urban.256 65536 5441 12.0:1 855 76.7:1

References

[1] M. J. Weinberger, G. Seroussi, and G. Sapiro. The

LOCO-I lossless image compression algorithm:

principles and standardization into JPEG-LS. IEEE

Transactions on Image Processing, 2000, 9(8):1309-

1324.

[2] Chu, W.C., On lossless and lossy compression of step

size matrices in JPEG coding. International Conference

on Computing, Networking and Communications,

2013, 103-107.

[3] H. Oh, A. Bilgin, M. Marcellin. Visually Lossless

Encoding for JPEG2000. IEEE Transactions on Image

Processing, 2013, 22(1):189-201.

[4] K. Srinivasan, J. Dauwels, M. Reddy. Multichannel

EEG Compression: Wavelet-Based Image

andVolumetric Coding Approach. IEEE Journal of

Biomedical and Health Informatics, 2013, 17(1):113-

120.

[5] K. Rajakumar, T. Arivoli. Implementation of

Multiwavelet Transform coding for lossless image

compression. International Conference on Information

Comm. and Embedded Systems, 2013, 634-637.

[6] Chiyuan Zhang, Xiaofei He. Image Compression by

Learning to Minimize the Total Error. IEEE

Transactions on Circuits and Systems for Video

Technology, 2013, 23(4): 565-576.

[7] K. Uma, P. Palanisamy, P. Poornachandran.

Comparison of image compression using GA, ACO

and PSO techniques. International Conference on

Recent Trends in Information Technology, 2011, 815-

820.

[8] Tzong-Jer Chen, Keh-Shih Chuang. A pseudo lossless

image compression method. The 3rd International

Congress on Image and Signal Processing, 2010,

2:610-615.

Paper ID: ART20161042 DOI: 10.21275/ART20161042 1170

