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Abstract: In this paper we attempted to implement basic JPEG compression using only basic Matlab functions. This included going 

from a basic grayscale bitmap image all the way to a fully encoded file readable by standard image readers. we will show that are have 

implemented the majority of the paper, including much of the final binary coding. Although we never obtained a fully completed image 

from our functions, I came very close. 
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1. Introduction 
 

Image compression is used to minimize the amount of 

memory needed to represent an image. Images often require 

a large number of bits to represent them, and if the image 

needs to be transmitted or stored, it is impractical to do so 

without somehow reducing the number of bits. The problem 

of transmitting or storing an image affects all of us daily. TV 

and fax machines are both examples of image transmissions, 

and digital video players and web pictures of Catherine 

Zeta-Jones are examples of image storage. 

 

Three techniques of image compression that we have 

discuses later are pixel coding, predictive coding, and 

transform coding. The idea behind pixel coding is to encode 

each pixel independently. The pixel values that occur more 

frequently are assigned shorter code words (fewer bits), and 

those pixel values that are more rare are assigned longer 

code words. This makes the average code word length 

decrease. 

 

Predictive coding is based upon the principle that images are 

most likely smooth, so if pixel b is physically close to pixel 

a, the value of pixel b will be similar to the value of pixel a. 

When compressing an image using predictive coding, 

quantized past values are used to predict future values, and 

only the new info (or more specifically, the error between 

the value of pixels a and b) is coded. 

 

The image compression technique most often used is 

transform coding. A typical image's energy often varies 

significantly throughout the image, which makes 

compressing it in the spatial domain difficult; however, 

images tend to have a compact representation in the 

frequency domain packed around the low frequencies, which 

makes compression in the frequency domain more efficient 

and effective. Transform coding is an image compression 

technique that first switches to the frequency domain, then 

does its compressing. The transform coefficients should be 

decor related, to reduce redundancy and to have a maximum 

amount of information stored in the smallest space. These 

coefficients are then coded as accurately as possible to not 

lose information. In this project, we will use transform 

coding. 

 

2. Methodology 
 

 
Figure 1: Original image of boy.256 

 

In order to implement the image compression algorithm we 

c hose, we divided the process into various step s: 

 

 calculate the sums and differences of every row of the 

image

 calculate the sums and differences of every column of 

the resulting matrix

 repeat this process until we get down to squares of 16x16

 quantize the final matrix using different bit 

allocation schemes

 write the quantized matrix out to a binary file

 

The first two steps are accomplished using simple loops in 

Matlab. Specifically, we wrote two different functions - row 

thing for calculating sums and differences of individual rows 

and clothing for calculating sums and differences of 

individual columns. 

 

In order to keep the energy of the image the same, we 

multiplied each sum and difference by a factor of 1/sqrt(2). 

Performing these two operations once will result in an image 

that is split into four parts, with the up per left hand quadrant 

being the sums of sums region (see Figure 2). 
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Figure 2: Sums and differences after one iteration 

 

The third step involves repeating the previous two steps until 

we get down to a small enough final images. The function 

squishier accomplishes this task. This function performs the 

sums and differences of rows and columns, in alternating 

order, until the final sums of sums image is of size 16x16. 

The resulting image can be seen in the following figure (due 

to the normalized display, the various quadrants are not too 

visible, but contain various edge information): 

 

 
Figure 3: Final sums and differences matrix 

 

The next step is quantization. This is performed during the 

writing to a binary file (see proceeding discussion of writing 

to a file); however, we wrote a distinct quantization function 

to analyze this step statistically (MSE and PS NR -- see the 

Results section), as well as for our own educational benefit 

(!). The quantization function, quant, is also called in 

squishier. Our quantization scheme simply assigns different 

numbers of bits to different regions, using masks (for 

example, [b16, b32, b64, b128, b256], where b16 is the 

quantization level for the upper left 16x16 matrix, b32 is for 

the next 32x32 matrix surrounding the first one, etc.). We 

used a number of different bit allocation masks (see next 

section) in order to determine which scheme is better. 

 

The quantization function takes in as arguments not only the 

input matrix, but also the mask, i.e. the number of bits to be 

used to represent each region in the compression scheme. 

This allows us to modify and test out difference bit 

allocation algorithms easily. The quantized image looks 

similar to Figure 3, although depending on the mask used, 

the level of details may vary. 

 

Once we have generated the compressed matrix, we are 

ready to transfer it to a binary file for storage (and, in the 

process, quantize it). We use the write Matlab command, 

specifying the number of bits with which to quantize. The 

function bit performs this operation. 

 

Once the file is saved, we can use the file-size information to 

evaluate the success of the compression technique. 

Additionally, a further use of the lossless gzip command in 

Unix can show how thoroughly the image could really be 

stored. The next section also shows some of these results. 

 

With compression complete, we are ready to decompress 

and examine the errors introduced by compression. To 

reverse our compression scheme, we take the following 

steps: 

 reverse-quantize back to original levels

 undo the sums and differences calculation for each column 

of the matrixundo the sums and differences calculation for 

each row of the resulting matrix

 repeat this process on successively larger square matrices 

until we get back to a 256x256 matrix

 

Quantizing the matrix back to its original levels is easy: just 

quantize the compressed image back to eight bits, or bit shift 

8-(first quantization level). The function iquant performs this 

operation. The inverse sums and differences calculations are 

made by adding and subtracting various pairs of numbers in 

the matrix and dividing by two. These values are 

renormalized, and placed in their appropriate positions in the 

target matrix. The two functions row thing and clothing 

accomplish e this task. These operations are performed first 

on the columns, and then on the rows of succeedingly larger 

sections of the matrix until the entire 256x256 matrix have 

been decompressed. This process is done with the function 

unsquisher. Once this is done, we have reconstructed our 

image. Figure 4 shows the reconstructed image using the 

mask [8 6 4 2 0]. 

 

 
Figure 4: Reconstructed image using mask [8 6 4 2 0] 
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3. Result 
 

We tested our wavelet transform coder on a few different 

images to see if some images would compress better (i.e. 

with less error) than others. In addition to the boy.256 

image, which is relatively smooth and does not have too 

many edges, we also used the following three images: 

 

 
Figure 5: Image with sharp edges and high contrast 

 

 
Figure 6: Blurry satellite image 

 

 
Figure 7: Image with low contrast 

 

We ran our coder with vario us different masks (thus 

resulting in different numbers of bits per pixel) on each of 

these images. For each run, we determined the mean-square 

error (MSE) as well as the peak signal-to-noise ratio 

(PSNR). The following two graphs show the results of these 

tests: 

 
Figure 8: Mean-square error plot 
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Figure 9: Peak signal-to- noise ratio plot 

 

As we can see, the boy.256 image seem to perform the best 

out of the four while the madrill.256 image seem to perform 

the worst. We show a nice linear increase in PSNR with 

additional bits-per-pixel. Note we get a PSNR of greater 

than 20 for all images even with less than 1 bit per pixel. 

 

In addition to the MES and PSNR results, we also analyzed 

the results of the compression (since that is what the 

assignment is called). For this analysis, we used the mask [8 

6 4 2 0] (the same mask used in the representative images 

above) in the coding scheme because it gave us really good 

approximations of the original image. For comparison 

purposes, it is useful to note that the JPEG compression 

standard has a compression ratio of 40:1. 

 

4. Conclusion 
 

The JPEG algorithm was created to compress photographic 

images, and it does this very well, with high compression 

ratios. It also allows a user to choose between high quality 

output images, or very small output images. The algorithm 

compresses images in 4 distinct phases, and does so in time, 

or better. It also inspired many other algorithms that 

compress images and video, and do so in a fashion very 

similar to JPEG. Most of the variants of JPEG take the basic 

concepts of the JPEG algorithm and apply them to more 

specific problems. 

 

Due to the immense number of JPEG images that exist, this 

algorithm will probably  

 

(Note: All numbers in units of bytes.) be in use for at least 

10 more years. This is despite the fact that better algorithms 

for compressing images exist, and even better ones than 

those will be ready in the near future. 

 

 

 

Image Original 

File 

After Our 

Coder 

Compression 

Ratio 

Gzipped Final 

Ratio 

boy.256 65536 5440 12.1:1 822 79.7:1 

mandrill.256 65536 5440 12.1:1 670 79.8:1 

bridge.256 65536 5440 12.1:1 972 67.4:1 

urban.256 65536 5441 12.0:1 855 76.7:1 

 

References 
 

[1] M. J. Weinberger, G. Seroussi, and G. Sapiro. The 

LOCO-I lossless image compression algorithm: 

principles and standardization into JPEG-LS. IEEE 

Transactions on Image Processing, 2000, 9(8):1309-

1324. 

[2] Chu, W.C., On lossless and lossy compression of step 

size matrices in JPEG coding. International Conference 

on Computing, Networking and Communications, 

2013, 103-107. 

[3] H. Oh, A. Bilgin, M. Marcellin. Visually Lossless 

Encoding for JPEG2000. IEEE Transactions on Image 

Processing, 2013, 22(1):189-201. 

[4] K. Srinivasan, J. Dauwels, M. Reddy. Multichannel 

EEG Compression: Wavelet-Based Image 

andVolumetric Coding Approach. IEEE Journal of 

Biomedical and Health Informatics, 2013, 17(1):113-

120. 

[5] K. Rajakumar, T. Arivoli. Implementation of 

Multiwavelet Transform coding for lossless image 

compression. International Conference on Information 

Comm. and Embedded Systems, 2013, 634-637. 

[6] Chiyuan Zhang, Xiaofei He. Image Compression by 

Learning to Minimize the Total Error. IEEE 

Transactions on Circuits and Systems for Video 

Technology, 2013, 23(4): 565-576. 

[7] K. Uma, P. Palanisamy, P. Poornachandran. 

Comparison of image compression using GA, ACO 

and PSO techniques. International Conference on 

Recent Trends in Information Technology, 2011, 815-

820. 

[8] Tzong-Jer Chen, Keh-Shih Chuang. A pseudo lossless 

image compression method. The 3rd International 

Congress on Image and Signal Processing, 2010, 

2:610-615. 

Paper ID: ART20161042 DOI: 10.21275/ART20161042 1170




