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Abstract: A kind of quasi-cubic Bézier curves by the blending of algebraic polynomials and trigonometric polynomials using weight 
method is presented, named WAT Bézier curves. Here weight coefficients are also shape parameters, which are called weight 
parameters. The interval [0, 1] of weight parameter values can be extended to [ −2, π 2 / (π2 − 6 )] and the corresponding WAT Bézier curves 
and surfaces are defined by the introduced base functions. The WAT Bézier curves inherit most of properties similar to those of c Bézier 
curves, and can be adjusted easily by using the shape parameter λ. The jointing conditions of two pieces of curves with G2 and C4 
continuity are discussed. With the shape parameter chosen properly, the defined curves can express exactly any plane curves or space 
curves defined by parametric equation based on{1, sint, cost, sint2t, cos2t} and circular helix with high degree of accuracy without using 
rational form. Examples are given to illustrate that the curves and surfaces can be used as an efficient new model for geometric design 
in the fields of CAGD. Unlike the existing techniques based on C-Bézier methods which can approximate the Bézier curves only from 
single side, the WAT Bézier curves can approximate the Bézier curve from the both sides, and the change range of shape of the curves is 
wider than that of C-Bézier curves. The geometric effect of the alteration of this weight parameter is discussed.  
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1. Introduction 
 
Computer aided geometric design (CAGD) studies the 
construction and manipulation of curves and surfaces using 
polynomial, rational, piecewise polynomial or piecewise 
rational methods. Among many generalizations of 
polynomial splines, the trigonometric splines are of 
particular theoretical interest and practical importance. In 
recent years, trigonometric splines with shape parameters 
have gained wide spread application in particular in curve 
design. Bézier form of parametric curve is frequently used in 
CAD and CAGD applications like data fitting and font 
designing, because it has a concise and geometrically 
significant presentation. Smooth curve representation of 
scientific data is also of great interest in the field of data 
visualization. Key idea of data visualization is the graphical 
representation of information in a clear and effective 
manner. When data arises from a physical experiment, 
prerequisite for the interpolating curve is to incorporate the 
inherit feature of the data like positivity, monotonicity, and 
convexity. Various authors have worked in the area of shape 
preserving using ordinary and trigonometric rational splines 
[7-9]. 
 
In many problems of industrial design and manufacturing, 
the given data often have some special shape properties, 
such as positivity, monotonicity and convexity, it is usually 
needed to generate a smooth function, which passes through 
the given set of data and preserves those certain geometric 
shape properties of the data. In the recent past, a number of 
authors and references have contributed to the shape-
preserving interpolation. In [1, 3, 6, 7, 12], different 
polynomial methods, which are used to generate the shape-
preserving interpolant, have been considered. In this paper, 
we present a class of new different trigonometric polynomial 
basis functions with a parameter based on the space Ω=span 
{1, sint, cost, sint2t, cos2t}, and the corresponding curves 

and tensor product surfaces named quasi-quartic 
trigonometric Bézier curves and surfaces are constructed 
based on the introduced basis functions. The quasi-quartic 
trigonometric Bézier curves not only inherit most of the 
similar properties to quartic Bézier curves, but also can 
express any plane curves or space curves defined by 
parametric equation based on {1, sint, cost, sint2t, cos2t} 
including some quadratic curves such as the circular arcs, 
parabolas, cardioid exactly and circular helix with high 
degree of accuracy under the appropriate conditions. 
 
In this paper, we present a class of quasi-cubic Bézier curves 
with weight parameter based on the blending space span. 
Also the change range of the curves is wider than that of C-
Bézier curves. The paths of the given curves are line 
segments. Some transcendental curves can be represented by 
the WAT with the shape parameters and control points 
chosen properly. The rest of this paper is organized as 
follows. Section 2 defines the WAT-Bezier Base Functions 
and the corresponding curves and surfaces, theirs 
propositions are discussed. In section 3, we discussed the 
continuity conditions of WAT-Bezier curves. In section 4, 
we show the representations of some curves. Besides, some 
examples of shape modeling by using the WAT-Bezier 
Bézier surfaces are presented also. The conclusions are 
given in section 5.  
 
2. WAT-Bezier Base Functions, WAT-Bezier 

Curves and Surfaces 
 
2.1 The Construction of the WAT-Bézier Base Functions 
 
Definition 2.1.1: For 0 ≤ λ≤ 1 , the following four functions 
of t ∈ [0, 1], are defined as WAT- Bézier basis functions  
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(1) 
Obviously, WAT-Bézier basis functions are cubic Bernstein 
bases when λ =1 . And, when λ = 0 , WAT-Bézier basis 
functions are C-Bézier bases associated to α = π.  
 
2.1.2 The Properties of the Basis Functions 
Theorem 1: The basis functions (2.1) have the following 
properties: 
 
Straight calculation testifies that these WAT-Bézier bases 
have the properties similar to the cubic Bernstein basis as 
follows. 
 
1) Properties at the endpoints: 
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Where j = 0, 1, 2…i-1, i = 1, 2, 3 and 
0
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2) Symmetry: 
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3) Partition of unity: 
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4) Nonnegativity: 

i (t ) 0;i 0,WAT 1,, 2,3.   
According to the method of extending definition interval of 
C-curves in Ref., the interval [0, 1] of weight parameter 

values can be extended to
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2.2 WAT-Bézier Curves  
 
2.2.1 The Construction of the WAT-Bézier Curves  
Definition 2.2.1 Given points Pk ( k = 0, 1, 2, 3 ) in R2

 or R3 , 
then 

i i

3

i 0
R(t, ) (t ),P WAT ,



   t ∈ [0,1] for i = 0, 1, 2,3. 

 ∈ [-2, 2.5505],                                 (2) 
This R( , t)  is called WAT-Bezier curve and 

i (t ) 0;i 0,WAT 1,, 2,3.  are the WAT-Bezier basis.  
 
2.2.2 The Properties of the WAT-Bezier Curve 
From the definition of the basis function some properties of 
the WAT- Bezier curve can be obtained as follows: 
 
Theorem 2: The WAT-Bezier curve curves (2.2..1) have the 
following properties: 
 Terminal Properties  
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 Symmetry: Assume we keep the location of control 
points Pi (i = 0,1,2,3,4) fixed, invert their orders, and then 
the obtained curve coincides with the former one with 
opposite directions. In fact, from the symmetry of WAT-
Bezier base functions, we have 

 

 R(1- t , λ) = i i

3

i 0
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= 3 i

3

i
i 0

(tP WA , )T
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 = R( t , λ ) ; t ∈ [0,1] , λ∈ [-2, 

2.5505], 
 Geometric Invariance: The shape of a WAT-Bezier 
curve is independent of the choice of coordinates, i.e. (2.2.1) 
satisfies the following two equations: 

R(t; λ; P0 + q , P1 +q, P2 +q, ,P3 +q ) = R(1- t; λ; 
P3, P2, P1, P0 ) + q ; 

 
R(t; λ; P0 *T , P1 *T , P2*T , ,P3 *T ) = R(1- t; λ; 

P3, P2, P1, P0 ) * T ; 
 
Where q is arbitrary vector in R2 or R3 and T is an arbitrary 
d * d matrix, d = 2 or 3. 
 
 Convex Hull Property: The entire WAT-Bezier curve 

segment lies inside its control polygon spanned by 
P0,P1,P2,P3. 
 

2.3 WAT Bézier Surfaces 
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Definition 2.3 Given the control mesh [Prs] ( r = i ….,i+2; s = j…,j+2 ),(i = 0,1,…, n – 1; j = 
0,1,…, m −1) , Tensor product WAT-Bézier surfaces can be defined as 
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Where i 1WAT λ( ,u) and i 2WAT λ( , v)  are WAT-Bezier base function. 
 

2.4 Shape Control Of The WAT-Bezier Curve  
 
Due to the interval [0, 1] of weight parameter values can be 
extended to[ −2, 2.55055], the change range of the WAT-
Bézier curve is wider than that of C-Bézier. From the Figure 
1, it can be seen that when the control polygon is fixed, by 
adjusting the weight parameter from -2 to 2.55055, the 
WAT-Bézier curves can cross the cubic Bézier curves and 
reach the both sides of cubic Bézier curves, in other words, 
the WAT-Bézier curves can range from below the C-Bézier 
curve to above the cubic Bézier curve. The weight 
parameters have the property of geometry. The larger the 
shape parameter is, and the more approach the curves to the 
control polygon is. Also, these WAT-Bézier curves we 
defined include C-Bézier curve ( α = π ) as special cases.  
 

 
Figure 1: Adjusting WAT Bezier Curve 

 
Figure 2: Paths of WAT Bezier Curve 

 
3. Jointing of WAT- Bézier Curves 
 
Suppose there are two segment of WAT- Bezier curves 

i

3
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   and 

i

3

i 0
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  ; where 3 0P Q , 

parameters of iP (t) and iQ (t) are 1 and 2 respectively. 
 
To achieve G1 continuity of the two curve segments, it is 
required that not only the last control point of Pi(t) and the 
first control point of Qi(t) must be the same, but also the 
direction of the first order derivative at jointing point should 
be the same, namely 

 ' ' P  1  kQ (0)   ;(k 1)     
 

Substituting Eq. (3) into the above equitation, one can get 
(2+ λ1 )(P3 – P2 ) = k (2+ λ2 )(Q1 −Q0 ) 

 
 

Let δ = 
k(1+λ2 ) 

，substituting it into the above equitation, then 
1+λ1   

  
  (P3 − P2 ) = δ (Q1 − Q0 ) (δ > 0) 
   

Especially, for k=1, namely, δ = 
1+λ2 

, the first order derivative of two segment of curves is equal .Thus,  
 1+λ1 
  
G1 continuity has transformed into C1 continuity. Then we can get following theorem 3. 
Theorem 3 If P2 ,P3 and QO, Q1 is collinear and have the same directions, i.e. 
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 (P3 – P2 ) = δ (Q1 − Q0 ) (δ > 0) 
 
 (5) 

Then curves of P(t) and Q(t) will reach G1 continuity at a jointing point and when δ =  
1+λ2 

 
1+λ1      

     
they will get C1 continuity.  
 
 
Then we will discuss continuity conditions of G2 when λ1 = 
λ2 =1. 
 
First, we’ll discuss conditions of G2 continuity which is 
required to have common curvature,  namely 
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Let λ1 = λ2 =1 , second derivatives of two segments of curves 
can be get 

''
1 2 3

''
0 1 2

P (1) 6P 12P 6P

Q 0) 6Q 12Q 6Q

  

  
                        (7)  

Substituting Eq. (3) and (7) into Eq. (6), simplifying it, then 
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Substituting Eq. (5) into the above equitation, one can get 
 
h1 = δ 2 h2 
where h1 is the distance from P1 to P2 P3 and h2 is the 
distance from Q2 to Q0 Q1 . Hence we can get theorem 4. 
 
Theorem 4 Let parameters λ1 , λ2 are all equal one, if they 
satisfy Eq. (5) and (9), five points P1 , P2 , P3 ,Q1 ,Q2 are 
coplanar and P1 , Q2 are in the same side of the common 
tangent, then jointing of curves P(t) and Q(t) reach G2 
continuity.  

 

 
Figure 3: WAT Bezier Curves with Different Values of 

Shape Parameter 
 

These curves are generated by setting λ =-2 in (a), λ =0 in 
(b), λ =-1 in (c) and λ =2.5505 in (d).  
Next, we will discuss the conditions of C4 continuity. When 
curves P(t) and Q(t) reach C1 continuity at the linked points, 
i.e. Q1 - Q0 = P3 - P2 and Q0 = P3 Under such circumstances, 

if " " "' '" "" ""P (1) Q (0);P (1) Q (0);P (1) Q (0)   , then 
two curves will become C4 continuity. Combine all the 
above conditions, we get 

1 3 2 2 3 2 1

3 3 2 1 0

Q 2P P ;Q 2P 2P P
Q 2P 2P 2P P

    

   
 (10) 

Theorem 5 Let parameters λ1 , λ2 are all equal one and 
satisfy (10) in theorem 3, curves P(t) and Q(t) will reach C4 
continuity at the linked point. 
 
4. Applications of WAT- Bézier Curves and 

Surfaces 
 
Proposition 4.1 Let P0, P1, P2 and P3 be four control points. 
By proper selection of coordinates, their coordinates can be 
written in the form 

 
Then the corresponding WAT-Bézier curve with the weight 
parameters λ = 0 and t ∈  [0 ,1] represents an arc of cycloid. 
 
Proof: If we take P0, P1, P2 and P3 into (2), then the 
coordinates of the WAT-Bézier curve are 
 x (t ) = a (t − sin πt ), 
y (t ) = a (1 − cos πt ). 

It is a cycloid in parametric form, see Figure 4. 
 

 
Figure 4: The Representation of Cycloid With WAT-Bézier 

Curve 
 

Proposition 4.2 Let P0, P1, P2 and P3 be four properly 
chosen control points such that 

 
Then the corresponding WAT-Bézier curve with the weight 
parameters λ = 0 and t ∈ [0 ,1] represents an arc of a helix.  
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Proof: Substituting P0, P1, P2 and P3 into (2) yields the 
coordinates of the WAT-Bézier curve x (t ) = a cos πt, y (t ) 
= a sin πt, z (t ) = bt, which is parameter equation of a helix, 
see Figure 5.  

 
Figure 5: The Representation of Helix With WAT-Bézier 

Curve 
 

Proposition 4.3 Given the following four control points, P0 
= (0,0),P1 = P2 = (a, π

2b),P3 = (2a ,0) (ab ≠ 0).Then the 
corresponding WAT-Bézier curve with the weight 
parameters λ = 0 and t ∈ [0 ,1] represents a segment of sine 
curve. 
 
Proof: Substituting P0, P1, P2 and P3 into (2), we get the 
coordinates of the WAT-Bézier curve, x (t )= at y (t )= b sin 
πt, 
which implies that the corresponding WAT-Bézier curve 
represents a segment of sine curve, see Figure5. 

 

 
Figure 5: The Representation of Sine Curve with WAT-

Bézier Curves 
 

5. Conclusions 
 
In this paper, the WAT-Bézier curves have the similar 
properties that cubic Bézier curves have. The jointing of two 
pieces of curves can reach G2 and C4 continuity under the 
appropriate conditions. The given curves can represent some 
special transcendental curves. What is more, the paths of the 
curves are linear, the WAT-Bézier curves have more 
advantages in shape adjusting than that C-Bézier 
curves.Both rational methods (NURBS or Rational Bézier 
curves) and WAT-Bézier curves can deal with both free 
form curves and the most important analytical shapes for the 
engineering. However, WAT-Bézier curves are simpler in 

structure and more stable in calculation. The weight 
parameters of WAT-Bézier curves have geometric meaning 
and are easier to determine than the rational weights in 
rational methods. Furthermore, some complex surfaces can 
be constructed by these basic surfaces exactly. While the 
method of traditional quartic Bézier curves needs joining 
with many patches of surface in order to satisfy the precision 
of users for designing. Therefore the method presented by 
this paper can raise the efficient of constituting surfaces and 
precision of representation in a large extent Meanwhile, 
WAT-Bézier curves can represent the helix and the cycloid 
precisely, but NURBS can’t. Therefore, WAT-Bézier curves 
would be useful for engineering 
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