
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 8, August 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Optimization of Data Storage and Fault Tolerance
Strategies in Cloud Computing

Dr. C. Vijay Kumar

Department of Computer Applications, MITS College, Madanapalle, India

Abstract: Internet provides to us content in the forms of videos, emails and information served up in web pages. With Cloud

Computing, the next generation of Internet will allow us to "buy" IT services from a web portal, drastic expanding the types of

merchandise available beyond those on e-commerce sites such as eBay, Flipkart and Snapdeal. Our focus is to improve the performance

and optimize the storage usage by providing the DaaS on the cloud, 1) Analyzing and modeling the relationship between system

availability and the number of replicas 2) Evaluating and identifying the popular data and triggering a replication operation when the

popularity data passes a dynamic threshold 3) Calculating a suitable number of copies to meet a reasonable system byte effective rate

requirement and placing replicas among data nodes in a balanced way 4) Designing the optimized data replica algorithm in a cloud.

Experimental results shows the efficiency and effectiveness of the replication by the proposed strategy in a cloud.

Keywords: Cloud Computing, DaaS, Replications, Virtualization, optimized data replica

1. Introduction

Cloud computing has gained significant traction in recent
years. Companies such as Google, Amazon, IBM, Facebook
and Microsoft have been building massive data centers over
the past few years. These data centers tend to be built out of
commodity desktops with the total number of computers
managed by these companies being in the order of millions.
By leveraging economies of scale, these data centers can
provision cpu, networking, and storage at substantially
reduced prices which in turn underpins the move by many
institutions to host their services in the cloud. The cloud
provides a variety of services for its users such as providing
software as a service (SaaS), infrastructure as a service
(IaaS), and platform as a service (PaaS). Providing
infrastructure as a service within the cloud includes
providing data (DaaS) or computational resources
services[1]. There are many areas that can be improved in
the cloud services such as the security of the data, the
reliability of the cloud services, and the usage of distributed
third party servers without including the client in the back-
end processes. Moreover, a problem that still needs to be
addressed for providing DaaS in the cloud is improving the
techniques used to make the data available and quickly
accessible (and downloadable) for the client. Another
problem is data redundancy on the cloud servers, which is
resulting in a huge increase of storage needs.

Database Replication is the frequent electronic copying of
data from a database in one computer or server to a database
in another so that all users share the same level of
information. The result is a distributed database in which
users can access data relevant to their tasks without
interfering with the work of others. However data replication
is a fascinating topic for both theory and practice. On the
theoretical side, many strong results constraint what can be
done in terms of consistency: e.g., the impossibility of
reaching consensus in asynchronous systems the blocking
nature of CAP theorem, and the need for choosing a suitable
correctness criterion among the many possible[6] .On the
practical side, data replication plays a key role in a wide
range of contexts like caching, back-up, high availability,

wide area content distribution, increasing scalability, parallel
processing, etc. Finding a replication solution that is suitable
in as many such contexts as possible remains an open
challenge.

2. Virtualization

Virtualization, automation and standards are the pillars of
the foundation of all good cloud computing infrastructures.
Without this foundation firmly in place across the servers,
storage and network layers, only minimal improvements on
the adoption of cloud services can be made; conversely, with
this foundation in place, dramatic improvements can be
brought about by "uncoupling" applications and services
from the underlying infrastructure to improve application
portability, drive up resource utilization, enhance service
reliability and greatly improve the underlying cost
structures. However, this "uncoupling" must be done
harmoniously such that the network is "application aware"
and that the application is "network aware"[2]. Specifically,
the networks both the data center network and the data
center interconnect network need to embrace virtualization
and automation services. The network must coordinate with
the upper layers of the cloud to provide the needed level of
operational efficiency to break the lock between IT
resources in today's client-server model. The advantage of
cloud computing is the ability to virtualize and share
resources among different applications with the objective for
better server utilization. In non-cloud computing three
independent platforms exist for three different applications
running on its own server. In the cloud, servers can be
shared, or virtualized, for operating systems and applications
resulting in fewer servers.

3. Fault Tolerant Strategies

The most dominant storage and fault tolerant strategies that
are currently being used in cloud computing settings are
several unifying themes that underlie the systems

Paper ID: 30071602 1320

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 8, August 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Theme 1: Voluminous Data

The datasets managed by these systems tend to be extremely
voluminous. It is not unusual for these datasets to be several
terabytes. The datasets also tend to be generated by
programs, services and devices as opposed to being created
by a user one character at a time. In 2000, the Berkeley
"How Much Information?" reported that there was an
estimated 25–50 TB of data on the web. In 2003 the same
group reported that there were approximately 167 TB of
information on the web. The Large Hadron Collider (LHC)
is expected to produce 15 PB/year The amount of data being
generated has been growing on an exponential scale there
are growing challenges not only in how to effectively
process this data, but also with basic storage[4].

Theme 2: Commodity Hardware

The storage infrastructure for these datasets tend to rely on
commodity hard drives that have rotating disks. This
mechanical nature of the disk drives limits their
performance. While processor speeds have grown
exponentially disk access times have not kept pace. The
performance disparity between processor and disk access
times is in the order of 14,000,000:1 and continues to grow.

Theme 3: Distributed Data

A given dataset is seldom stored on a given node, and is
typically distributed over a set of available nodes. This is
done because a single commodity hard drive typically
cannot hold the entire dataset. Scattering the dataset on a set
of available nodes is also a precursor for subsequent
concurrent processing being performed on the dataset.

Theme 4: Expect Failures

Since the storage infrastructure relies on commodity
components, failures should be expected. The systems thus
need to have a failure model in place that can ensure
continued progress and acceptable response times despite
any failures that might have taken place. Often these datasets
are replicated, and individual slices of these datasets have
checksums associated with them to detect bit-flips and the
concomitant data corruptions that often taken place in
commodity hardware.

Theme 5: Tune for Access by Applications

Though these storage frameworks are built on top of existing
file systems, the stored datasets are intended to be processed
by applications and not humans. Since the dataset is
scattered on a large number of machines, reconstructing the
dataset requires processing the metadata fcc to identify the
precise location of specific portions of the datasets.
Manually accessing any of the nodes to look for a portion of
the dataset is futile since these portions have themselves
been modified to include checksum information.

Theme 6: Optimize for Dominant Usage

Another important consideration in these storage
frameworks is optimizing the most general access patterns
for these datasets. In some cases, this would mean
optimizing for long, sequential reads that puts a premium on
conserving bandwidth while in others it would involve
optimizing small, continuous updates to the managed
datasets[8].

Example, let's we take partition-tolerant system with two
nodes A and B. Let's suppose there is some network error
between A and B, and they can no longer communicate with
each other, but both can still connect to clients. If a client
were to write a change a file v hosted on both A and B while
connected to B, the change would go through on B, but if the
client later connects to A and reads v again, the client will
not see their changes, so the system is no longer consistent.
You could get around this by instead sacrificing availability
if you ignore writes during a network partition.

4. Google File System

The Google File System (GFS) is designed by Google to
function as a backend for all of Google's systems. The basic
assumption underlying its design is that components are
expected to fail. A robust system is needed to detect and
work around these failures without disrupting the serving of
files. GFS is optimized for the most common operations as
long, sequential and short, random reads, as well as large,
appending and small, arbitrary writes. The major goal in
designing GFS was to efficiently allow concurrent appends
to the same file. As a design goal, high sustained bandwidth
was deemed more important than low latency in order to
accommodate large datasets [9].

In a GFS cluster, there are three components, multiple
clients, a single master server, and multiple chunk servers, as
shown in Figure.1. Files are stripped into one or many fixed
size chunks, and these chunks are stored in the data centers,
which are managed by the chunk servers. The master server
maintains all the meta data of the file system, including the
namespace, the access control information, the mapping
from files to chunks, and the current locations of chunks.
Clients interact with the master for metadata operations, but
all data bearing communication goes directly to the chunk
servers. There are usually also several master replicas, as
well as shadow masters which can handle client reads to
help reduce load on a master server. The chunk servers hold
data in 64 MB-sized chunks[11].

Figure 1: GFS architecture

4.1 Check Pointing

In GFS, the master server will keep logs tracking all chunk
mutation. Once a log file starts to become too big, the master
server will create a checkpoint. These check-points can be

Paper ID: 30071602 1321

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 8, August 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

used to recover a master server, and are used by the master
replicas to bring a new master process up[16].

4.2 Replication

By default, all GFS maintains a replication level of 3. Users
can designate different replication levels for different
regions of the file namespace. For example, a temp directory
generally has a replication level of 1, and is used as a scratch
space[14]. The master server is responsible for ensuring that
the replication level is met only involves copying over
chunks if a chunk server goes down, but also removing
replicas once a server comes back up. The master server will
try to place replicas on different racks.

4.3 Failures

The master server regularly exchanges heart beats with the
chunk servers. If the master server does not receive a
heartbeat from a chunk server in time, it will assume the
server has died, and will immediately start to spread the
chunks located on that server to other servers to restore
replication levels a chunk server recover, it will start to send
heart beats again and notify the master that it is back up. At
this point the master server will need to delete chunks in
order to drop back down to replication level. Because of this
approach, it would be possible to wreak havoc with a GFS
instance by repeatedly turning on and off a chunk server.
Master server failure is detected by an external management
system. Once this happens, one of the master server replicas
is promoted, and the master server process is started up on
it[17-18].

5. Optimized Data Replication Strategy

The Optimized Data Replication Strategy ODRS has three
important phases

1) Which data file should be replicated and when to
replicate in the cloud system to meet clients requirements
such as waiting time reduction and data access time.

2) How many suitable new replicas should be created in the
cloud system to meet a given availability requirement.

3) Where the new replicas should be placed to meet the
system task successful execution rate and bandwidth
consumption requirements.

5.1 Data Replica Status

Given the fact that a more recently accessed data file might
be accessed again in the near future according to the current
status of data access pattern, which is called temporal
locality, a ranking data file is determined by analyzing the
access to the data from users. When the ranking of a data file
passes a dynamic threshold, the replication operation will be
triggered.

Ranking Degree: The ranking degree of a block bk is
defined as the access frequency based on time factor. During
the period from the start time ts to the present time tp, the
popularity degree Rk of a block bk can be calculated by

bk =)*()1,(tptiXtiti
tp

tsti





 where (ti, ti+1) is the number of accesses during the time
interval ti to ti+1.

Replica Factor: The replica factor is defined as the ratio of
the ranking degree Rk and the total number of bytes of data
file fi requested by all tasks under given constraints. It is
used to determine whether the data file fi should be
replicated, denoted as RFi.

RFi =
)*(RNiFi

Rk

Where Rk is Ranking degree , Fi is file size and RNi is
number of replications .

Figure 2: Optimized Data Replication

5.2 New Replication Placement Allocation

To meet the system task successful execution rate and
bandwidth consumption requirement, different tiers of data
centers which have the selected replica data file fi will
decide the replica placement and the placement of new
replicas to be created according to the access information of
directly connected data centers. The number of new replicas
created at the directly connected data center dck is calculated
based on the total number of new replicas bni(inc)

bni = dckx
RFi

dckRF)(

where bni(dck) is the number of new replicas to be created at
the directly connected data center dck, RFi(dck) is the
replica factor of data file fi of the datacenter dck directly
connected, and RFi is the replica factor of the data file fi.

Method Upload File To Cloud

(1) Require: FileSize i, FileName
(2) Declare: BlockSize,
(3) While i between {0, (i/NOC) i NOS}
(4) IF i % FileSize i
 (5) BlockSize = i
(6) End IF
(7) EndWhile
(8) InsertRow FileID, FileName, FileSize, BlockSize
(9) End of method

Paper ID: 30071602 1322

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 8, August 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3: Optimized Data Replication Algorithm (ODRA)

6. Optimized Data Replication Algorithm

(ODRA)

Algorithm. ODR Algorithm
Input: the available probability p(bak) and unavailable
probability p(bak) of all replicas of block bk of the data file
fi, the number of replicas bni, the block size bsi and the
number of accesses ank(ti; ti+1) within time interval ti to
ti+1 for each block of data file fi.
 Output: system byte effective rate R(SBER).
Step 1 : Initialize available and unavailable probability of
each replica of block bk p(bak) and p(bak).
Step 2 : for each data file fi at all data centers DC do
 Step 3 : Calculate the ranking degree Rk of a block bk of
data fi le fi by .
Step 4 : Calculate replica factor RFi of data file fi . end for
Step 5 : Calculate replica factor RFsys of the cloud.
 Step 5 : for each data ¯le fi at all data centers DC do
Step 6 : if RFi > min (1 + bck) , RFsys , max RFk then
Step 7 : The replication operation of the data file fi will be
triggered. end if
Step 8 : end for
Step 9 : for each data file fi at all data centers DC do
Step 10 : Calculate the old fule availability P(FAi) of data
file fi by .
Step 11: end for
 Step 12 : for each triggered data file do
Step 13: Calculate the new file availability Pnew (FAi) of
data file fi .
Step 14 : Calculate the number of new replicas needed
bni(inc) .
Step 15 : end for
Step 16 : for each triggered data file and bni(inc) > 0 do
Step 17 : for each directly connected data center dck do
Step 18: Calculate the number of new replicas bni(dck) to be
created at the directly connected Step 19 : data center dck .
Step 20: end for

Step 21: Determine the replica placement according to
bni(dck).
Step 22: if the storage space of the target data center DCobj
is not enough then
Step 23: Quick sort all data file in descending order by
replica factor of data file at data center DCobj .
Step 24: Delete the data file with the smallest replica factor.
end if
Step 25: Calculate the new system byte effective rate
R(SBER)
Step 26: returur R(SBER)

7. Conclusion

Storage optimization is an important issue as the demand for
storage space especially for big data is rapidly increasing.
However, data replication is also important for various
reasons such as increasing reliability, fault tolerance, and
enhanced performance and also for backup purposes. High
availability, high fault tolerance and high efficiency accesses
to Internet based cloud data centers where failures are
normal rather than exceptional are significant issues, and are
often considered more valuable than high performance. Data
replication allows reducing user waiting time and speeding
up data access. It increases data availability by providing
users with different replicas of the same service, and all of
them in a coherent state.

8. Acknowledgment

This research was supported by the Madanapalle Institue of
Technology and Science, Madanapalle (UGC-Autonomous),
Andhra Pradesh.

Paper ID: 30071602 1323

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 8, August 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] P. Mell and T. Grance, “The NIST definition of cloud

computing,” National Institute of Standards and
Technology, vol. 53, no. 6, p. 50, 2009.

[2] J. Wu, L. Ping, X. Ge, Y. Wang, and J. Fu, “Cloud
storage as the infrastructure of Cloud Computing,” in
Proceedings of the International Conference on
Intelligent Computing and Cognitive Informatics
(ICICCI ’10), pp. 380–383, IEEE, June 2010.

[3] K. Al Nuaimi, N. Mohamed, M. Al Nuaimi, and J. Al-
Jaroodi, “A survey of load balancing in cloud
computing: challenges and algorithms,” in Proceedings
of the IEEE 2nd Symposium on Network Cloud
Computing and Applications (NCCA ’12), pp. 137–142,
London, UK, December 2012.

[4] W. Zeng, Y. Zhao, K. Ou, and W. Song, “Research on
cloudstorage architecture and key technologies,” in
Proceedings of the 2nd International Conference on
Interaction Sciences: Information Technology Culture
and Human (ICIS ’09), pp. 1044–1048, November
2009.

[5] J. Al-Jaroodi and N. Mohamed, “DDFTP: dual-direction
FTP,” in Proceedings of the 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing (CCGrid ’11), pp. 504– 513, May 2011.

[6] N. Mohamed and J. Al-Jaroodi, “Delay-tolerant
dynamic load balancing,” in Proceedings of the 13th
IEEE International Conference on High Performance
Computing and Communications (HPCC ’11), pp. 237–
245, IEEE, Banff, Canada, September 2011.

[7] N. Mohamed, J. Al-Jaroodi, and A. Eid, “A dual-
direction technique for fast file downloads with
dynamic load balancing in the Cloud,” Journal of
Network and Computer Applications, vol. 36, no. 4, pp.
1116–1130, 2013.

[8] C.Vijaya Kumar and Dr.G.A Ramachandra, “Energy
Conservation for Datacenters in Cloud Computing using
Genetic Algorithms, pp. 577–583, International Journal
of Science and Research (IJSR), December 2014.

[9] L.Wang,G.VonLaszewski, A. Younge et al., “Cloud
computing: a perspective study,” New Generation
Computing, vol. 28, no. 2, pp. 137–146, 2010.

[10] E. Hamburger, Google Drive vs. Dropbox, SkyDrive,
SugarSync, and Others: A Cloud Sync Storage Face-
Off, The Verge, 2012.

[11] Shvachko K, Hairong K, Radia S, Chansler R. The
Hadoop distributed ¯le system. In Proc. the 26th
Symposium on Mass Storage Systems and Technologies,
Incline Village, NV, USA, May 3-7, 2010, pp.1-10.

[12] Wang S S, Yan K Q, Wang S C. Achieving e±cient
agreement within a dual-failure cloud-computing
environment. Expert System with Applications, 2010,
38(1): 906-915.

[13] C.Vijaya Kumar and Dr.G.A Ramachandra,
Optimization of Large Data in Cloud computing using
Replication Methods, International Journal of Computer
Science and Information Technologies, Vol. 5 (3) ,
2014, 3034-3038.

[14] Kim Y H, Jung M J, Lee C H. Energy-aware real-time
task scheduling exploiting temporal locality. IEICE
Transactions on Information and Systems, 2010, 93(5):
1147-1153.

[15] Wei Q, Veeravalli B, Gong B, Zeng L, Feng D. CDRM:
A cost-effiective dynamic replication management
scheme for cloud storage cluster. In Proc. 2010 IEEE
International Conference on Cluster Computing,
Heraklion, Crete, Greece, Sept. 20-24, 2010, pp.188-
196.

[16] Bonvin N, Papaioannou T G, Aberer K. A self-
organized, fault-tolerant and scalable replication scheme
for cloud sto- rage. In Proc. the 1st ACM Symposium on
Cloud Computing, Indianapolis, IN, USA, June 10-11,
2010, pp.205-216.

[17] C.Vijaya Kumar and Dr.G.A Ramachandra, Thrusting
Energy Efficiency for Data center in Cloud Computing
Using Resource Allocation Techniques,International
Journal of Emerging Trends & Technology in Computer
Science (IJETTCS),ISSN 2278-6856, pp 173-185.

[18] Nguyen T, Cutway A, Shi W. Differentiated replication
strategy in data centers. In Proc. the IFIP International
Conference on Network and Parallel Computing,
Zhengzhou, China, Sept. 13-15, 2010, pp.277-288.

[19] Dr.K. Fayaz, Dr.C. Vijay Kumar, Optimization of Data
Storage and QOS in Data Replication using the Priority
Datasets, Volume 5, Number1, January-March'2016.

Paper ID: 30071602 1324

