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Abstract: Internet provides to us content in the forms of videos, emails and information served up in web pages. With Cloud 

Computing, the next generation of Internet will allow us to "buy" IT services from a web portal, drastic expanding the types of 

merchandise available beyond those on e-commerce sites such as eBay, Flipkart and Snapdeal. Our focus is to improve the performance 

and optimize the storage usage by providing the DaaS on the cloud, 1) Analyzing and modeling the relationship between system 

availability and the number of replicas 2) Evaluating and identifying the popular data and triggering a replication operation when the 

popularity data passes a dynamic threshold 3) Calculating a suitable number of copies to meet a reasonable system byte effective rate 

requirement and placing replicas among data nodes in a balanced way 4) Designing the optimized data replica algorithm in a cloud. 

Experimental results shows the efficiency and effectiveness of the replication by the proposed strategy in a cloud. 
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1. Introduction 
 
Cloud computing has gained significant traction in recent 
years. Companies such as Google, Amazon, IBM, Facebook 
and Microsoft have been building massive data centers over 
the past few years. These data centers tend to be built out of 
commodity desktops with the total number of computers 
managed by these companies being in the order of millions. 
By leveraging economies of scale, these data centers can 
provision cpu, networking, and storage at substantially 
reduced prices which in turn underpins the move by many 
institutions to host their services in the cloud. The cloud 
provides a variety of services for its users such as providing 
software as a service (SaaS), infrastructure as a service 
(IaaS), and platform as a service (PaaS). Providing 
infrastructure as a service within the cloud includes 
providing data (DaaS) or computational resources 
services[1]. There are many areas that can be improved in 
the cloud services such as the security of the data, the 
reliability of the cloud services, and the usage of distributed 
third party servers without including the client in the back-
end processes. Moreover, a problem that still needs to be 
addressed for providing DaaS in the cloud is improving the 
techniques used to make the data available and quickly 
accessible (and downloadable) for the client. Another 
problem is data redundancy on the cloud servers, which is 
resulting in a huge increase of storage needs. 
 
Database Replication is the frequent electronic copying of 
data from a database in one computer or server to a database 
in another so that all users share the same level of 
information. The result is a distributed database in which 
users can access data relevant to their tasks without 
interfering with the work of others. However data replication 
is a fascinating topic for both theory and practice. On the 
theoretical side, many strong results constraint what can be 
done in terms of consistency: e.g., the impossibility of 
reaching consensus in asynchronous systems the blocking 
nature of CAP theorem, and the need for choosing a suitable 
correctness criterion among the many possible[6] .On the 
practical side, data replication plays a key role in a wide 
range of contexts like caching, back-up, high availability, 

wide area content distribution, increasing scalability, parallel 
processing, etc. Finding a replication solution that is suitable 
in as many such contexts as possible remains an open 
challenge. 
 
2. Virtualization 
 
Virtualization, automation and standards are the pillars of 
the foundation of all good cloud computing infrastructures. 
Without this foundation firmly in place across the servers, 
storage and network layers, only minimal improvements on 
the adoption of cloud services can be made; conversely, with 
this foundation in place, dramatic improvements can be 
brought about by "uncoupling" applications and services 
from the underlying infrastructure to improve application 
portability, drive up resource utilization, enhance service 
reliability and greatly improve the underlying cost 
structures. However, this "uncoupling" must be done 
harmoniously such that the network is "application aware" 
and that the application is "network aware"[2]. Specifically, 
the networks both the data center network and the data 
center interconnect network need to embrace virtualization 
and automation services. The network must coordinate with 
the upper layers of the cloud to provide the needed level of 
operational efficiency to break the lock between IT 
resources in today's client-server model. The advantage of 
cloud computing is the ability to virtualize and share 
resources among different applications with the objective for 
better server utilization. In non-cloud computing three 
independent platforms exist for three different applications 
running on its own server. In the cloud, servers can be 
shared, or virtualized, for operating systems and applications 
resulting in fewer servers. 
 
3. Fault Tolerant Strategies 
 
The most dominant storage and fault tolerant strategies that 
are currently being used in cloud computing settings are 
several unifying themes that underlie the systems 
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Theme 1: Voluminous Data 

The datasets managed by these systems tend to be extremely 
voluminous. It is not unusual for these datasets to be several 
terabytes. The datasets also tend to be generated by 
programs, services and devices as opposed to being created 
by a user one character at a time. In 2000, the Berkeley 
"How Much Information?" reported that there was an 
estimated 25–50 TB of data on the web. In 2003 the same 
group reported that there were approximately 167 TB of 
information on the web. The Large Hadron Collider (LHC) 
is expected to produce 15 PB/year The amount of data being 
generated has been growing on an exponential scale there 
are growing challenges not only in how to effectively 
process this data, but also with basic storage[4]. 
 

Theme 2: Commodity Hardware 

The storage infrastructure for these datasets tend to rely on 
commodity hard drives that have rotating disks. This 
mechanical nature of the disk drives limits their 
performance. While processor speeds have grown 
exponentially disk access times have not kept pace. The 
performance disparity between processor and disk access 
times is in the order of 14,000,000:1 and continues to grow. 
 

Theme 3: Distributed Data 

A given dataset is seldom stored on a given node, and is 
typically distributed over a set of available nodes. This is 
done because a single commodity hard drive typically 
cannot hold the entire dataset. Scattering the dataset on a set 
of available nodes is also a precursor for subsequent 
concurrent processing being performed on the dataset. 
 
Theme 4: Expect Failures 

Since the storage infrastructure relies on commodity 
components, failures should be expected. The systems thus 
need to have a failure model in place that can ensure 
continued progress and acceptable response times despite 
any failures that might have taken place. Often these datasets 
are replicated, and individual slices of these datasets have 
checksums associated with them to detect bit-flips and the 
concomitant data corruptions that often taken place in 
commodity hardware. 
 

Theme 5: Tune for Access by Applications 

Though these storage frameworks are built on top of existing 
file systems, the stored datasets are intended to be processed 
by applications and not humans. Since the dataset is 
scattered on a large number of machines, reconstructing the 
dataset requires processing the metadata fcc to identify the 
precise location of specific portions of the datasets. 
Manually accessing any of the nodes to look for a portion of 
the dataset is futile since these portions have themselves 
been modified to include checksum information. 
 

Theme 6: Optimize for Dominant Usage 

Another important consideration in these storage 
frameworks is optimizing the most general access patterns 
for these datasets. In some cases, this would mean 
optimizing for long, sequential reads that puts a premium on 
conserving bandwidth while in others it would involve 
optimizing small, continuous updates to the managed 
datasets[8]. 

Example, let's we take partition-tolerant system with two 
nodes A and B. Let's suppose there is some network error 
between A and B, and they can no longer communicate with 
each other, but both can still connect to clients. If a client 
were to write a change a file v hosted on both A and B while 
connected to B, the change would go through on B, but if the 
client later connects to A and reads v again, the client will 
not see their changes, so the system is no longer consistent. 
You could get around this by instead sacrificing availability 
if you ignore writes during a network partition. 
 
4. Google File System 
 
The Google File System (GFS) is designed by Google to 
function as a backend for all of Google's systems. The basic 
assumption underlying its design is that components are 
expected to fail. A robust system is needed to detect and 
work around these failures without disrupting the serving of 
files. GFS is optimized for the most common operations as 
long, sequential and short, random reads, as well as large, 
appending and small, arbitrary writes. The major goal in 
designing GFS was to efficiently allow concurrent appends 
to the same file. As a design goal, high sustained bandwidth 
was deemed more important than low latency in order to 
accommodate large datasets [9]. 
 
In a GFS cluster, there are three components, multiple 
clients, a single master server, and multiple chunk servers, as 
shown in Figure.1. Files are stripped into one or many fixed 
size chunks, and these chunks are stored in the data centers, 
which are managed by the chunk servers. The master server 
maintains all the meta data of the file system, including the 
namespace, the access control information, the mapping 
from files to chunks, and the current locations of chunks. 
Clients interact with the master for metadata operations, but 
all data bearing communication goes directly to the chunk 
servers. There are usually also several master replicas, as 
well as shadow masters which can handle client reads to 
help reduce load on a master server. The chunk servers hold 
data in 64 MB-sized chunks[11]. 

 

 
Figure 1: GFS architecture 

 
4.1 Check Pointing 

 
In GFS, the master server will keep logs tracking all chunk 
mutation. Once a log file starts to become too big, the master 
server will create a checkpoint. These check-points can be 
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used to recover a master server, and are used by the master 
replicas to bring a new master process up[16]. 
 

4.2 Replication 

 
By default, all GFS maintains a replication level of 3. Users 
can designate different replication levels for different 
regions of the file namespace. For example, a temp directory 
generally has a replication level of 1, and is used as a scratch 
space[14]. The master server is responsible for ensuring that 
the replication level is met only involves copying over 
chunks if a chunk server goes down, but also removing 
replicas once a server comes back up. The master server will 
try to place replicas on different racks.  
 

4.3 Failures 

 
The master server regularly exchanges heart beats with the 
chunk servers. If the master server does not receive a 
heartbeat from a chunk server in time, it will assume the 
server has died, and will immediately start to spread the 
chunks located on that server to other servers to restore 
replication levels a chunk server recover, it will start to send 
heart beats again and notify the master that it is back up. At 
this point the master server will need to delete chunks in 
order to drop back down to replication level. Because of this 
approach, it would be possible to wreak havoc with a GFS 
instance by repeatedly turning on and off a chunk server. 
Master server failure is detected by an external management 
system. Once this happens, one of the master server replicas 
is promoted, and the master server process is started up on 
it[17-18].  
 

5. Optimized Data Replication Strategy 
 
The Optimized Data Replication Strategy ODRS has three 
important phases 

1) Which data file should be replicated and when to 
replicate in the cloud system to meet clients requirements 
such as waiting time reduction and data access time. 

2) How many suitable new replicas should be created in the 
cloud system to meet a given availability requirement. 

3) Where the new replicas should be placed to meet the 
system task successful execution rate and bandwidth 
consumption requirements. 

 

5.1 Data Replica Status  

 
Given the fact that a more recently accessed data file might 
be accessed again in the near future according to the current 
status of data access pattern, which is called temporal 
locality, a ranking data file is determined by analyzing the 
access to the data from users. When the ranking of a data file 
passes a dynamic threshold, the replication operation will be 
triggered. 
 
Ranking Degree: The ranking degree of a block bk is 
defined as the access frequency based on time factor. During 
the period from the start time ts to the present time tp, the 
popularity degree Rk of a block bk can be calculated by 
 

bk = )*()1,( tptiXtiti
tp

tsti



  

 where (ti, ti+1) is the number of accesses during the time 
interval ti to ti+1. 
 
Replica Factor: The replica factor is defined as the ratio of 
the ranking degree Rk and the total number of bytes of data 
file fi requested by all tasks under given constraints. It is 
used to determine whether the data file fi should be 
replicated, denoted as RFi. 
 

RFi = 
)*( RNiFi

Rk
 

Where Rk is Ranking degree , Fi is file size and RNi is 
number of replications . 
  

 
Figure 2: Optimized Data Replication 

 
5.2 New Replication Placement Allocation 

 
To meet the system task successful execution rate and 
bandwidth consumption requirement, different tiers of data 
centers which have the selected replica data file fi will 
decide the replica placement and the placement of new 
replicas to be created according to the access information of 
directly connected data centers. The number of new replicas 
created at the directly connected data center dck is calculated 
based on the total number of new replicas bni(inc) 

bni = dckx
RFi

dckRF )(
 

where bni(dck) is the number of new replicas to be created at 
the directly connected data center dck, RFi(dck) is the 
replica factor of data file fi of the datacenter dck directly 
connected, and RFi is the replica factor of the data file fi.  
 
Method Upload File To Cloud 

(1) Require: FileSize i, FileName 
(2) Declare: BlockSize,  
(3) While i between {0, (i/NOC) i NOS} 
(4) IF i % FileSize i 
 (5) BlockSize = i 
(6) End IF 
(7) EndWhile 
(8) InsertRow FileID, FileName, FileSize, BlockSize 
(9) End of method 
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Figure 3: Optimized Data Replication Algorithm (ODRA) 

 

6. Optimized Data Replication Algorithm 

(ODRA)  
 
Algorithm. ODR Algorithm 
Input: the available probability p(bak) and unavailable 
probability p(bak) of all replicas of block bk of the data file 
fi, the number of replicas bni, the block size bsi and the 
number of accesses ank(ti; ti+1) within time interval ti to 
ti+1 for each block of data file fi. 
 Output: system byte effective rate R(SBER). 
Step 1 : Initialize available and unavailable probability of 
each replica of block bk p(bak) and p(bak). 
Step 2 : for each data file fi at all data centers DC do 
 Step 3 : Calculate the ranking degree Rk of a block bk of 
data fi le fi by . 
Step 4 : Calculate replica factor RFi of data file fi . end for 
Step 5 : Calculate replica factor RFsys of the cloud. 
 Step 5 : for each data ¯le fi at all data centers DC do 
Step 6 : if RFi > min (1 + bck) , RFsys , max RFk then 
Step 7 : The replication operation of the data file fi will be 
triggered. end if 
Step 8 : end for 
Step 9 : for each data file fi at all data centers DC do 
Step 10 : Calculate the old fule availability P(FAi) of data 
file fi by . 
Step 11: end for 
 Step 12 : for each triggered data file do 
Step 13: Calculate the new file availability Pnew (FAi) of 
data file fi . 
Step 14 : Calculate the number of new replicas needed 
bni(inc) . 
Step 15 : end for 
Step 16 : for each triggered data file and bni(inc) > 0 do 
Step 17 : for each directly connected data center dck do 
Step 18: Calculate the number of new replicas bni(dck) to be 
created at the directly connected Step 19 : data center dck . 
Step 20: end for 

Step 21: Determine the replica placement according to 
bni(dck). 
Step 22: if the storage space of the target data center DCobj 
is not enough then 
Step 23: Quick sort all data file in descending order by 
replica factor of data file at data center DCobj . 
Step 24: Delete the data file with the smallest replica factor. 
end if  
Step 25: Calculate the new system byte effective rate 
R(SBER)  
Step 26: returur R(SBER) 
 
7. Conclusion 
 
Storage optimization is an important issue as the demand for 
storage space especially for big data is rapidly increasing. 
However, data replication is also important for various 
reasons such as increasing reliability, fault tolerance, and 
enhanced performance and also for backup purposes. High 
availability, high fault tolerance and high efficiency accesses 
to Internet based cloud data centers where failures are 
normal rather than exceptional are significant issues, and are 
often considered more valuable than high performance. Data 
replication allows reducing user waiting time and speeding 
up data access. It increases data availability by providing 
users with different replicas of the same service, and all of 
them in a coherent state. 
 
8. Acknowledgment 
 
This research was supported by the Madanapalle Institue of 
Technology and Science, Madanapalle (UGC-Autonomous), 
Andhra Pradesh. 
 

 

 

Paper ID: 30071602 1323



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 8, August 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

References  
 
[1] P. Mell and T. Grance, “The NIST definition of cloud 

computing,” National Institute of Standards and 
Technology, vol. 53, no. 6, p. 50, 2009. 

[2] J. Wu, L. Ping, X. Ge, Y. Wang, and J. Fu, “Cloud 
storage as the infrastructure of Cloud Computing,” in 
Proceedings of the International Conference on 
Intelligent Computing and Cognitive Informatics 
(ICICCI ’10), pp. 380–383, IEEE, June 2010. 

[3] K. Al Nuaimi, N. Mohamed, M. Al Nuaimi, and J. Al-
Jaroodi, “A survey of load balancing in cloud 
computing: challenges and algorithms,” in Proceedings 
of the IEEE 2nd Symposium on Network Cloud 
Computing and Applications (NCCA ’12), pp. 137–142, 
London, UK, December 2012. 

[4] W. Zeng, Y. Zhao, K. Ou, and W. Song, “Research on 
cloudstorage architecture and key technologies,” in 
Proceedings of the 2nd International Conference on 
Interaction Sciences: Information Technology Culture 
and Human (ICIS ’09), pp. 1044–1048, November 
2009. 

[5] J. Al-Jaroodi and N. Mohamed, “DDFTP: dual-direction 
FTP,” in Proceedings of the 11th IEEE/ACM 
International Symposium on Cluster, Cloud and Grid 
Computing (CCGrid ’11), pp. 504– 513, May 2011. 

[6] N. Mohamed and J. Al-Jaroodi, “Delay-tolerant 
dynamic load balancing,” in Proceedings of the 13th 
IEEE International Conference on High Performance 
Computing and Communications (HPCC ’11), pp. 237–
245, IEEE, Banff, Canada, September 2011. 

[7] N. Mohamed, J. Al-Jaroodi, and A. Eid, “A dual-
direction technique for fast file downloads with 
dynamic load balancing in the Cloud,” Journal of 
Network and Computer Applications, vol. 36, no. 4, pp. 
1116–1130, 2013. 

[8] C.Vijaya Kumar and Dr.G.A Ramachandra, “Energy 
Conservation for Datacenters in Cloud Computing using 
Genetic Algorithms, pp. 577–583, International Journal 
of Science and Research (IJSR), December 2014. 

[9] L.Wang,G.VonLaszewski, A. Younge et al., “Cloud 
computing: a perspective study,” New Generation 
Computing, vol. 28, no. 2, pp. 137–146, 2010. 

[10] E. Hamburger, Google Drive vs. Dropbox, SkyDrive, 
SugarSync, and Others: A Cloud Sync Storage Face-
Off, The Verge, 2012. 

[11] Shvachko K, Hairong K, Radia S, Chansler R. The 
Hadoop distributed ¯le system. In Proc. the 26th 
Symposium on Mass Storage Systems and Technologies, 
Incline Village, NV, USA, May 3-7, 2010, pp.1-10. 

[12] Wang S S, Yan K Q, Wang S C. Achieving e±cient 
agreement within a dual-failure cloud-computing 
environment. Expert System with Applications, 2010, 
38(1): 906-915.  

[13] C.Vijaya Kumar and Dr.G.A Ramachandra, 
Optimization of Large Data in Cloud computing using 
Replication Methods, International Journal of Computer 
Science and Information Technologies, Vol. 5 (3) , 
2014, 3034-3038. 

[14] Kim Y H, Jung M J, Lee C H. Energy-aware real-time 
task scheduling exploiting temporal locality. IEICE 
Transactions on Information and Systems, 2010, 93(5): 
1147-1153. 

[15] Wei Q, Veeravalli B, Gong B, Zeng L, Feng D. CDRM: 
A cost-effiective dynamic replication management 
scheme for cloud storage cluster. In Proc. 2010 IEEE 
International Conference on Cluster Computing, 
Heraklion, Crete, Greece, Sept. 20-24, 2010, pp.188-
196. 

[16] Bonvin N, Papaioannou T G, Aberer K. A self-
organized, fault-tolerant and scalable replication scheme 
for cloud sto- rage. In Proc. the 1st ACM Symposium on 
Cloud Computing, Indianapolis, IN, USA, June 10-11, 
2010, pp.205-216. 

[17] C.Vijaya Kumar and Dr.G.A Ramachandra, Thrusting 
Energy Efficiency for Data center in Cloud Computing 
Using Resource Allocation Techniques,International 
Journal of Emerging Trends & Technology in Computer 
Science (IJETTCS),ISSN 2278-6856, pp 173-185. 

[18] Nguyen T, Cutway A, Shi W. Differentiated replication 
strategy in data centers. In Proc. the IFIP International 
Conference on Network and Parallel Computing, 
Zhengzhou, China, Sept. 13-15, 2010, pp.277-288. 

[19] Dr.K. Fayaz, Dr.C. Vijay Kumar, Optimization of Data 
Storage and QOS in Data Replication using the Priority 
Datasets, Volume 5, Number1, January-March'2016.  

Paper ID: 30071602 1324




