ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

A New Class of Contra Continuous Functions via b-Open Sets in SETS

B. Kanchana¹, F. Nirmala Irudayam²

¹Research Scholar, Department of Mathematics, Nirmala College for Women, Red Fields, Coimbatore, India

Abstract: In this paper, we define and study a new class of functions named contra g^* -b-continuous and almost contra g^* -b-continuous functions in simple extended topological spaces (SETS) and investigate some of its basic properties and relations concerning the above newly introduced functions.

Keywords: contra g*+b-continuous, almost contra g*+b-continuous, g*+b-locally indiscrete

1. Introduction

In 1996, Dontchev [3] initiated the notion of contra continuous functions and an year later Dontchev, Ganster and Reilly [5] studied a new class of functions called regular set connected functions. Dontchev and Noiri [4], Jafari and Noiri [6,7] investigated the concepts of contra semi-continuous functions, contra pre-continuous functions and contra αcontinuous functions between topological respectively. Nasef [15] defined the so called contra bcontinuous functions in topological spaces. A.A.Omari and M.S.M.Noorani [18] discussed the further properties of contra b-continuous functions and established the idea of almost contra b-continuous functions. Caldas, Jafari, Noiri and Simoes [2] proposed a new class of functions called generalized contra continuous (contra g-continuous) functions. New types of contra generalized continuity such as contra ag-continuity [6] and contra gc-continuity [4] have been introduced and investigated. Metin Akdag and Alkan Ozkan [14] introduced some of the fundamental properties of contra generalized b-continuous (contra gb-continuous) via the concept of gb-open sets. Thirumalaiswamy and Saranya [22], Vidhya and Parimelazhagan [25] devised and presented a new class of functions called contra g*b-continuous and almost contra g*b-continuous functions in topological spaces. The concept of extending a topology by a non-open set was proposed by Levine [11] in 1963. A simple extension of a topology defined $\tau(B) = \{(B \cap O) \cup O'/O, O' \in \tau\}$ Levine. B.Kanchana and F.Nirmala Irudayam [9, 10] formulated the concept of g*+b-closed sets and g*+b-continuity in extended topological spaces. The purpose of this paper is to introduce the notion of contra g*+b-continuous, almost contra g*+bcontinuous and study some of their properties.

Throughout this paper X, Y and Z (or (X, τ^+) , (Y, σ^+) and (Z, η^+)) are simple extension topological space in which no separation axioms are assumed unless and otherwise stated. For any subset A of X, the interior of A is same as the interior in usual topology and the closure of A is newly defined in simple extension topological spaces.

2. Preliminaries

The following definitions are useful in the sequel.

Definition 2.1: A subset A of a topological space (X, τ) is called a,

- (i) regular open set [21], if A = int(cl(A)) and a b-open set [1], if $A \subseteq cl(int(A)) \cup int(cl(A))$.
- (ii) generalized closed set (briefly g-closed)[12], if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in X.
- (iii) generalized b-closed set (briefly gb-closed) [17], if $bcl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in X.
- (iv) g^*b -closed set [23], if $bcl(A) \subseteq U$, whenever $A \subseteq U$ and U is g-open in X.

Definition 2.2: A subset A of a topological space (X, τ^+) is called a,

- (i) regular open set [8], if $A = int(cl^+(A))$.
- (ii) b^+ -open set [16], if $A \subseteq cl^+(int(A)) \cup int(cl^+(A))$.
- (iii) generalized⁺ closed set (briefly g^+ -closed) [9], if $cl^+(A) \subseteq U$, whenever $A \subseteq U$ and U is open in X.
- (iv) generalized b^+ -closed set (briefly gb^+ -closed) [9], if $bcl^+(A) \subseteq U$, whenever $A \subseteq U$ and U is open in X.
- (v) $g^{*+}b$ -closed set [9], if $bcl^{+}(A) \subseteq U$, whenever $A \subseteq U$ and U is g^{+} -open in X.

Definition 2.3: A function $f: X \to Y$ is called,

- (i) gb-continuous [17], if $f^{-1}(V)$ is gb-closed in X for every closed set V of Y.
- (ii) g^*b -continuous [24], if $f^{-1}(V)$ is g^*b -closed in X for every closed set V of Y.
- (iii) contra continuous [3], if $f^{-1}(V)$ is closed in X for each open set V of Y.
- (iv) contra pre-continuous [7], if $f^{-1}(V)$ is pre-closed in X for each open set V of Y.
- (v) contra semi-continuous [4], if $f^{-1}(V)$ is semi-closed in X for each open set V of Y.
- (vi) contra α -continuous [6], if $f^{-1}(V)$ is α -closed in X for every open set V of Y.

Volume 5 Issue 8, August 2016

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

²Assistant Professor, Department of Mathematics, Nirmala College for Women, Red Fields, Coimbatore, India

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

- (vii) contra b-continuous [18], if $f^{-1}(V)$ is b-closed in X for every open set V of Y.
- (viii) contra gb-continuous [14], if $f^{-1}(V)$ is gb-closed in X for every open set V of Y.
- (ix) contra g^*b -continuous [22,25], if $f^{-1}(V)$ is g^*b -closed in X for every open set V of Y.
- (x) almost continuous (almost contra-continuous) [20], if $f^{-1}(V)$ is open (closed) in X for each regular open set V of V
- (xi) almost contra g^*b -continuous [22,25], if $f^{-1}(V)$ is g^*b -closed in X for every regular open set V of Y.
- (xii) regular set connected [22], if $f^{-1}(V)$ is clopen in X for every regular open set V of Y.

Definition 2.4: A function $f:(X,\tau^+)\to (Y,\sigma^+)$ is called.

- (i) gb^+ -continuous [19], if $f^{-1}(V)$ is gb^+ -closed in X for every closed set V of Y.
- (ii) $g^{*+}b$ -continuous [10], if $f^{-1}(V)$ is $g^{*+}b$ -closed in X for every closed set V of Y.

Definition 2.5: A space (X, τ) is called a g^*b -locally indiscrete [22], if every g^*b -open set in it is closed.

3. Contra g*+b-Continuous and Almost Contra g*+b-Continuous Functions

In this section we promote the new idea of contra g*+b-continuous functions and almost contra g*+b-continuous functions in simple extended topological spaces.

Definition 3.1: A function $f:(X,\tau^+)\to (Y,\sigma^+)$ is called.

- (i) contra⁺-continuous if $f^{-1}(V)$ is closed in X for each open set V of Y.
- (ii) contra pre⁺-continuous if $f^{-1}(V)$ is pre⁺-closed in X for each open set V of Y.
- (iii) contra semi⁺-continuous if $f^{-1}(V)$ is semi⁺-closed in X for each open set V of Y.
- (iv) contra α^+ -continuous if $f^{-1}(V)$ is α^+ -closed in X for every open set V of Y.
- (v) contra b^+ -continuous if $f^{-1}(V)$ is b^+ -closed in X for every open set V of Y.
- (vi) contra gb^+ -continuous if $f^{-1}(V)$ is gb^+ -closed in X for every open set V of Y.
- (vii)almost⁺ continuous (almost contra⁺-continuous) if $f^{-1}(V)$ is open (closed) in X for each regular⁺ open set V of Y.
- (viii) almost contra pre^+ -continuous if $f^{-1}(V)$ is pre^+ -closed in X for each regular open set V of Y.
- (ix) almost contra semi⁺-continuous if $f^{-1}(V)$ is semi⁺-closed in X for each regular⁺ open set V of Y.

- (x) almost contra α^+ -continuous if $f^{-1}(V)$ is α^+ -closed in X for each regular open set V of Y.
- (xi) almost contra b^+ -continuous if $f^{-1}(V)$ is b^+ -closed in X for each regular open set V of Y.
- (xii) almost contra gb^+ -continuous if $f^{-1}(V)$ is gb^+ -closed in X for each regular open set V of Y.

Definition 3.2: A function $f: (X, \tau^+) \to (Y, \sigma^+)$ is called contra g^{*+} b-continuous if $f^{-1}(V)$ is g^{*+} b-closed in X for every open set V of Y.

Example 3.3: Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \emptyset, \{a, b\}\}, \tau^+ = \{X, \emptyset, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \emptyset, \{b, c\}\}, \sigma^+ = \{Y, \emptyset, \{b\}, \{b, c\}\}.$ Let $f: X \to Y$ be the identity function. Then the function f is contra $g^{*+}b$ -continuous.

Theorem 3.4: Every contra⁺-continuous function is contra g^{*+}b-continuous but not conversely.

Proof: Let $f: X \to Y$ be contra⁺-continuous. Let V be any open set in Y. Then the inverse image $f^{-1}(V)$ is closed in X. Since every closed set is g^{*+} b-closed, $f^{-1}(V)$ is g^{*+} b-closed in X. Therefore f is contra g^{*+} b-continuous.

Example 3.5: Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \emptyset, \{a, b\}\}, \tau^+ = \{X, \emptyset, \{a\}, \{a, b\}\}\}$ and $\sigma = \{Y, \emptyset, \{b\}\}, \sigma^+ = \{Y, \emptyset, \{b\}, \{a, c\}\}\}$. Let $f: X \to Y$ be the identity function. Then the function f is contra $g^{*+}b$ -continuous but not contra $^+$ -continuous.

Theorem 3.6: Every contra pre^+ -continuous function is contra g^{*+} b-continuous but not conversely.

Proof: Let $f: X \to Y$ be contra pre⁺-continuous. Let V be any open set in Y. Then the inverse image $f^{-1}(V)$ is pre⁺-closed in X. Since every pre⁺-closed set is g^{*+} b-closed, $f^{-1}(V)$ is g^{*+} b-closed in X. Therefore f is contra g^{*+} b-continuous.

Example 3.7: Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \emptyset, \{a\}, \{a, b\}\}, \tau^+ = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}\}$ and $\sigma = \{Y, \emptyset, \{a\}\}, \sigma^+ = \{Y, \emptyset, \{a\}, \{b, c\}\}.$ Let $f: X \to Y$ be the identity function. Then the function f is contra $g^{*+}b$ -continuous but not contra pre^+ -continuous.

Theorem 3.8: Every contra semi⁺-continuous function is contra g^{*+} b-continuous but not conversely.

Proof: Let $f: X \to Y$ be contra semi⁺-continuous. Let V be any open set in Y. By the property of contra semi⁺-continuity we have the inverse image $f^{-1}(V)$ to be semi⁺-closed in X. But we know that every semi⁺-closed set is g^{*+} b-closed. Hence $f^{-1}(V)$ is g^{*+} b-closed in X. Therefore f is contra g^{*+} b-continuous.

Example 3.9: Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \emptyset, \{a, b\}\}, \tau^+ = \{X, \emptyset, \{a\}, \{a, b\}\}$ and

Volume 5 Issue 8, August 2016

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

 $\sigma = \{Y, \emptyset, \{a\}\}, \sigma^+ = \{Y, \emptyset, \{a\}, \{a, c\}\}\}.$ Let $f: X \to Y$ be the identity function. Then the function f is contra $g^{*+}b$ -continuous but not contra semi⁺-continuous.

Theorem 3.10: Every contra α^+ -continuous function is contra $g^{*+}b$ -continuous but not conversely.

Proof: Let $f: X \to Y$ be contra α^+ -continuous. Let V be any open set in Y. Then the inverse image $f^{-1}(V)$ is α^+ -closed in X. Since every α^+ -closed set is $g^{*+}b$ -closed, $f^{-1}(V)$ is $g^{*+}b$ -closed in X. Therefore f is contra $g^{*+}b$ -continuous.

Example 3.11: Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \emptyset, \{a, b\}\}, \tau^+ = \{X, \emptyset, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \emptyset, \{b, c\}\}, \sigma^+ = \{Y, \emptyset, \{b\}, \{b, c\}\}\}$. Define a function $f: X \to Y$ by f(a) = b, f(b) = a, f(c) = c. Then the function f is contra $g^{*+}b$ -continuous but not contra α^+ -continuous.

Theorem 3.12: Every contra b⁺-continuous function is contra g^{*+}b-continuous but not conversely.

Proof: Let $f: X \to Y$ be contra b^+ -continuous. Let V be any open set in Y. By the property of contra b^+ -continuity we have the inverse image $f^{-1}(V)$ to be b^+ -closed in X. But we know that every b^+ -closed set is $g^{*+}b$ -closed. Hence $f^{-1}(V)$ is $g^{*+}b$ -closed in X. Therefore f is contra $g^{*+}b$ -continuous.

Example 3.13: Let $X = Y = \{a, b, c, d\}$ with topologies $\tau = \{X, \emptyset, \{a\}, \{a, d\}, \{c, d\}, \{a, c, d\}\},\$ $\tau^+ = \{X, \emptyset, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\},\$ $\sigma^+ = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$ Let $f: X \to Y$ be the identity function. Then the function f is contra $g^{*+}b$ -continuous but not contra b^+ -continuous.

Theorem 3.14: Every contra g*+b-continuous function is contra gb+-continuous but not conversely.

Proof: Let $f: X \to Y$ be contra $g^{*+}b$ -continuous. Let V be any open set in Y. Then the inverse image $f^{-1}(V)$ is $g^{*+}b$ -closed in X. Since every $g^{*+}b$ -closed set is gb^{+} -closed, $f^{-1}(V)$ is gb^{+} -closed in X. Therefore f is contra gb^{+} -continuous.

Example 3.15: Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \emptyset, \{a\}\}, \tau^+ = \{X, \emptyset, \{a\}, \{a, c\}\}$ and $\sigma = \{Y, \emptyset, \{a, b\}\}, \sigma^+ = \{Y, \emptyset, \{b\}, \{a, b\}\}.$ Let $f: X \to Y$ be the identity function. Then the function f is contra g^{b^+} -continuous but not contra g^{*+} b-continuous.

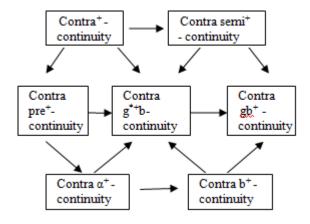
Theorem 3.16:

- (i) Every contra⁺-continuous function is contra semi⁺-continuous function.
- (ii) Every contra⁺-continuous function is contra pre⁺-continuous function.
- (iii) Every contra semi⁺-continuous function is contra gb⁺-continuous function.

- (iv) Every contra pre $^+$ -continuous function is contra α^+ -continuous function.
- (v) Every contra α^+ -continuous function is contra β^+ -continuous function.
- (vi) Every contra b⁺-continuous function is contra gb⁺-continuous function.

Proof: The proof is obvious.

Remark 3.17: As a summation of the concepts the above theorems we propose are in the following diagrammatic representation.



Remark 3.18: The following two examples will show that the concept of $g^{*+}b$ -continuous and contra $g^{*+}b$ -continuous are independent from each other.

Example 3.19: Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \emptyset, \{a, b\}\}, \tau^+ = \{X, \emptyset, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \emptyset, \{b, c\}\}, \sigma^+ = \{Y, \emptyset, \{c\}, \{b, c\}\}.$ Let $f: X \to Y$ be the identity function. Then the function f is contra $g^{*+}b$ -continuous but not $g^{*+}b$ -continuous.

Example 3.20: Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \emptyset, \{a, b\}\}, \tau^+ = \{X, \emptyset, \{a\}, \{a, b\}\}\}$ and $\sigma = \{Y, \emptyset, \{a, b\}\}, \sigma^+ = \{Y, \emptyset, \{b\}, \{a, b\}\}\}$. Let $f: X \to Y$ be the identity function. Then the function f is $g^{*+}b$ -continuous but not contra $g^{*+}b$ -continuous.

Theorem 3.21: If $f: X \to Y$ is contra $g^{*+}b$ -continuous map and $g: Y \to Z$ is continuous map, then their composition $g \circ f: X \to Z$ is contra $g^{*+}b$ -continuous.

Proof: Let U be any open set in Z. Since $g: Y \to Z$ is continuous, $g^{-1}(U)$ is open in Y. Since $f: X \to Y$ is contra g^{*+} b-continuous, $f^{-1}(g^{-1}(U))$ is g^{*+} b-closed in X. Hence $(g \circ f)^{-1}(U)$ is g^{*+} b-closed in X. Thus $g \circ f$ is contra g^{*+} b-continuous.

Theorem 3.22: If $f: X \to Y$ is $g^{*+}b$ -irresolute map and $g: Y \to Z$ is $g^{*+}b$ -continuous map, then their composition $g \circ f: X \to Z$ is contra $g^{*+}b$ -continuous.

Proof: Let U be any open set in Z. Then $g^{-1}(U)$ is $g^{*+}b$ -closed in Y, because $g: Y \to Z$ is contra $g^{*+}b$ -continuous. Since $f: X \to Y$ is $g^{*+}b$ -irresolute,

Volume 5 Issue 8, August 2016

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

 $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is $g^{*+}b$ -closed in X. Thus *g* of is contra $g^{*+}b$ -continuous.

Remark 3.23: The composition of two contra g*+b-continuous maps need not be a contra g*+b-continuous map as seen from the following example.

Example 3.24: Let $X = Y = Z = \{a, b, c\}$ with topologies $\tau = \{X, \emptyset, \{a, b\}\}, \qquad \tau^+ = \{X, \emptyset, \{a\}, \{a, b\}\};$ $\sigma = \{Y, \emptyset, \{b\}\}, \qquad \sigma^+ = \{Y, \emptyset, \{b\}, \{b, c\}\} \qquad \text{and}$ $\eta = \{Z, \emptyset, \{a, c\}\}, \qquad \eta^+ = \{Z, \emptyset, \{a\}, \{a, c\}\}.$ Let $f: (X, \tau^+) \to (Y, \sigma^+) \text{ and } g: (Y, \sigma^+) \to (Z, \eta^+) \text{ be}$ the identity map. Both f and g are contrag g^{*+} b-continuous but their composition $g \circ f: (X, \tau^+) \to (Z, \eta^+)$ is not a contrag g^{*+} b-continuous. Since for the open set g^{*+} is not a contrag g^{*+} is not g^{*+} b-closed in g^{*+} and hence $g \circ f$ is not contrag g^{*+} b-continuous.

Definition 3.25: A space (X, τ^+) is called a $g^{*+}b$ -locally indiscrete if every $g^{*+}b$ -open set in it is closed.

Example 3.26: Let $X = \{a, b\}$ with the topology $\tau = \{X, \emptyset, \{a\}\}, \tau^+ = \{X, \emptyset, \{a\}, \{b\}\}$. Then (X, τ^+) g*+b-locally indiscrete space.

Theorem 3.27: If a function $f: X \to Y$ is $g^{*+}b$ -continuous and (X, τ^{+}) is $g^{*+}b$ -locally indiscrete, then f is contra⁺-continuous.

Proof: Let V be any open set in Y. Then the inverse image $f^{-1}(V)$ is g^{*+} b-open in X as f is g^{*+} b-continuous. Since (X, τ^{+}) is g^{*+} b-locally indiscrete $f^{-1}(V)$ is closed in X. Hence f is contra⁺-continuous.

Theorem 3.28: If a function $f: X \to Y$ is contra $g^{*+}b$ -continuous and X is the space where "every $g^{*+}b$ -closed set is closed", then f is contra $^+$ -continuous.

Proof: Let V be any open set in Y. Then the inverse image $f^{-1}(V)$ is $g^{*+}b$ -closed in X as f is contra $g^{*+}b$ -continuous. By hypothesis, $f^{-1}(V)$ is closed in X. Hence f is contra continuous.

Theorem 3.29: If a function $f: X \to Y$ is $g^{*+}b$ -irresolute map with Y as $g^{*+}b$ -locally indiscrete space and $g: Y \to Z$ is contra $g^{*+}b$ -continuous map, then their composition $g \circ f: X \to Z$ is contra $g^{*+}b$ -continuous.

Proof: Let U be any closed set in Z. Since $g: Y \to Z$ is contra g^{*+} b-continuous, $g^{-1}(U)$ is g^{*+} b- open in Y. Since Y is g^{*+} b-locally indiscrete, $g^{-1}(U)$ is closed in Y. Hence $g^{-1}(U)$ is g^{*+} b-closed set in Y. Since $f: X \to Y$ is g^{*+} b-irresolute, $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is g^{*+} b-closed in X. Thus $g \circ f$ is contra g^{*+} b-continuous.

Definition 3.30: A function $f: (X, \tau^+) \to (Y, \sigma^+)$ is called almost contra $g^{*+}b$ -continuous if $f^{-1}(V)$ is $g^{*+}b$ -closed in X for every regular open set V of Y.

Example 3.31: Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \emptyset, \{b\}\}, \tau^+ = \{X, \emptyset, \{b\}, \{b, c\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{a, b\}\}, \sigma^+ = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}\}.$ Let $f: X \to Y$ be the identity function. Then the function f is almost contra $g^{*+}b$ -continuous.

Theorem 3.32: Every contra $g^{*+}b$ -continuous function is almost contra $g^{*+}b$ -continuous but not conversely.

Proof: Since every regular⁺ open set is open set, the proof follows.

Example 3.33: Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \emptyset, \{a, b\}\}, \tau^+ = \{X, \emptyset, \{a\}, \{a, b\}\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{a, b\}\}, \sigma^+ = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}\}\}$. Let $f: X \to Y$ be the identity function. Then the function f is almost contra $g^{*+}b$ -continuous but not contra $g^{*+}b$ -continuous.

Theorem 3.34:

- (i) Every almost contra⁺-continuous function is almost contra g^{*+}b-continuous function.
- (ii) Every almost contra pre⁺-continuous function is almost contra g *+b-continuous function.
- (iii) Every almost contra semi⁺-continuous function is almost contra g*+b-continuous function.
- (iv) Every almost contra α^+ -continuous function is almost contra g^{*+} b-continuous function.
- (v) Every almost contra b⁺-continuous function is almost contra g^{*+}b-continuous function.
- (vi) Every almost contra g*+b-continuous function is almost contra gb+-continuous function.

Proof: The proof is obvious.

Remark 3.35: Converse of the above statements is not true as shown in the following example.

Example 3.36:

- (i) Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \emptyset, \{a, b\}\}, \tau^+ = \{X, \emptyset, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{a, c\}\},$ $\sigma^+ = \{Y, \emptyset, \{a\}, \{c\}, \{a, c\}\}.$ Let $f: X \to Y$ be the identity function. Then the function f is almost contrag *b-continuous but not almost contraf-continuous.
- (ii) Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \emptyset, \{a\}, \{a, b\}\},$ $\tau^+ = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \emptyset, \{b\}, \{b, c\}\},$ $\sigma^+ = \{Y, \emptyset, \{b\}, \{c\}, \{b, c\}\}.$ Define a function $f: X \to Y$ by f(a) = b, f(b) = a, f(c) = c. Then the function f is almost contra $g^{*+}b$ -continuous but not almost contra pre $^+$ -continuous.

Volume 5 Issue 8, August 2016

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

- (iii) Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \emptyset, \{a, b\}\}, \tau^+ = \{X, \emptyset, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{a, c\}\},$ $\sigma^+ = \{Y, \emptyset, \{a\}, \{c\}, \{a, c\}\}.$ Let $f: X \to Y$ be the identity function. Then the function f is almost contra $g^{*+}b$ -continuous but not almost contra semi $^+$ -continuous.
- (iv) Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \emptyset, \{a, b\}\}, \tau^+ = \{X, \emptyset, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{a, c\}\},$ $\sigma^+ = \{Y, \emptyset, \{a\}, \{c\}, \{a, c\}\}.$ Let $f: X \to Y$ be the identity function. Then the function f is almost contra $g^{*+}b$ -continuous but not almost contra α^+ -continuous.
- (v) Let $X = Y = \{a, b, c, d\}$ with topologies $\tau = \{X, \emptyset, \{a\}, \{a, d\}, \{c, d\}, \{a, c, d\}\},$ $\tau^+ = \{X, \emptyset, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}\}$ and $\sigma = \{Y, \emptyset, \{c\}, \{a, c\}, \{a, b, d\}\},$ $\sigma^+ = \{Y, \emptyset, \{c\}, \{d\}, \{a, c\}, \{c, d\}, \{a, c, d\}, \{a, b, d\}\}$. Let $f: X \to Y$ be the identity function. Then the function f is almost contra $g^{*+}b$ -continuous but not almost contra b^+ -continuous.
- (vi) Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \emptyset, \{a\}\}, \tau^+ = \{X, \emptyset, \{a\}, \{a, c\}\}\}$ and $\sigma = \{Y, \emptyset, \{a, b\}\}, \sigma^+ = \{Y, \emptyset, \{c\}, \{a, b\}\}.$ Let $f: X \to Y$ be the identity function. Then the function f is almost contra g^{*-} b-continuous.

Theorem 3.37: If a map $f: X \to Y$ from a topological space X into a topological space Y, then the following statements are equivalent:

- (a) f is almost contra $g^{*+}b$ -continuous.
- (b) for every regular closed set F of Y $f^{-1}(F)$ is $g^{*+}b$ open in X.

Proof:

- (a) \Rightarrow (b): Let F be a regular closed set in Y, then Y F is a regular open set in Y. By (a), $f^{-1}(Y F) = X f^{-1}(F)$ is $g^{*+}b$ -closed set in X. This implies $f^{-1}(F)$ is $g^{*+}b$ -open set in X. Therefore (b) holds.
- (b) \Rightarrow (a): Let G be a regular⁺ open set of Y. Then Y G is a regular⁺ closed set in Y. By (b), $f^{-1}(Y G)$ is $g^{*+}b$ -open set in X. This implies $X f^{-1}(G)$ is $g^{*+}b$ -open set in X, which implies $f^{-1}(G)$ is $g^{*+}b$ -closed set in X. Therefore (a) holds.

Definition 3.38: A function $f: (X, \tau^+) \to (Y, \sigma^+)$ is said to be regular⁺ set connected if $f^{-1}(V)$ is clopen in X for every regular⁺ open set V of Y.

Theorem 3.39: If a function $f: X \to Y$ is almost contra $g^{*+}b$ -continuous and almost continuous together with X is the space where "every $g^{*+}b$ -closed set is closed", then f is regular set connected.

Proof: Let V be a regular⁺ open set in Y. Since f is almost contra g^{*+} b-continuous and almost⁺ continuous, $f^{-1}(V)$ is g^{*+} b-closed and open in X. By hypothesis, $f^{-1}(V)$ is clopen in X. Therefore f is regular⁺ set connected.

References

- [1] D.Andrijevic, "On b-open sets," Mat. Vesink, 48, pp.59-64, 1996.
- [2] M.Caldas, S.Jafari, T.Noiri and M.Simoes, "A new generalization of contra-continuity via Levine's g-closed sets," Chaos, Solitons and Fractals, 32, pp.1597-1603, 2007.
- [3] J.Dontchev, "Contra-continuous functions and strongly S-closed spaces," Int. J. Math. Sci, 19 (2), pp.303-310, 1996
- [4] J.Dontchev and T.Noiri, "On contra semi-continuous functions," Mathematica pannonica, 10 (2), pp.159-168, 1999.
- [5] J.Dontchev, M.Ganster and I.Reilly, "More on almost scontinuity," Indian J. Math, 41, pp.139-146, 1999.
- [6] S.Jafari and T.Noiri, "On contra α-continuous functions between topological spaces," Iran. Int. J. Sci, 2 (2), pp.153-167, 2001.
- [7] S.Jafari and T.Noiri, "On contra pre-continuous functions," Bull. Malays. Math. Sci. Soc (2), 25 (2), pp.115-128, 2002.
- [8] B.Kanchana and F.Nirmala Irudayam, "On a weaker form of b-open sets in extended topological spaces," International Journal of Innovative Research in Science, Engineering and Technology, 5 (5), pp. 6919-6926, May 2016.
- [9] B.Kanchana and F.Nirmala Irudayam, "On the generalization of *+b sets in simple extended topological spaces," International Journal of Innovative Research in Science, Engineering and Technology, 5 (5), pp.7107-7114, May 2016.
- [10] B.Kanchana and F.Nirmala Irudayam, "On generalized *b-continuous and irresolute maps," International Journal of Engineering Science and Computing, 6 (7), pp.1667-1671, July 2016.
- [11] N.Levine, "Simple extension of topology," Amer. Math. Monthly, 71, pp.22-105, 1964.
- [12] N.Levine, "Generalized closed sets in topology," Rend. Circ. Mat. Palermo, (2) 19, pp.89-96, 1970.
- [13] N.Levine, "Semi-open sets and semi-continuity in topological spaces," Amer. Math. Monthly, 70, pp.36-41, 1963.
- [14] Metin Akdag and Alkan Ozkan, "Some properties of contra gb-continuous functions," Journal of New Results in Science, 1, pp.40-49, 2012.
- [15] A.A.Nasef, "Some properties of contra γ -continuous functions," Chaos, Solitons and Fractals, 24, pp.471-477, 2005.
- [16] F.Nirmala Irudayam and Sr.I.Arockiarani, "A note on the weaker form of bI set and its generalization in SEITS," International Journal of Computer Application, 4 (2), pp.42-54, Aug 2012.
- [17] A.A.Omari and M.S.M.Noorani, "On generalized b-closed sets," Bull. Malays. Math. Sci. Soc(2), 32 (1), pp.19-30, 2009.

Volume 5 Issue 8, August 2016

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

- [18] A.A.Omari and M.S.M.Noorani, "Some properties of contra b-continuous and almost contra b-continuous functions," European Journal of Pure and Applied Mathematics, 2 (2), pp.213-230, 2009.
- [19] S.Reena and F.Nirmala Irudayam, "A new weaker form of πgb-continuity," International Journal of Innovative Research in Science, Engineering and Technology, 5 (5), pp.8676-8682, May 2016.
- [20] M.K.Singal and A.R.Singal, "Almost continuous mappings," Yokohama Math, 3, pp.63-73, 1968.
- [21] M.H.Stone, "Application of the theory of Boolean Rings to General Topology," Trans. Amer. Math. Soc, 41, pp.374-481, 1937.
- [22] M.Thirumalaiswamy and S.Saranya, "On some new functions of g*b-continuity in topological spaces," Int. J. of Math. Archive, 3 (11), pp.4081-4084, 2012.
- [23] D.Vidhya and R.Parimelazhagan, "g*b-closed sets in topological spaces," Int. J. Contemp. Math. Sciences, 7, pp.1305-1312, 2012.
- [24] D.Vidhya and R.Parimelazhagan, "g*b-continuous maps and pasting lemma in topological spaces," Int. Journal of Math. Analysis, 6 (47), pp.2307-2315, 2012.
- [25] D.Vidhya and R.Parimelazhagan, "g*b-Homomorphisms and Contra g*b-continuous maps in topological spaces," International Journal of Computer Applications, 58 (14), pp.1-7, 2012.

Volume 5 Issue 8, August 2016 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY