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Abstract: Some Bayesian estimation is carried out by many authors but none has used frailty model. In this article we used frailty 
model and estimate maximum of posterior distribution as the posterior mode and illustrated it by some examples of different prior 
distributions. Also Bayesian estimation by taking frailty normal distribution is carried out and is done not only for univariate but also 
for bivariate normal frailty distribution.
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1. Introduction 

Many authors introduced several survival models, amongst 
which Cox (1972) Proportional Hazard regression (PH) 
model is well-known. In many cases it is not possible to
include all covariates, for example genetic factor comprising 
of all possible genes influencing survival. These unknown 
unobservable unmeasurable factors termed as heterogeneity 
or frailties are included in the model as random effect term 
or frailty which extends the Cox PH model. The term frailty 
is used first by Vaupel et al (1979) and was separately used 
by Clayton (1978). For failure time distribution, Hougaard 
(1986a, 1986b) introduced some models. The Maximum 
Likelihood Estimation (MLE) method and the Best Linear 
Unbiased Predictor (BLUP) method have been used by
Handerson (1975) and McGilchrist and Aisbett (1991). 

Hanagal (2011) used Weibull distribution when hazard 
function is linear function of frailty parameter. Parekh et al. 
(2015) have estimated the Survival function with the use of
linear hazard function and exponential base line distribution. 
The classical Bayesian approach for estimation is dealt by
many authors, amongst which some of them are Akaike 
(1983), Le Cam (1990), Joshi (1990), Geyer and Thompson 
(1992) etc. 

Some of the authors who have used Bayesian approach for 
the frailty models are Ibrahim et.al. (2001), Santos et.al. 
(2010) and they have used Weibull as base line distribution 
and Gamma, Log normal as frailty distribution. The Inverse 
Gaussian frailty model is used by Kheiri et.al. (2007). Sahu 
et.al. (1997) have used prior distribution similar to the 
Normal distribution with mean 0 and large variance. 

Throughout this article Y represents logT where T is lifetime 
variable. In the special analysis we consider some of the 
baseline distributions and frailty prior distributions. 

2. Frailty prior distribution associated with 
Binomial distribution 

Let Y have baseline distribution as binomial distribution, 
B(n, p). We consider following three prior frailty distribution 
such as Be (1

2
,
1

2
), U(0,1), Laplace Haldane distribution. 

(i) Let frailty distribution Beta be, Be (1
2
,
1

2
) with p.d.f. 

π1(p) =
1

B (
1

2
,
1

 2
)
p−

1

2(1 − p)−
1

2 ,  0≤ p ≤ 1

 where B (p, q) = √p√q
√p+q

(ii) Uniform distribution on interval (0,1) 

  π2(P) = 1  and 

(iii)  Laplace Haldane distribution with p.d.f. 

  π3(p) =
1

p(1−p)
,  0≤ p ≤ 1

Without using any loss function a possible estimate of θ
based on conditional distribution of θ given y, π(θ|y) is the 
Maximum Posterior (MP) estimate defined as the posterior 
mode. We note that MP estimate also maximizes 
l(θ|y) π(θ), where l(θ|y) is the posterior likelihood, which 
bypasses the computation of the marginal distribution. In
these three cases the corresponding MP estimates are then, 
for n > 2

   δ1(y) = max(
y− 

1

2

n−1
, 0)

   δ2(y) = y
n

   δ3(y) = max(y−1
n−2

, 0). 
We notice that when n is large, all these three Bayesian 
frailty estimates are equivalent.  

For δ2(y)= y
n
 , the posterior risk is
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Eπ[(δ2(y) − p)
2| y] = Eπ [(p −

y

n
)
2

| y]

     = (
y+

1

2

n+1
−

y

n
)

2

+
(y+

1

2
)(n−y+

1

2
)

(n+1)2(n+2)

     =
(y−

n

2
)
2

(n+1)2n2
+

(y+
1

2
)(n−y+

1

2
)

(n+1)2(n+2)
,  (2.1)  

using π(p | y)~Be(y + 1

2
, n − y +

1

2
).

Further the risk of m.l.e. being Ep(δ2(y) − p)𝟐 = Var (
y

n
) =

p(1−p)

n
 and Sup

p
p(1−p)

n
=

1

4n
, and also (2.1) reduces to 1

4(n+2)
. 

Since 1

4(n+2)
<

1

4n
, the Bayesian estimate of frailty variable is

always better than the usual m.l.e.  

Further considering continuous baseline distribution for 
Bayesian analysis as normal baseline distribution and taking 
its conjugate prior as normal, we obtain frailty Bayesian 
estimate of parameter θ in section 3. In section 4 we
extended the frailty Bayesian estimate of parameter θ for 
bivariate priors. 

3. Bayesian estimation of frailty Normal 
distribution 

Theorem 1: Let 𝑦 | 𝜃 have normal baseline distribution with 
mean 𝜃 and known variance 𝜎2and let the prior distribution 
of frailty parameter 𝜃 be normal with known mean 𝜇 and 
known variance 𝜏2. Then the Bayesian estimate, 𝛿𝜋(𝑦) of
frailty parameter 𝜃 is

𝛿𝜋(𝑦) = 𝑦 
𝜎2

𝜎2 + 𝜏2
(𝑦 − 𝜇),

Proof: As (𝑦 | 𝜃) has 𝑁(𝜃, 𝜎2) the prior distribution, 𝜋(𝜃)
of frailty 𝜃 has 𝑁(𝜇, 𝜏2).  Here 𝜎2, 𝜏2, 𝜇 are known, the joint 
distribution, ℎ(𝑦, 𝜃) of 𝑦 and 𝜃 is  

ℎ(𝑦, 𝜃) = 𝜋(𝜃)𝑓(𝑦|𝜃)

 = 1

2𝜋𝜎𝜏
𝑒𝑥𝑝 {−

1

2
[
(𝜃−𝜇)2

𝜏2
+

(𝑦−𝜃)2

𝜎2
]}    (3.1) 

Defining 𝜌 = 𝜏−2 + 𝜎−2

    = 𝜎
2+𝜏2

𝜎2𝜏2

and completing squares of the exponent as

1

2
[
(𝜃 − 𝜇)2

𝜏2
+
(𝑦 − 𝜃)2

𝜎2
]

=
1

2
[(
1

𝜏2
+
1

𝜎2
) 𝜃2 − 2 (

𝜇

𝜏2
+
𝑦

𝜎2
) 𝜃 + (

𝜇2

𝜏2
+
𝑦2

𝜎2
)]

=  
1

2 
𝜌 [𝜃2 −

2

𝜌
(
𝜇

𝜏2
+
𝑦

𝜎2
) 𝜃] +

1

2
(
𝜇2

𝜏2
+
𝑦2

𝜎2
)

=  
1

2 
𝜌 [𝜃2 −

2

𝜌
(
𝜇

𝜏2
+
𝑦

𝜎2
) 𝜃 +

1

𝜌2
(
𝜇

𝜏2
+
𝑦

𝜎2
)
2

−
1

𝜌2
(
𝜇

𝜏2
+
𝑦

𝜎2
)
2

] +
1

2
(
𝜇2

𝜏2
+
𝑦2

𝜎2
)

=
1

2 
𝜌 [𝜃 −

1

𝜌
(
𝜇

𝜏2
+
𝑦

𝜎2
)]
2

−
1

2𝜌
(
𝜇

𝜏2
+
𝑦

𝜎2
)
2

+
1

2
(
𝜇2

𝜏2
+
𝑦2

𝜎2
)

  

= 
1

2 
𝜌 [𝜃 −

1

𝜌
(
𝜇

𝜏2
+
𝑦

𝜎2
)]
2

+
(𝜇 − 𝑦)2

2(𝜎2 + 𝜏2)
From (3.1), we have 

ℎ(𝑦, 𝜃) =
1

2𝜋𝜎𝜏
𝑒𝑥𝑝 {−

1

2 
𝜌 [𝜃 −

1

𝜌
(
𝜇

𝜏2
+
𝑦

𝜎2
)]
2

}

. 𝑒𝑥𝑝 {−
1

2 

(𝜇 − 𝑦)2

(𝜎2 + 𝜏2)
}

and the marginal distribution, 𝑚(𝑦) is  

𝑚(𝑦) = ∫ ℎ(𝑦, 𝜃)𝑑𝜃
∞

−∞

   = 1

√2𝜋𝜌 𝜎𝜏
 𝑒𝑥𝑝 {−

1

2 

(𝜇−𝑦)2

(𝜎2+𝜏2)
}

           = 1

√2𝜋 √𝜎2+𝜏2
 𝑒𝑥𝑝 {−

1

2 

(𝑦−𝜇)2

(𝜎2+𝜏2)
}

So, 𝑚(𝑦)~𝑁(𝜇,  𝜎2 + 𝜏2)

and the posterior distribution of 𝜃 given y is  

𝜋(𝜃|𝑦) =
ℎ(𝑦, 𝜃)

𝑚(𝑦)

             = ( 𝜌
2𝜋
)

1

2
𝑒𝑥𝑝 {−

𝜌

2
[𝜃 −

1

𝜌
(
𝜇

𝜏2
+

𝑦

𝜎2
)]
2

}

Thus the marginal distribution of y is 𝑁(𝜇,  𝜎2 + 𝜏2) and 
posterior distribution of 𝜃 given y is

   𝑁 (𝜇(𝑦), 1
𝜌
)

where,  

𝜇(𝑦) =
1

𝜌
(
𝜇

𝜏2
+
𝑦

𝜎2
)

=
𝜎2

𝜎2+𝜏2
𝜇 +

𝜏2

𝜎2+𝜏2
𝑦      (3.2) 

= 𝑦 −
𝜎2

𝜎2+𝜏2
(𝑦 − 𝜇)      (3.3) 

If the loss function is squared error loss function then the 
posterior mean is the Bayesian estimate of frailty parameter 
𝜃.Thus the frailty parameter has Bayesian estimate which is
given by (3.3) and the frailty variance is 1

𝜌
=

𝜎2𝜏2

𝜎2+𝜏2
 . 

Remark: We note that if 𝑦1, 𝑦2, … , 𝑦𝑛 is a sample from 
𝑁(𝜃, 𝜎2) and if 𝜃 has frailty prior distribution 𝑁(𝜇, 𝜏2) then 
𝑦 being sufficient statistics for 𝜃 and 𝑦 | 𝜃 has 𝑁(𝜃, 𝜎

2

𝑛
) and 

taking 𝜋(𝜃|𝑦)as 𝜋(𝜃|𝑦), (3.2) reduces to

𝜇(𝑦) =
𝜎2

𝜎2+𝑛𝜏2
𝜇 +

𝑛𝜏2

𝜎2+𝑛𝜏2
𝑦      (3.4) 

and 
  𝜌 = 𝜎2+𝑛𝜏2

𝜎2𝜏2
,

So that the frailty Bayesian predictor is given by (3.4) and 
the frailty variance is  
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  1
𝜌
=

𝜎2𝜏2

𝜎2+𝑛𝜏2

We extend above result for Cox’s regression model with two 
regressors in the next section. 

4. Bivariate frailty distribution 

Considering Cox’s linear regression model 

  𝑦 = 𝑏1𝑋1 + 𝑏2𝑋2 + 𝜖, 0≤ 𝑏1, 𝑏2 ≤1    (4.1) 

Let (𝑦1, 𝑥11, 𝑥21), … , (𝑦𝑛, 𝑥1𝑛, 𝑥2𝑛) be a sample from (4.1) 
and assuming that the errors (frailty variable) 𝜖𝑖 are 
independently distributed as 𝑁(0,1), i.e. 𝑦𝑖~𝑁(𝑏1𝑋1𝑖 +
𝑏2𝑋2𝑖, 1). Also the frailty noninformative prior distribution is

[𝜋(𝑏1, 𝑏2)]
2 = 1, if  0≤ 𝑏1 ≤1,  0≤ 𝑏2 ≤1 

The posterior frailty mean of 𝑏𝑖 is given by (𝑖 =  1,2)

𝐸𝜋(𝑏𝑖 | 𝑦1, 𝑦2, . . , 𝑦𝑛)  

=
∫ ∫ 𝑏𝑖 ∏ 𝜙(𝑦𝑗 − 𝑏1𝑋1𝑗 − 𝑏2𝑋2𝑗)𝑑𝑏1𝑑𝑏2

𝑛
𝑗=1

1

0

1

0

∫ ∫ ∏  𝜙(𝑦𝑗 − 𝑏1𝑋1𝑗 − 𝑏2𝑋2𝑗) 𝑑𝑏1𝑑𝑏2
𝑛
𝑗=1

1

0

1

0

where 𝐸𝜋 stands for expectation when 𝜋 is true and 𝜙 stands 
for the density of 𝑁(0,1).  

Let (𝑏̂1, 𝑏̂2) be least square estimate of (𝑏1, 𝑏2). Then the 
posterior distribution of (𝑏1, 𝑏2) is

  (𝑏1
𝑏2
)~𝑁2 ((

𝑏1
𝑏2
) , (𝑋′𝑋)−1)     (4.2) 

with 

  𝑋 = (
𝑋11 𝑋21
… …
𝑋1𝑛 𝑋2𝑛

)

Therefore the restricted frailty base estimate is given by

𝛿𝑖
𝜋(𝑦1, 𝑦2, … , 𝑦𝑛) =

𝐸𝜋(𝑏𝑖,𝑖=1,2,0≤𝑏1≤1,0≤𝑏2≤1 | 𝑦1,𝑦2,..,𝑦𝑛)

𝑃𝜋((𝑏1,𝑏2)∈[0,1]
2| 𝑦1,𝑦2,..,𝑦𝑛)

 . (4.3) 
Let us denote  

  𝑉 = (𝑣𝑖𝑗) = (𝑋′𝑋)−1 = (
𝑣11
2 𝑣12
𝑣12 𝑣22

2 ).

Then the conditional distribution of 𝑏1 given 𝑏2 is  
𝑓(𝑏1 | 𝑏2) = 𝑁 (𝑏1̂ +

𝑣12

𝑣22
2 (𝑏2 − 𝑏̂2),  𝑣11

2 −
𝑣12
2

𝑣22
2 )

And
𝑃𝜋((𝑏1, 𝑏2) ∈ [0,1]

2 | 𝑦1, 𝑦2, . . , 𝑦𝑛)

= ∫

{
 
 

 
 

𝛷

(

 
 1−𝑏̂1− 

𝑣12

𝑣22
2 (𝑏2−𝑏̂2)

√ 𝑣11
2 − 

𝑣12
2

𝑣22
2

)

 
 
−𝛷

(

 
 −𝑏̂1− 

𝑣12

𝑣22
2 (𝑏2−𝑏̂2)

√ 𝑣11
2 − 

𝑣12
2

𝑣22
2

)

 
 

}
 
 

 
 

1

0
  

 . 1
𝑣22
𝜙 (

𝑏2−𝑏̂2

𝑣22
) 𝑑𝑏2,        (4.4) 

where𝛷 is the cumulative distribution function of standard 
normal variate, 

𝐸𝜋(𝑏𝑖, 𝑖 = 1,2, 0 ≤ 𝑏1 ≤ 1, 0 ≤ 𝑏2 ≤ 1 | 𝑦1, 𝑦2, . . , 𝑦𝑛)

=∫

[
 
 
 
 

𝑏̂1 +
𝑣12

𝑣22
2 (𝑏2 − 𝑏̂2) +

1

0

√ 𝑣11
2 −

𝑣12
2

𝑣22
2

{
 
 

 
 

𝜙

(

 
 1−𝑏̂1− 

𝑣12

𝑣22
2 (𝑏2−𝑏̂2)

√ 𝑣11
2 − 

𝑣12
2

𝑣22
2

)

 
 
− 𝜙

(

 
 −𝑏̂1− 

𝑣12

𝑣22
2 (𝑏2−𝑏̂2)

√ 𝑣11
2 − 

𝑣12
2

𝑣22
2

)

 
 

}
 
 

 
 

]
 
 
 
 

. 1
𝑣22
𝜙 (

𝑏2−𝑏̂2

𝑣22
) 𝑑𝑏2.        (4.5) 

Using (4.4) and (4.5) in (4.3), one gets the frailty Bayesian 
estimates of 𝑏1and 𝑏2. (4.4) can be computed by using table 
of cumulative density function 𝛷 manually but (4.5) cannot 
be computed analytically.  

If 𝑏1and 𝑏2are independent, that is, 𝑣12 = 0, the Bayesian 
frailty estimates, 𝑏̂1 𝑎𝑛𝑑 𝑏̂2 are given by

𝛿𝑖
𝜋(𝑦1, 𝑦2, … , 𝑦𝑛)

= 𝐸𝜋(𝑏𝑖 | 𝑦1, 𝑦2, . . , 𝑦𝑛), 𝑖 = 1,2,

 = 𝑏̂𝑖 − 𝑣𝑖𝑖

𝑒𝑥𝑝 {−
(1−𝑏̂𝑖)

2

2𝑣𝑖𝑖
2 } − 𝑒𝑥𝑝 {−

𝑏̂𝑖
2

2𝑣𝑖𝑖
2}

√2𝜋 {𝛷 (
(1−𝑏̂𝑖)

𝑣𝑖𝑖
) − 𝛷 (−

𝑏̂𝑖

𝑣𝑖𝑖
)}

5. Conclusion 

Even with different priors as frailty distributions, we observe 
that with these frailty priors the maximum posterior 
estimates are better than the corresponding Bayesian or
classical estimates. Further frailty parameter 𝜃 of normal 
mean is better than the usual Bayesian estimator. Extension 
of normal prior of frailty for Cox model, it is observed that 
the frailty Bayesian estimates of primary regression 
coefficients 𝑏1and b2 are better than the non-Bayesian 
estimates of 𝑏1and 𝑏2when normality of baseline distribution 
is assumed. 
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