Recognizing Human DNA versus Non Human DNA

Mimoza Canga¹, Vito Antonio Malagnino²

¹University of Medicine Tirana, 9400 Albania
²Sapienza University of Rome, 00185 Italy

Abstract: **Aim:** To recognize the human DNA versus non human DNA. **Material and methods.** GeneMapper software uses parts of Allelic ladder and LIZ500 accurately identifies alleles of genotypes and size for each locus of each sample. Allelic ladder parts are divided into 4 special colored panels. Each panel had parts of alleles for each locus. Parts of Allelic ladder present all possible alleles that humans contain for a particular locus, where one individual has only one allele or two alleles for a certain locus. **Results:** Results taken for other samples where the gene hTERT was discovered, we found that this genetic marker is very stable even in cases where DNA was seriously damaged. This result is supported by the fact that this marker is discovered in other samples. So the low percentages of gained DNA is directly related to DNA damage and type of substrate used for depositing. The genetic markers have shown consistently higher stability against degradation.

Keywords: DNA, genetic markers, AmpFISTR Identifiler, vaginal epithelial cells, sperm cells

1. Introduction

The marker hTERT is determinant for the recognition of human DNA and DNS from different microorganisms. Genetic markers, which show polymorphism between the tissue and are used for the identity test, are found and determined in the non coding zones, in the zones between the genes and and inside the genes,[2]-[6]. The use of STR as genetic marker has been the best method used in determining the sample origine in other studies too [2],[11]. The forensics labs often work on samples whose DNA is ruined [2];[6],[26]. In the absence of undamaged DNA the PCR is not successful, the higher the degrading level, the lower the possibilities for the successful replication of the DNA. The experiments done have shown that there is a mutual relationship between the size of the locus and the successful replication of the DNA. The experiments done have shown that there is a mutual relationship between the size of the locus and the successful replication of the DNA. The frequency of alleles and genotypes is determined only for the referred samples with full DNA profile. The identification of the genotype frequency in relation with the determined alleles is done by supposing the examined population in genetic balance of Hardy – Weinberg [2]-[6], [10]. The frequency of alleles and genotypes is determined only for the referred samples with full DNA profile. It is determined the frequency of gained alleles according to the formula: allele frequency=number of alleles gained/total number of samples analyzed [5],[6]. The identification of the genotype frequency in relation with the determined alleles is done by supposing the examined population in genetic balance of Hardy – Weinberg [3],[10].

2. AIM

To recognize the human DNA versus non human DNA.

3. Material and Methods

The softwear GeneMapper uses the parts of so called Allelic ladder and those of LIZ500 accurately identifies the alleles of genotypes and their size for each locus of each sample. The parts of the allelic ladder are divided in four special colored panels. In each panel there are parts of alleles for each locus. The parts of Allelic ladder represent all the possible alleles the all humans contain in the world for a particular locus, where exactly one individual has only one allele or two alleles for a certain locus. The parts of Size Standard presented in the last pannel with orange colour are the same for the Allelic ladder and also for samples that have a role in the determination of the size of the parts of sample alleles. After these steps, each sample is read for the final result and the determination of its profile [1],[20]-[26]. The frequency of alleles and genotypes is determined only for the referred samples with full DNA profile. It is determined the frequency of gained alleles according to the formula: allele frequency=number of alleles gained/total number of samples analyzed [5],[6]. The identification of the genotype frequency in relation with the determined alleles is done by supposing the examined population in genetic balance of Hardy – Weinberg [3],[10].

The other part of the biological material is taken from types as blood samples collected on the different objects as glass and soil, the epithelial vaginal and semen that were separated in one tampon and mixed in another tampon, saliva samples from surfaces like envelopes, textile materials etc.

A main feature of the sample environment was the presence of humidity which favoured the growth and development of different microorganisms that have enzymes that damage the DNA in our samples.

4. Results

The softwear GeneMapper uses the parts of so called Allelic ladder and those of LIZ500 accurately identifies the alleles of genotypes and their size for each locus of each sample. The parts of the allelic ladder are divided in four special colored panels. In each panel there are parts of alleles for each locus. The parts of Allelic ladder represent all the possible alleles the all humans contain in the world for a particular locus, where exactly one individual has only one allele or two alleles for a certain locus. The parts of Size Standard presented in the last pannel with orange colour are the same for the Allelic ladder and also for samples that have a role in the determination of the size of the parts of sample alleles. After these steps, each sample is read for the final result and the determination of its profile [1],[20]-[26].
Graphic 1. There are data for the capillary electrophoreses and the time for the injection of the sample expressed in seconds. Normal time is 5 seconds, the gained profile or not of the DNA balancing or not of the parts of each allele and data on damaged locuses which are not revealed during the analyses.

From the results taken for other samples where the gene hTERT was discovered, it is noted that this genetic marker is very stable even in cases where DNA was greatly damaged. This result is supported on the fact that this marker is discovered in other samples whereas other markers have failed to be discovered. The set AmpFlSTR Identifiler so the samples 8, 9 and 10. Referring to our results, we think that the low percentages of gained DNA in samples 8, 9 and 10 are directly related to DNA damage and the type of substrate used for depositing. We should mention that despite this fact, the genetic marker hTERT has been very stable regardless to the damage. With the spectrophotometric method we have determined and evaluated the total quantity of DNA in the analyzed material by including the free nucleotides, inhibitors and non human DNA.

Graphic 3: For these samples the time of injection during the analyze in the capillary electrophoreses is also increased.
Graphic 4. Samples 4, 5, 6 and 7 were composed of two types of biological material: vaginal epithelial cells and sperm cells. These types of samples are typical in cases of rape. During differential extraction these mixed samples of biological material of two individuals are separated from each other to be analyzed as a separate sample. F1 fraction represents isolated DNA from epithelial cells of the vagina while the F2 fraction isolated DNA from sperm. As shown in the table the amount of DNA of the fraction F2 is several times less than that of fraction F1. This argues the fact that vaginal secretions and microorganisms that are found as normal flora of the vagina destroy the sperm by reducing their numbers over time.

5. Discussion

For these samples the time of injection during analyzing done in capillary electrophoreses is also increased [14]. The samples with large amount of DNA are diluted in the close amount of 1.2 ng/10^4L. The blood samples in table 1 and 2 are collected from various substrates exposed to different conditions.

Negative results for the DNA extraction had samples 8, 9 and 10. In these samples was discovered the gene hTERT, but as a result of the dammage of the blood deposit material, the markers of Identifiler Kit is not discover. The spongy nature of the substrat has affected the small amount of isolated DNA. The effect of dammage for these samples is verified with the fact that even though the increase of DNA percentage by centrifuge and increse of the injection time still we could not have DNA profile. Based on the results of table 3 and table 4 we can say that the most problematic samples were the ones suspected of the presence of epithelial skin cells during touch of substrat rubbing, the same with mouth cell epithelium. As a result of the low amount of DNA the samples are centrifuged to increase the percentage of DNA and in the discovery of DNA in the genetic analyzer has increased the injection time of sample form 5 seconds to 10 seconds maximal time. For this reason in these samples the allele parts were not balanced. Samples 4, 5, 6 and 7 were composed of two types of biological material: vaginal epithelial cells and sperm cells. These types of samples are typical in cases of rape. During differential extraction these mixed samples of biological material of two individuals are separated from each other to be analyzed as a separate sample. F1 fraction represents isolated DNA from epithelial cells of the vagina while the F2 fraction isolated DNA from sperm. As shown in the table the amount of DNA of the fraction F2 is several times less than that of fraction F1. This argues the fact that vaginal secretions and microorganisms that are found as normal flora of the vagina destroy the sperm by reducing their numbers over time. The longer the time of sampling, the lower are the opportunities to isolate cells of healthy sperm[7],[2]-[6],[9], have analyzed the stability of the short repeated framents of the same locus by using the humidity as a dammaging factor of the blood and saliva samples. From the results, it is seen that STR segments show a high stability to the dammage mainly during the first week, where is gained the full profile of DNA, later the longer the time of isolation the more failure to show the profile. Based on the results obtained through VIC detectorwe can say that the threshold cycles for samples extracted with organic extraction technique is higher than that of samples where the extraction is performed with Chelex. It may be noted that time spent during the isolation of DNA with Chelex method is two times shorter than that of organic extraction [8],[12],[13],[27][30]. In their studies, in most of the samples used the most efficient method was the Chelex one. In the following tables are presented all the possible existing alleles of each locus where every human individual possesses only one or both alleles. Our results are consistent with the results obtained from the study of Kubat et., al in the all the locus[19]. The comparison of the results obtained from Jakovski Z et al., 2006 do not show a significant change in alleles with high frequency other than in locus TH01 and D18S51[15].

6. Conclusions

The samples have been in different levels of damage of DNA molecules, this marker has shown high stability to environmental factors. The genetic markers have shown consistently higher stability against degradation under environmental conditions. We suggest using the AmpFISTR Identifiler kit in case of DNA analysis for the purpose of determining the DNA profile.
7. Acknowledgment

To perform and report this study was received no financial support from any companies or from a national or international funding source.

References

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Author Profile

Dr. Mimoza Canga is laureate at the University Sapienza, Roma- Italy and has a PhD from the University of Tirana. Currently works in the University of Vlore, Department of Public Health, Vlore-Albania

Professor Vito Antonio Malagnino is laureate in the Faculty of the Medicine with excellent grades. He is specialized in odontostomatology in the University of Roma- Sapienza Italy. He is the chief of the endodontic in Sapienza- University.