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Abstract: The term ‘Big Data’, refers to data sets whose size (volume), complexity (variability), and rate of growth (velocity) make them 
difficult to capture, manage, process or analyzed. To analyze this enormous amount of data Hadoop can be used. However, processing is 
often time-consuming. One way to decrease response time is to executing the job partially, where an approximate, early result becomes 
available to the user, before completion of job. The implementation of the technique will be on top of Hadoop which will help to sample 
HDFS blocks uniformly. We will evaluate this technique using real-world datasets and applications and we will try to demonstrate the 
system’s performance in terms of accuracy and time. The objective of the proposed technique is to significantly improve the performance 
of Hadoop MapReduce for efficient Big Data processing.  
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1. Introduction 
 
1.1 Big Data 
 
Big data is a term that refers to data sets or combinations of 
data sets whose size (volume), complexity (variability), and 
rate of growth (velocity) make them difficult to be captured, 
managed, processed or analyzed [4] by conventional 
technologies and tools, such as relational databases and 
desktop statistics or visualization packages, within the time 
necessary to make them useful. While the size used to 
determine whether a particular data set is considered big 
data is not _rmly de_ned and continues to change over time, 
most analysts and practitioners currently refer to data sets 
from 30-50 terabytes(10 12 or 1000 gigabytes per terabyte) 
to multiple petabytes (1015 or 1000 terabytes per petabyte) 
as big data[1]. The analysis of Big Data involves multiple 
distinct phases each of which introduces challenges. [7]. 
Map Reduce has emerged as a popular way to harness the 
power of large clusters of computers. Map Reduce allows 
programmers to think in a data-centric fashion: they focus 
on applying transformations to sets of data records, and 
allow the details of distributed execution, network 
communication and fault tolerance to be handled by the Map 
Reduce framework. Map Reduce is typically applied to large 
batch-oriented computations that are concerned primarily 
with time to job completion [13]. The Google Map Reduce 
framework and open-source Hadoop system reinforce this 
usage model through a batch-processing implementation 
strategy: the entire output of each map and reduce task is 
materialized to a local _le before it can be consumed by the 
next stage. Materialization allows for a simple and elegant 
checkpoint/restart fault tolerance mechanism that is critical 
in large deployments, which have a high probability of 
slowdowns or failures at worker nodes [19]. 
 
1.2  3 Volume’s of Big Data 
 
Volume of data: 

Volume refers to amount of data. Volume of data stored in 
enterprises repositories have grown from megabytes and 
gigabytes to petabytes.  
 
Variety of data: 
Different types of data and sources of data. Data variety 
exploded from structured and legacy data stored in 
enterprises repositories to unstructured, semi structured, 
audio, video, XML etc. 
 
Velocity of data: 
Velocity refers to the speed of data processing. For time-
sensitive processes such as catching fraud, big data must be 
used as it streams into your enterprise in order to maximize 
its value.  
 
2. Hadoop 
 
SQL standard and the relational data model provide a 
uniform, powerful language to express many query needs 
and, in principle, allows customers to choose between 
vendors, increasing competition. The challenge ahead of me 
is to combine these healthy features of prior systems [7]. 
Map Reduce has emerged as a popular way to harness the 
power of large clusters of computers. Map Reduce allows 
programmers to think in a data-centric fashion: they focus 
on applying transformations to sets of data records, and 
allow the details of distributed execution, network 
communication and fault tolerance to be handled by the Map 
Reduce framework. Map Reduce is typically applied to large 
batch-oriented computations that are concerned  primarily 
with time to job completion [13]. The Google Map Reduce 
framework and open-source Hadoop system reinforce this 
usage model through a batch-processing implementation 
strategy: the entire output of each map and reduce task is 
materialized to a local _le before it can be consumed by the 
next stage. Materialization allows for a simple and elegant 
checkpoint/restart fault tolerance mechanism that is critical 
in large deployments, which have a high probability of 
slowdowns or failures at worker nodes [19]. 
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2.1 Hadoop Distributed File System(HDFS): 
 
The Hadoop Distributed File System (HDFS) is a distributed 
file system designed to run on commodity hardware. It has 
many similarities with existing distributed file systems. 
However, the differences from other distributed file systems 

are significant. HDFS is highly fault-tolerant and is designed 
to be deployed on low-cost hardware. HDFS provides high 
throughput access to application data and is suitable for 
applications that have large data sets. 
 

 
 

2.2 Map-Reduce 
 
MapReduce is one of the parallel data processing paradigm 
designed for large scale data processing on cluster-based 
computing architectures. It was originally proposed by 
Google to handle large-scale web search applications. This 
approach has been proved to be an effective programming 
approach for developing machine learning, data mining, and 
search applications in data centers. Its advantage is that it 
allows programmers to abstract from the issues of 
scheduling, parallelization, partitioning, replication and 
focus on developing their applications. Hadoop MapReduce 
programming model consists of data processing functions: 
Map and Reduce. Parallel Map tasks are run on input data 
which is partitioned into fixed sized blocks and produce 
intermediate output as a collection of <key, value> pairs. 

These pairs are shuffled across different reduce tasks based 
on <key, value> pairs. Each Reduce task accepts only one 
key at a time and process data for that key and outputs the 
results as <key, value> pairs. The Hadoop MapReduce 
architecture consists of one JobTracker (Master) and many 
TaskTrackers (Workers). The JobTracker receives job 
submitted from user, breaks it down into map and reduce 
tasks, assigns the tasks to Task Trackers, monitors the 
progress of the Task Trackers, and finally when all the tasks 
are complete, reports the user about the job completion. 
Each Task Tracker has a fixed number of map and reduce 
task slots that determine how many map and reduce tasks it 
can run at a time. HDFS supports reliability and fault 
tolerance of MapReduce computation by storing and 
replicating the inputs and outputs of a Hadoop job. 
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3. MapReduce Framework 
 
3.1 Master-Slave Architecture 
 

Master: Namenode, JobTracker 
Slave: {DataNode, TaskTraker}, …..  {DataNode, 
TaskTraker} 

HDFS is one primary components of Hadoop cluster and 
HDFS is designed to have Master-slave architecture. 
Master: NameNode 
Slave: {Datanode}…..{Datanode} 
 
The Master (NameNode) manages the file system 
namespace operations like opening, closing, and renaming 
files and directories and determines the mapping of blocks to 
DataNodes along with regulating access to files by clients. 
Slaves (DataNodes) are responsible for serving read and 
write requests from the file system’s clients along with 
perform block creation, deletion, and replication upon 
instruction from the Master (NameNode). 

Map/Reduce is also primary component of Hadoop and it 
also have Master-slave architecture 
Master: JobTracker  
Slaves: {tasktraker}……{Tasktraker} 
Master {Jobtracker} is the point of interaction between users 
and the map/reduce framework. When a map/reduce job is 
submitted, Jobtracker puts it in a queue of pending jobs and 
executes them on a first-come/first-served basis and then 
manages the assignment of map and reduce tasks to 
the tasktrackers. Slaves {tasktracker} execute tasks upon 
instruction from the Master {Jobtracker} and also handle 
data motion between the map and reduce phases. 
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3.2 Programming Model of MapReduce 
 
The computation  of MapReduce takes a set of input 
key/value pairs, and produces a set of output key/value pairs. 
The user of the MapReduce library expresses the 
computation as two functions: map and reduce. Map, written 
by the user, takes an input pair and produces a set of 
intermediate key/value pairs. The MapReduce library groups 
together all intermediate values associated with the same 
intermediate key I and passes them to the reduce function. 
The reduce function, also written by the user, accepts an 
intermediate key I and a set of values for that key. It merges 
these values together to form a possibly smaller set of 
values. Typically just zero or one output value is produced 
per reduce invocation. The intermediate values are supplied 
to the user’s reduce function via an iterator. This allows us 
to handle lists of values that are too large to fit in memory. 
 
4. Historical Model 
 
4.1 Disadvantages of Traditional File System 
 
Conventionally, the data were stored and processed using 
traditional file pro- cessing systems. In these traditional file 
systems, each file is independent of other file, and data in 
different files can be integrated only by writing individual 
program for each application. The data and the application 
programs that uses the data are so arranged that any change 
to the data requires modifying all the programs that uses the 
data. This is because each file is hard-coded with specific 
information like data type, data size etc. Some time it is even 
not possible to identify all the programs using that data and 
is identified on a trial-and-error basis. A file processing 
system of an organization is shown in figure below. All 
functional areas in the organization creates, processes and 
disseminates its own files. The files such as inventory and 
payroll generate separate files and do not communicate with 
each other. Following are the disadvantages of Traditional 
File System: 
1) Data Redundancy: Since each application has its own 

data file, the same data may have to be recorded and 
stored in many files. For example, personal file and 
payroll file, both contain data on employee name, 
designation etc. The result is unnecessary duplicate or 
redundant data items. This redundancy requires 
additional or higher storage space, costs extra time and 
money, and requires additional efforts to keep all files 
upto-date. 

2) Data Inconsistency: Data redundancy leads to data 
inconsistency especially when data is to be updated. Data 
inconsistency occurs due to the same data items that 
appear in more than one file do not get updated 
simultaneously in each and every file. For example, an 
employee is promoted from Clerk to Superintendent and 
the same is immediately updated in the payroll file may 
not necessarily be updated in provident fund file. This 
results in two different designations of an employee at 
the same time. Over the period of time, such discrepencis 
degrade the quality of information contain in the data file 
that affects the accuracy of reports. 

3) Lack of Data Integration: Since independent data file 
exists, users face difficulty in getting information on any 
ad hoc query that requires accessing the data stored in 

many files. In such a case complicated programs have to 
be developed to retrieve data from every file or the users 
have to manually collect the required information. 

4) Program Dependence: The reports produced by the file 
processing system are program dependent, which means 
if any change in the format or structure of data and 
records in the file is to be made, the programs have to 
modified correspondingly. Also, a new program will 
have to be developed to produce a new report. 

5) Data Dependence: The Applications/programs in file 
processing system are data dependent i.e., the file 
organization, its physical location and retrieval from the 
storage media are dictated by the requirements of the 
particular application. For example, in payroll 
application, the file may be organised on employee 
records sorted on their last name, which implies that 
accessing of any employee's record has to be through the 
last name only. 

6) Limited Data Sharing: There is limited data sharing 
possibilities with the traditional file system. Each 
application has its own private files and users have little 
choice to share the data outside their own applications. 
Complex programs required to be written to obtain data 
from several incompatible files. 

 
5. Conclusion and Future Scope 
 
5.1 Conclusion 
 
The proposed system is based on implementation of Online 
Aggregation of MapReduce in Hadoop for e_cient big data 
processing. Traditional Map Reduce implementations 
materialize the intermediate results of mappers and do not 
allow pipelining between the map and the reduce phases. 
However, reducers cannot start executing tasks before all 
mappers have _nished. The limitation of traditional 
MapReduce lowers resource utilization and leads to 
inefficient execution for many applications. The main 
motivation of Map Reduce Online is to overcome these 
problems, by allowing pipelining between operators. 
 
5.2 Future Scope 
 
Future enhancement of the project work will be to enhance 
the map reduce functionality to achieve pipelining between 
jobs. Another direction would be to investigate alternative 
Aggregation techniques and explore the possibility for 
integration with large-scale processing frameworks. Another 
chance for future scope would be to improve the storing of 
data into HDFS so that processing can be benefited. There 
can be a limitation on how much intermediate results can be 
stored in Redis while processing the data. The storing 
capacity of the Redis can be increased to store more 
intermediate results. 
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