
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 7, July 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Survey Paper on Big Data Processing and Hadoop
Components

Swati M. Gavali1, Supriya Sarkar2

1, 2Department of Computer Engineering, SKN, Lonavala, Pune, India

Abstract: The term ‘Big Data’, refers to data sets whose size (volume), complexity (variability), and rate of growth (velocity) make them
difficult to capture, manage, process or analyzed. To analyze this enormous amount of data Hadoop can be used. However, processing is
often time-consuming. One way to decrease response time is to executing the job partially, where an approximate, early result becomes
available to the user, before completion of job. The implementation of the technique will be on top of Hadoop which will help to sample
HDFS blocks uniformly. We will evaluate this technique using real-world datasets and applications and we will try to demonstrate the
system’s performance in terms of accuracy and time. The objective of the proposed technique is to significantly improve the performance
of Hadoop MapReduce for efficient Big Data processing.

Keywords: Big data, Hadoop, MapReduce, RDMS

1. Introduction

1.1 Big Data

Big data is a term that refers to data sets or combinations of
data sets whose size (volume), complexity (variability), and
rate of growth (velocity) make them difficult to be captured,
managed, processed or analyzed [4] by conventional
technologies and tools, such as relational databases and
desktop statistics or visualization packages, within the time
necessary to make them useful. While the size used to
determine whether a particular data set is considered big
data is not _rmly de_ned and continues to change over time,
most analysts and practitioners currently refer to data sets
from 30-50 terabytes(10 12 or 1000 gigabytes per terabyte)
to multiple petabytes (1015 or 1000 terabytes per petabyte)
as big data[1]. The analysis of Big Data involves multiple
distinct phases each of which introduces challenges. [7].
Map Reduce has emerged as a popular way to harness the
power of large clusters of computers. Map Reduce allows
programmers to think in a data-centric fashion: they focus
on applying transformations to sets of data records, and
allow the details of distributed execution, network
communication and fault tolerance to be handled by the Map
Reduce framework. Map Reduce is typically applied to large
batch-oriented computations that are concerned primarily
with time to job completion [13]. The Google Map Reduce
framework and open-source Hadoop system reinforce this
usage model through a batch-processing implementation
strategy: the entire output of each map and reduce task is
materialized to a local _le before it can be consumed by the
next stage. Materialization allows for a simple and elegant
checkpoint/restart fault tolerance mechanism that is critical
in large deployments, which have a high probability of
slowdowns or failures at worker nodes [19].

1.2 3 Volume’s of Big Data

Volume of data:

Volume refers to amount of data. Volume of data stored in
enterprises repositories have grown from megabytes and
gigabytes to petabytes.

Variety of data:
Different types of data and sources of data. Data variety
exploded from structured and legacy data stored in
enterprises repositories to unstructured, semi structured,
audio, video, XML etc.

Velocity of data:
Velocity refers to the speed of data processing. For time-
sensitive processes such as catching fraud, big data must be
used as it streams into your enterprise in order to maximize
its value.

2. Hadoop

SQL standard and the relational data model provide a
uniform, powerful language to express many query needs
and, in principle, allows customers to choose between
vendors, increasing competition. The challenge ahead of me
is to combine these healthy features of prior systems [7].
Map Reduce has emerged as a popular way to harness the
power of large clusters of computers. Map Reduce allows
programmers to think in a data-centric fashion: they focus
on applying transformations to sets of data records, and
allow the details of distributed execution, network
communication and fault tolerance to be handled by the Map
Reduce framework. Map Reduce is typically applied to large
batch-oriented computations that are concerned primarily
with time to job completion [13]. The Google Map Reduce
framework and open-source Hadoop system reinforce this
usage model through a batch-processing implementation
strategy: the entire output of each map and reduce task is
materialized to a local _le before it can be consumed by the
next stage. Materialization allows for a simple and elegant
checkpoint/restart fault tolerance mechanism that is critical
in large deployments, which have a high probability of
slowdowns or failures at worker nodes [19].

Paper ID: ART2016306 1333

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 7, July 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

2.1 Hadoop Distributed File System(HDFS):

The Hadoop Distributed File System (HDFS) is a distributed
file system designed to run on commodity hardware. It has
many similarities with existing distributed file systems.
However, the differences from other distributed file systems

are significant. HDFS is highly fault-tolerant and is designed
to be deployed on low-cost hardware. HDFS provides high
throughput access to application data and is suitable for
applications that have large data sets.

2.2 Map-Reduce

MapReduce is one of the parallel data processing paradigm
designed for large scale data processing on cluster-based
computing architectures. It was originally proposed by
Google to handle large-scale web search applications. This
approach has been proved to be an effective programming
approach for developing machine learning, data mining, and
search applications in data centers. Its advantage is that it
allows programmers to abstract from the issues of
scheduling, parallelization, partitioning, replication and
focus on developing their applications. Hadoop MapReduce
programming model consists of data processing functions:
Map and Reduce. Parallel Map tasks are run on input data
which is partitioned into fixed sized blocks and produce
intermediate output as a collection of <key, value> pairs.

These pairs are shuffled across different reduce tasks based
on <key, value> pairs. Each Reduce task accepts only one
key at a time and process data for that key and outputs the
results as <key, value> pairs. The Hadoop MapReduce
architecture consists of one JobTracker (Master) and many
TaskTrackers (Workers). The JobTracker receives job
submitted from user, breaks it down into map and reduce
tasks, assigns the tasks to Task Trackers, monitors the
progress of the Task Trackers, and finally when all the tasks
are complete, reports the user about the job completion.
Each Task Tracker has a fixed number of map and reduce
task slots that determine how many map and reduce tasks it
can run at a time. HDFS supports reliability and fault
tolerance of MapReduce computation by storing and
replicating the inputs and outputs of a Hadoop job.

Paper ID: ART2016306 1334

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 7, July 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3. MapReduce Framework

3.1 Master-Slave Architecture

Master: Namenode, JobTracker
Slave: {DataNode, TaskTraker}, ….. {DataNode,
TaskTraker}

HDFS is one primary components of Hadoop cluster and
HDFS is designed to have Master-slave architecture.
Master: NameNode
Slave: {Datanode}…..{Datanode}

The Master (NameNode) manages the file system
namespace operations like opening, closing, and renaming
files and directories and determines the mapping of blocks to
DataNodes along with regulating access to files by clients.
Slaves (DataNodes) are responsible for serving read and
write requests from the file system’s clients along with
perform block creation, deletion, and replication upon
instruction from the Master (NameNode).

Map/Reduce is also primary component of Hadoop and it
also have Master-slave architecture
Master: JobTracker
Slaves: {tasktraker}……{Tasktraker}
Master {Jobtracker} is the point of interaction between users
and the map/reduce framework. When a map/reduce job is
submitted, Jobtracker puts it in a queue of pending jobs and
executes them on a first-come/first-served basis and then
manages the assignment of map and reduce tasks to
the tasktrackers. Slaves {tasktracker} execute tasks upon
instruction from the Master {Jobtracker} and also handle
data motion between the map and reduce phases.

Paper ID: ART2016306 1335

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 7, July 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3.2 Programming Model of MapReduce

The computation of MapReduce takes a set of input
key/value pairs, and produces a set of output key/value pairs.
The user of the MapReduce library expresses the
computation as two functions: map and reduce. Map, written
by the user, takes an input pair and produces a set of
intermediate key/value pairs. The MapReduce library groups
together all intermediate values associated with the same
intermediate key I and passes them to the reduce function.
The reduce function, also written by the user, accepts an
intermediate key I and a set of values for that key. It merges
these values together to form a possibly smaller set of
values. Typically just zero or one output value is produced
per reduce invocation. The intermediate values are supplied
to the user’s reduce function via an iterator. This allows us
to handle lists of values that are too large to fit in memory.

4. Historical Model

4.1 Disadvantages of Traditional File System

Conventionally, the data were stored and processed using
traditional file pro- cessing systems. In these traditional file
systems, each file is independent of other file, and data in
different files can be integrated only by writing individual
program for each application. The data and the application
programs that uses the data are so arranged that any change
to the data requires modifying all the programs that uses the
data. This is because each file is hard-coded with specific
information like data type, data size etc. Some time it is even
not possible to identify all the programs using that data and
is identified on a trial-and-error basis. A file processing
system of an organization is shown in figure below. All
functional areas in the organization creates, processes and
disseminates its own files. The files such as inventory and
payroll generate separate files and do not communicate with
each other. Following are the disadvantages of Traditional
File System:
1) Data Redundancy: Since each application has its own

data file, the same data may have to be recorded and
stored in many files. For example, personal file and
payroll file, both contain data on employee name,
designation etc. The result is unnecessary duplicate or
redundant data items. This redundancy requires
additional or higher storage space, costs extra time and
money, and requires additional efforts to keep all files
upto-date.

2) Data Inconsistency: Data redundancy leads to data
inconsistency especially when data is to be updated. Data
inconsistency occurs due to the same data items that
appear in more than one file do not get updated
simultaneously in each and every file. For example, an
employee is promoted from Clerk to Superintendent and
the same is immediately updated in the payroll file may
not necessarily be updated in provident fund file. This
results in two different designations of an employee at
the same time. Over the period of time, such discrepencis
degrade the quality of information contain in the data file
that affects the accuracy of reports.

3) Lack of Data Integration: Since independent data file
exists, users face difficulty in getting information on any
ad hoc query that requires accessing the data stored in

many files. In such a case complicated programs have to
be developed to retrieve data from every file or the users
have to manually collect the required information.

4) Program Dependence: The reports produced by the file
processing system are program dependent, which means
if any change in the format or structure of data and
records in the file is to be made, the programs have to
modified correspondingly. Also, a new program will
have to be developed to produce a new report.

5) Data Dependence: The Applications/programs in file
processing system are data dependent i.e., the file
organization, its physical location and retrieval from the
storage media are dictated by the requirements of the
particular application. For example, in payroll
application, the file may be organised on employee
records sorted on their last name, which implies that
accessing of any employee's record has to be through the
last name only.

6) Limited Data Sharing: There is limited data sharing
possibilities with the traditional file system. Each
application has its own private files and users have little
choice to share the data outside their own applications.
Complex programs required to be written to obtain data
from several incompatible files.

5. Conclusion and Future Scope

5.1 Conclusion

The proposed system is based on implementation of Online
Aggregation of MapReduce in Hadoop for e_cient big data
processing. Traditional Map Reduce implementations
materialize the intermediate results of mappers and do not
allow pipelining between the map and the reduce phases.
However, reducers cannot start executing tasks before all
mappers have _nished. The limitation of traditional
MapReduce lowers resource utilization and leads to
inefficient execution for many applications. The main
motivation of Map Reduce Online is to overcome these
problems, by allowing pipelining between operators.

5.2 Future Scope

Future enhancement of the project work will be to enhance
the map reduce functionality to achieve pipelining between
jobs. Another direction would be to investigate alternative
Aggregation techniques and explore the possibility for
integration with large-scale processing frameworks. Another
chance for future scope would be to improve the storing of
data into HDFS so that processing can be benefited. There
can be a limitation on how much intermediate results can be
stored in Redis while processing the data. The storing
capacity of the Redis can be increased to store more
intermediate results.

References

[1] S.Vikram Phaneendra & E.Madhusudhan Reddy Big

Data- solutions for RDBMS problems- A survey In 12th
IEEE/IFIP Network Operations & Management
Symposium (NOMS 2010) (Osaka, Japan, Apr 1923
2013)

Paper ID: ART2016306 1336

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 7, July 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[2] Kiran kumara Reddi & Dnvsl Indira Di_erent
Technique to Transfer Big Data : survey IEEE
Transactions on 52(8) (Aug.2013) 2348 2355

[3] Jimmy Lin MapReduce Is Good Enough? The control
project. IEEE Computer 32 (2013).

[4] Hongfei Li, Usage analysis for smart meter
management in Proc of 2011 IEEE Conference.

[5] Daswin De Silva, XinghuoYu,DammindaAlahakoon,
and Grahame Holmes, A Data Mining Framework for
Electricity Consumption Analysis From Meter Data
IEEE Trans.on Ind. Informatics, vol. 7, no. 3.

[6] Yang Wang,, Qing Xia, Chongqing Kang, Secondary
Forecasting Based on Deviation Analysis for Short-
Term Load Forecasting IEEE Trans..on Power Systems,
vol. 26, no.2.

[7] XindongWu, Vipin Kumar, J. Ross Quinlan, Joydeep
Ghosh, Qiang Yang, Hiroshi Motoda , Geo_rey
J.McLachlan, Angus Ng, Bing Liu, Philip S. Yu,
ZhiHua Zhou, Michael Steinbach, David J. Hand, Dan
Steinberg, "Top 10 algorithms in data mining",
KnowlInfSyst, 2008 14, pp. 1-37.

[8] Jiawei Han and MichelineKamber, Classi_cation and
PredictioninData Mining: Concepts and Techniques 2nd
ed., San Francisco, CA The Morgan Kaufmann, 2006.

[9] http://www.nyiso.com/public/markets operations/market
data/load data/index.jsp

[10] Report from Pike research,
http://www.pikeresearch.com/research/smartgriddata-
analytics.

[11] National Climate Data Center [Online].
Available:http://www.ncdc.noaa.gov/oa/ncdc.html

Paper ID: ART2016306 1337

