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Abstract: In research paper [2] we investigated local and global stability of a model consisting of two mutually interdependent predator 

species feeding on a single prey species. In this paper we investigated Hopf bifurcation, quasiperiodic behavior and persistence of the 

nonlinear ode system [2] under the Kolmogorov conditions. Both the predator species has symbiotic interaction that is mutually 

beneficial [2].The existence of Hopf bifurcation is investigated and limit cycles are obtained.  It is observed that the persistence is 

possible in the form of periodic cycle in the positive octant.  
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1. Introduction 
 

Two prey and one predator systems are shown to have 

complex dynamical behavior [4]-[6]. The two predators 

themselves may have different types of interaction between 

them. In the case of two competing species, coexistence is 

not possible and only the fittest will survive [6]. The effect 

of implicit competition on the two predators sharing a 

common prey was investigated in [6]. There exist infinitely 

many non-hyperbolic equilibria lying on a straight line for a 

narrow choice of parameters and solution is quasi-periodic. 

Apart from the implicit competition, the two predators may 

have explicit competition between themselves [9]. Due to 

explicit competition, the Competitive exclusion of the weak 

predator is possible. In specialist and generalist prey 

predator models, the two predators may be in a prey-

predator type of interaction [3]. In a two species system, 

cooperation is found to have a destabilizing effect on the 

stability of equilibrium. Freedman et. al. [8] investigated a 

three species food web considering the mutualism between 

two predators sharing a prey. The effect of their cooperation 

is considered implicitly in the functional response of the 

prey species. Basic Lotka-Volterra type models in which 

mutualism (a type of symbiosis where the two populations 

benefit both) is taken into account, may give unbounded 

solutions [1]. It is excluded such behaviour using explicit 

mass balances and study the consequences of symbiosis for 

the long-term dynamic behaviour of a three species system, 

two predator and one prey species in the chemostat [1].  

 

Consider a three species food web comprised of two 

mutualist predators feeding on a single prey species limit 

[2]. The dynamical equations of this food web [2] are given 

as 
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 Where parameters, symbols, non-dimensional variables and 

parameters have same meanings as [2]. Accordingly, the 

non-dimensional system [a] is 
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2. Boundedness 
 

Theorem 2.1: The nonlinear dynamical system (3) has 

bounded solution. 

 

Proof: is given in research paper [2]. 

 

The system (3) is divided into two subsystems. The first 

subsystem is obtained by assuming the absence of the 

second predator 3y . 
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The second subsystem is obtained when the first predator 

2y is absent. 
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Theorem 2.1:The system is Kolmogorov systems [14] under 

the constraints: 

 
3 4 1(1 )w w w  , and                    (6) 
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3. Stability Analysis 
 

Theorem 3.1: The positive equilibrium 
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under the Kolmogorov conditions (6-7) and the condition 

such that 

 
Proof: is given in research paper [2]. 

 

Theorem 3.2: The positive nonzero 

equilibrium )y,y,(y *
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is locally asymptotically stable 

under the Kolmogorov conditions (6-7) provided 
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Proof. is given in research paper [2]. 

The following theorem gives the conditions for the global 

stability of positive nonzero equilibrium point. 

 

Theorem 3.3 The positive equilibrium point 
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the following are satisfied: 
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Proof. is given in research paper [2]. 

 

Lemma 3.4: The nonlinear dynamical system (3) may have 

one or more periodic solutions.  

 

Proof: Consider the system (3) in the form 

of (y))h(y),h(y),(hh(y)y 321

'  ; 
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Therefore, the nonlinear model (3) is not a gradient system 

[15]. Hence the system admits one or more periodic 

solutions. 

 

Theorem 3.5: The non-dimensional system (3) admits limit 

cycle solutions in the neighborhood of positive nonzero 

equilibrium point at the bifurcation point


1γ  provided the 

conditions (8) and the following conditions are satisfied: 
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Proof. The system (3) has positive equilibrium point under 

conditions (8). The characteristic equation about the 

equilibrium is obtained as (31). It may be observed that  

 (i) 0,, 210 aaa  
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 The characteristic polynomial can be written in the form  
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The system (3) will admit Hopf bifurcation for the 

parameter



11

γγ  provided conditions (9) are satisfied. 

Thus the system admits periodic solution in the 

neighborhood of positive nonzero equilibrium point at the 

bifurcation point 



11

γγ  .  

 

4. Persistence 
 

According to Freedman and Waltman [7], the following 

assumptions for the system (3) are assumed to be satisfied: 
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2A : The prey grows to carrying capacity in the absence of 

predation, i.e. there exist K Such that 

1(1,0,0) 0, ( 1)F K    
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:3A  There are no equilibria on the 2 3or y y coordinate 

axes and no equilibria in 2 3-y y plane.  

:4A  Each predator is surviving on the common prey i.e. 

there exists equilibrium points  2 1 2, ,0E y y  and 

 3 1 3
ˆ ˆ,0,E y y , 

1 2 1 3
ˆ ˆ0 , 1; 0 , 1;y y y y     such 

that  

1 1 2 1 1 2 1 1 3 2 1 3
ˆ ˆ ˆ ˆ( , ,0) ( , ,0) 0 & ( ,0, ) ( ,0, ) 0.F y y G y y F y y G y y   

 

 Theorem 4.1: Let )(A)(A 41  hold and there are no limit 

cycles on the boundary planes then the nonlinear model (3) 

persists if  

  
Theorem 4.2: If a finite number of limit cycles 

(t))ψ̂(t),φ̂(  of period T are allowed in 
21 yy   plane 

then the system (3) will persist provided the following 

condition is satisfied: 

 
If a finite number of limit cycles (t))ψ(t),φ( of period T 

are allowed in 
31 yy   plane then the system (3) will persist 

provided the following condition is satisfied: 

 
It is concluded that with mutalist predators the persistence is 

possible under conditions (12) or (13) - (14) involving 

positive parameters
1 2and    . The persistence is possible 

in the form of stable nonzero equilibrium or a periodic 

solution in positive phase space. Due to the involvement 

of (t))ψ̂(t),φ̂( in the conditions (12)-(14), their validation 

is difficult and they only give the possibility of periodic 

solution.  

 

5. Numerical Simulations 
 

The analysis does not show the behavior when the 

conditions are not satisfied. The numerical simulations 

investigate the dynamical behavior of the system in such 

cases. When the system allows periodic solution in any of 

the prey predator planes then the system (3) may persist 

according to conditions (13) and (14). Due to the 

involvement of ˆ ˆ( ( ), ( ))t t  in the conditions (13)-(14), 

their validation is difficult and they only give the possibility 

of periodic solution.  

 

We fixed the biological feasible set of parameters: 

Consider the variation of key parameter 
4w  for the 

following biological feasible set of parameters: 

 

1 2 3 5 6 1 22.1, 2.12, 1.8,  1.9, 0.12, 0.05, 0.05w w w w w          (15) 

 

For this choice of parameters, the hopf bifurcation is found 

to occur in the neighborhood of 4 0. 1211w  . The 

following values are obtained for the eigenvalues and 

eigenvectors at this point 

 -0.0001 + 0.2441i, {0.0376 - 0.2066i, 0.0376 + 0.2066i, 

0.0014}  

 -0.0001 - 0.2441i, {-0.6347 + 0.0311i, -0.6347 - 0.0311i, -

0.7034}  

 -0.0501, {-0.7430 , -0.7430 , 0.7108}  

 The transition of stability to limit cycle is shown in Fig. 4 to 

Fig. 6 for variation in the bifurcation parameter
4w . Thus, 

sub critical hopf bifurcation occurs with respect to the 

parameter
4w . 

 
Figure 4: For the data set (15) w4= 0.17(a) 3D behavior (b) time series 
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Figure 5: For the data set (15) w4= 0.13 (a) 3D behavior (b) time series 

 

 
Figure 6: For the data set (15) w4=0.1211 (a) 3D behavior (b) time series 

 

Consider the parameters 

1 2 3 4 5 6 1 20.855, 0.995, 0.15,  0.02, 0.99, 0.10, 0.011, 0.010w w w w w w           (16) 

 

 It may be noted that the planar equilibriums E2 (0.1315, 

0.8568. 0) and E3 (0.1118, 0, 0.9831) are locally stable for 

the perturbations in their respective planes. The eigenvalues 

orthogonal to their respective planes are found to be 

positive. Therefore the solution trajectories will stay away 

from the planes. Further, the positive equilibrium 

(0.104739, 0.5713, 0.3300) is stable. The solution 

trajectories are shown to converge to the equilibrium in Fig. 

7. 

 
Figure 7: For the data set (16) w2= 0.995 (a) 3D behavior (b) time series 

 

Slightly changing the parameter w2 = 0.795, will make the 

equilibrium E3 (0.0893, 0, 0.8053) and E
*
(0.0867521, 

0.2598, 0.5620) unstable and the global behavior of the 

solution is a limit cycle as shown in Fig 8. The boundary 

plane has a periodic solution but the persistence in the form 

of limit cycle is obtained in this case. 
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Figure 8: For the data set (16) w2=0.795 (a) 3D behavior (b) time series (c) Projection on coordinate planes 

 

Further change in the parameter w2 = 0.595 will destabilize 

the equilibrium E2 (0.0611, 0.86, 0) also. It may be noted 

that the level of species will be maintained at very low level. 

It will not go to extinction, as the eigenvalue orthogonal to 

the plane is small but positive. The solution is quasi periodic 

See fig. 9. 

 
Figure 9: For the data set (16) w2=0.595 (a) 3D behavior (b) time series (c) Projection on coordinate planes 

 

The variation with respect to w5 is discussed for the 

following data: 

1 2 3 4 6 1 21.1, 1.10, 1.1,  0.1, 0.2,  0.06, 0.04w w w w w        

 (17) 

For 
5w =2.1, the positive equilibrium exists and found to be 

unstable. The limit cycle is obtained in this case; see Fig 

10(a). For w5 = 2.7, 3.0 and 5.0 the behavior of solution are 

shown in Fig. 10(b), (c) and (d) respectively. The solution is 

quasi periodic in Fig.10(b) while limit cycles are obtained in 

all other cases.  

 
Figure 10: For the data set (17) (a) 3D behavior w5=2.1 (b) 3D behavior w5=2.7 (c) 3D behavior w5=3.0 (d) 3D behavior 

w5=5.0 
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6. Conclusions 
 

The two predators are assumed to have mutual cooperation 

among them. In this paper it is analyzed numerically as well 

as analytically the existence of hopf bifurcation and 

quasiperiodic behavior of nonlinear system under the 

Kolmogorov conditions. The existence of limit cycle with 

the help of Hopf bifurcation theorem is established. The 

persistence of the system is possible in the presence of 

mutual cooperation.  
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