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Abstract: A model consisting of two mutually interdependent predator species feeding on a single prey species is studied. Both the 

predator species has symbiotic interaction that is mutually beneficial. The local stability of equilibria points is analyzed. It is observed 

that the persistence is possible in the form of stable non zero equilibrium point or periodic limit cycle in the positive octant. It is shown 

that in the case of two competing predator species feeding over a single prey species, coexistence is not possible and only the fittest will 

survive [7], but in the case when two predator species have mutual cooperation feeding over a single prey species, then strong 

coexistence (local and global stability) is possible. In this paper the mathematical model comprising two mutually interdependent 

predator species and a single prey species shows rich dynamics numerically as well as analytically. The effect of mutually Cooperation 

on the two predators feeding on a common prey was investigated. 

 

Keywords: Mutual Cooperation among predator; prey predation; Food web; stability; limit cycle.  

 

1. Introduction 
 

Many investigators have discussed three species food chains 

and food webs [1]-[12]. Two prey and one predator systems 

are shown to have complex dynamical behavior [5]-[7]. A 

prey and two predator system has been investigated by 

considering various types of interactions among the two 

predators. The two predators themselves may have different 

types of interaction between them. In the case of two 

competing species, coexistence is not possible and only the 

fittest will survive [7]. It may be interesting to see the 

changes in the behavior of the dynamical system as the 

competition is added between two of the species in food 

webs. The effect of implicit competition on the two 

predators sharing a common prey was investigated in [7]. 

Apart from the implicit competition, the two predators may 

have explicit competition between themselves [14]. Due to 

explicit competition, the Competitive exclusion of the weak 

predator is possible. In specialist and generalist prey 

predator models, the two predators may be in a prey-

predator type of interaction [3], and due to this additional 

interaction a rich complex dynamics is observed. In a two 

species system, cooperation is found to have a destabilizing 

effect on the stability of equilibrium. Freedman et. al. [13] 

investigated a three species food web considering the 

mutualism between two predators sharing a prey. The effect 

of their cooperation is considered implicitly in the functional 

response of the prey species. Basic Lotka-Volterra type 

models in which mutualism (a type of symbiosis where the 

two populations benefit both) is taken into account, may 

give unbounded solutions [2]. It is excluded such behaviour 

using explicit mass balances and study the consequences of 

symbiosis for the long-term dynamic behaviour of a three 

species system, two predator and one prey species in the 

chemostat [2]. In this paper, we are investigating a three 

species food web with mutualist predators. The three species 

food web model has all the three types of interactions among 

the interacting species: prey predation, implicit competition 

and mutualism. 

  

Consider a three species food web comprised of two 

mutualist predators feeding on a single prey species. There is 

an implicit competition between them due to sharing of prey. 

The dynamical equations of this food web are given as 

 
(1) 

Here 1X , denotes the density of prey species while 2X  and 

3X  are the densities of two predators,  XFi
represent the 

Holling type-II functional response. The model 

parameters and   i i i ir,K,a ,b ,d e can assume only positive 

values. The parameter 1  and 2  represent the coefficient 

of cooperation between the predators. The model (1) has 12 

parameters, which are reduced to 8 by introducing the 

following non-dimensional variables and parameters are 
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Accordingly, the non-dimensional system takes the 

form  
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2. Boundedness 
 

Theorem 2.1: The nonlinear dynamical system (3) has 

bounded solution. 

 

Proof: Using usual comparison theorem, we get 1sup 1 y  

for sufficiently large 0t  . 
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Applying usual comparison theorem to the inequality (8) and 

(9), we get 11 C(t)η   for sufficiently large 0t . 

 

This shows the bounded ness of (t)η1  implying the bounded 

ness of the system (3) in the cone 

  3

1 2 3 1 2 3, , : 0, 0, 0R y y y y y y     . 

Since the underlying system (3) is bounded and satisfies the 

Lipcshitz condition, then the solution exists and is unique. 

Using the above inequality and by usual comparison 

theorem for 0t  we get 

  1 1( ) (0) tt e        

 For given 0  there exists 01 Tt  such 

that 1( ) 1
2

y t


   and 2 ( ) 1
2

y t


  , we have 

 

 

   1 1 1

1 1 1 1 1 1

T T Tt tη (t) e η (T )e e η (t) η (T )e e           . 
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and then for all
1Tt   we have 

 1

1 1 1( ) ( )
2 2
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12 TT  such that  
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 . 

 1η (t) ε   for all 
2Tt   . 

Or 1Sup η (t)  . 

 

Therefore the system is uniformly bounded and hence 

dissipative in positive region 

  3

1 2 3 1 2 3, , : 0, 0, 0R y y y y y y     . 

Since the solution is uniformly bounded and dissipative, it is 

concluded that the solution of the biological system (2) is 

invariant in the 

cone   3

1 2 3 1 2 3, , : 0, 0, 0R y y y y y y     . 

 

Theorem 2.2 :The subsystem of (3) are Kolmogorov 

systems under the conditions: 

3 4 1 5 6 2(1 ); (1 )w w w w w w     

 

Proof: The system (3) is divided into two subsystems. The 

first subsystem is obtained by assuming the absence of the 

second predator 3y . 
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The second subsystem is obtained when the first predator 

2y is absent. 
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It is observed that the two subsystems (4) and (5) are 

Kolmogorov systems [14] under the constraints: 

 1 4
3 4 1

3 4

0 1 or (1 )
w w

w w w
w w

   


, and (6) 

 2 6
5 6 2

5 6

0 1 or (1 ).
w w

w w w
w w

   


 (7)  

 

3. Stability Analysis 
 

The existence and linear stability of the equilibriums are 

analyzed for the system (3). The following conclusions are 

drawn: 

(i).The equilibriums  0000 ,,E  and  0,0,11 E  

always exist. However, there are no equilibriums on 2y  or 

3y  coordinate axes. The variational matrices about 0E and 

1E are obtained as 
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Thus, the equilibrium 0E  is a saddle point. Further, near 

0E  the prey population grows while both the predators 

population decline. The equilibrium 1E  is locally 

asymptotically stable provided the following are satisfied 

3 4 1 5 6 2(1 ) and (1 )w w w w w w     (10) 

 

It may be observed that the conditions (10) violate the 

Kolmogorov conditions (6) and (7) respectively. Therefore, 

equilibrium 1E  is a saddle point under the Kolmogorov 

conditions (6) and (7) at which the prey population remains 

in the neighborhood of 1, while both the predators’ 

populations increase. 

 

(ii).In the absence of second predator, the nonnegative 

equilibrium point  0212 ,y,yE   always exists under the 

condition (6) when the subsystem (4) is Kolmogorov. The 

expressions for 1y and 2y  are given as  

 43411 wwwwy  ;   1112 1 ywyy    

The equilibrium 2E  inside the plane 1y - 2y  has the same 

stability behavior as that of the equilibrium 

 20 1 2,E y y of the subsystem (4). Using the Routh 

Hurwitz’s criterion, the necessary and sufficient condition 

for linear stability of 
20E  is obtained as 

 1
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1
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

y
w                            (11) 

The system (3) has a stable limit cycle in the 1y - 2y plane 

when the condition (11) is violated. 

The eigenvalues of variational matrix about 
2E  are given 

as  
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Thus, the equilibrium 2E  is stable or unstable in the 3y  

direction, i.e. orthogonal direction on the 1y - 2y  plane, 

Paper ID: ART2016116 10.21275/ART2016116 31 



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 7, July 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

depending on whether 3  is negative or positive 

respectively. The system (3) will admit a limit cycle in 

31 yy   plane provided  

  
The equilibrium  0,, 212 yyE   will be locally stable if 

(12) and (13) are satisfied. 

(iii).The nonnegative equilibrium  313 ˆ,0,ˆ yyE   also exists 

under the condition (8) when the subsystem (5), in the 

absence of first predator, is Kolmogorov. The expressions 

for 1ŷ  and 3ŷ  are given as 

 65621ˆ wwwwy  ;  

  1213 ˆˆ1ˆ ywyy   (14)  

It is observed that the equilibrium 3E  has the same local 

stability behavior in the plane 1y - 3y  as that of the 

equilibrium  
31
ˆ,ˆ yy of the subsystem (5) in the absence of 

first predator. Thus the system (3) has stable equilibrium 

point 3E  under the following conditions whenever the 

perturbations are confined in the 1y - 3y  plane: 

1ˆ
2
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1
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y
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The system will have a stable limit cycle for the 

perturbations in the 1y - 3y  plane whenever the above 

condition (15) is violated. 

The eigenvalues of the variational matrix about 3E  are 

given as follows 
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The equilibrium 3E  is stable or unstable in the 2y  

direction, i.e. orthogonal direction on the 1y - 3y  plane, 

depending on whether 2̂  is negative or positive 

respectively. . The system (3) will admit a limit cycle in 

31 yy   plane provided  

 
The equilibrium  0,, 212 yyE   will be locally stable if 

(15) and (17) are satisfied. 

(iv).There is no planar equilibria in the 2y - 3y  plane since 

the predators cannot survive in the absence of the prey 

species. 

Theorem 3.1: The positive equilibrium 
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by solving  
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 (23)  

These will be positive for the conditions (18). Substituting 

(23) in (20) gives a cubic equation in
*

1y : 
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It is observed that (1) 0f   under the condition (6) and (7). 

Since (0)f c , the equation (24) will have at least one 

positive root 


1y  of 1y  in the interval (0, 1), provided 0c , 

which gives condition (19).  

 

For uniqueness, let us first consider the case when a  is 

positive. It can be proved that b cannot be negative in this 

case. There will be at most two positive roots of 1( )f y . The 

sign change for the function in the interval (0,1) suggests 

that the other positive root will be bigger than 1, which is 

not feasible.  

 

Similarly, when a  is negative there exists a unique root 

irrespective of the sign of b . Hence there exists a unique 

biologically feasible positive root of the equation in the 

interval (0,1) under the conditions (18), (19). 
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Theorem 3.2: The positive nonzero 
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The characteristic polynomial of the variational matrix (26) 

is given by 
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According to Routh’s criterion for stability, the equilibrium 

is locally stable if all roots of (27) have negative real parts. 

The equilibrium is locally stable under the following set of 

conditions: 
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Combining 30 (i) and 30 (ii) gives (25).  
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Using the new notation and 28(i-iv), we get (25) 
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Thus the nonzero positive equilibrium is locally stable under 

the conditions (25). The following theorem gives the 

conditions for the global stability of positive nonzero 

equilibrium point. 

 

Theorem 3.3 The positive equilibrium point 

)y,y,(y *

3

*
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1
is globally asymptotically stable provided 

the following are satisfied: 
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Therefore, the function V  is a Liapunov function  

Thus, the positive nonzero equilibrium point 

)y,y,(y *

3

*

2

*

1
is globally asymptotically stable under the 

conditions (30). 

 

4. Numerical Simulations 
 

Apart from the mathematical analysis for the existence of 

equilibria, the local and global stability are investigated, our 

objective is to study the dynamical behavior in the food web 

consisting of two mutualist predators sharing a single prey. 

The analysis establishes the conditions for local stability of 

equilibrium points and coexistence of species. The extensive 

numerical simulations are carried out for various values of 

parameters (biologically feasible) and for different sets of 

initial conditions to see the global stability of the nonzero 

positive equilibrium point of the system (3).  

 

The analysis does not show the behavior when the 

conditions are not satisfied. The numerical simulations 

investigate the dynamical behavior of the system in such 

cases.  

 

We fixed the biological feasible set of parameters: 

 

1 2 3 4 5 6 22.1, 2.12, 1.8, 0.11, 1.9, 0.12,  0.05w w w w w w       

 (31) 

The sign change from positive to negative for the expression 

0 1 2-a a a  is observed as the values of parameter 1  of 

cooperation are varied. The existence of Hopf bifurcation is 

observed in the neighborhood of 1 0.04   
. This is 

evident from the eigenvalues and their corresponding 

eigenvectors obtained at 1 0.04    as  

 -0.0025 + 0.2440i, {0.0398 - 0.2057i, 0.0398 + 0.2057i, 

0.0054}’ 

 -0.0025 - 0.2440i, {-0.6371 + 0.0012i, -0.6371 - 0.0012i, -

0.7037}’  

 -0.0449, {-0.7418, -0.7418, 0.7105}’  

 

Although, the local stability conditions for the non trivial 

equilibrium point are established in theorem 3.3, nothing is 

guaranteed for global behavior. The local stability of 

equilibrium point (0.10195,  0.6564,  1.3330 ) is 

predicted as the stability conditions (27) to (29) are true for 

data set (31) together with 0.02γ1  .
 Fig. 1(a) shows the 

phase space trajectories converging to the point 

(0.10195,  0.6564,  1.3330 ) for the data set (31) 

at 0.02γ1  , starting with two different initial conditions 

(0.20199,  0.30033,  0.40048) and 

(0.20095,  0.60073,  0.70184) . Same result is obtained 

for other initial conditions also. In other words, the 

nontrivial equilibrium point 

(0.10195,  0.6564,  1.3330)  is stable giving the 

persistence of the system for the given set of parameters. Fig 

1(b) shows the time series for the initial 

conditions (0.20095,  0.60073. 0.70184) .  

 

 

Figure 1: For the data set (31);  .γ 0201  (a) 3D behavior (b) time series 

Fig. 2 shows the phase space trajectories and their time series for the data set (31) at 1γ 0.04 . The solution is quasi periodic. 
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Figure 2: For the data set (39); 04.01 γ  (a) 3D behavior (b) time series 

 

However for 0.055γ1  , there exists a limit cycle for the same set of data, as is evident from the figure: 

 

 

Figure 3: For the data set (39); 055.01 γ  (a) 3D behavior (b) time series 

 

5. Conclusions 
 

A food web model consisting of two predators sharing a 

common prey is analyzed. The two predators are assumed to 

have mutual cooperation among them. The strong 

coexistence (local and global stability) and limit cycle of the 

system is established numerically as well as analytically.  
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