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Abstract: In this paper, we study the optimal dividend problem in the continuous-time compound binomial model under the reinsurance
control. For the first time, the continuous-time compound binomial model is proposed by the GX Wang, Y Lin, B Zhang, and the related
theory of the continuous-time compound binomial model in the bankruptcy probability has been relatively mature. On this basis, First we
introduce the concept of dividend and reinsurance, then discuss the optimal dividend problem of the continuous-time compound binomial
model. This paper is divided into five parts: the first part is preface; the second part modifies the continuous-time compound binomial
model and introduce the definition of the restricted dividend. The third part discusses some properties of the value function. The forth part
derives the HJIB equation and the corresponding optimal dividend strategy, and proves that the solution which satisfy HJIB is the value

function. The fifth part is summary content.
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1. Introduction

Collective risk theory as a part of insurance mathematics,
usually through the establishment of an insurance company's
random risk model for mathematical description of insurance
business, and then use relevant mathematical theory to deal
with risk issues. In general, in the risk model, we usually use

a stochastic point process {N } as the numbers of claims up to
time t ,a column of nonnegative random variables
{u } expressed the size of the ith claim. Given an initial
surplus 4 ,the free surplus x(t) of the insurance company at
time t can be written as

X(t) = X(0) + Q(t) - S(t)

Where Q(t) expressed the premium income up to time t,

s(t) expressed the cumulative claim sizes up to time t
,usually

N(
S (t) = Zl)l '
i=1
The surplus progress in the continuous-time compound
binomial modal can be written as

N‘

X(t)=u+pt->U,

i
And it satisfies the following conditions:

1) The free surplus X(0) =u,u e R";

2) The premium rate p is constant, and Q(t) = pt;

3) Theclaim sizes {u, } are identically distributed. Assume

that they are the same distribution with U , and the
distribution function can be written as F ,the expection can be

written as p, .

4) The counting process N is continuous time binomial

process with parameter q : when the state reaches
kps,k =1,2,--- , the claim is paid by the insurance company

t
with the probability ¢ . n, =L—+(i” expressed the
) co

most amount of claims paid up to time t, so we can get
P(N, =k)=Ciq"(1-q)" " k=12,--,n,.

5)The counting process N, and the stochastic variables {u. }

are mutually independent;

6) It satisfies the conditions: qu, < ps;

7) X(t) is an adapted right continuous with left limits

stochastic process.
Correction of the continuous-time compound binomial model

In order to meet the requirements of this article, we modified
the traditional continuous-time compound binomial model:
when the state reaches ks, k =1,2,-- , the claimis paid by the

n =|—
)
expressed the most amount of claims paid up to time t, so

we can get

P(N, =k)=C'q"(1-q)" " k=12,n,.

insurance company with the probability q .

We added time wvariable t , so the surplus process
{(x(t),t)} satisfies Markov property K the associated

controlled surplus process is defined as {(x (t),t)}.

)7((t):x+ pt-s)- D U, t>s

i=N +1

2.Optimal Dividend with

Reinsurance

Payments

Volume 5 Issue 6, June 2016

WwWw.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: NOV164653

http://dx.doi.org/10.21275/v5i6.NOV164653

1876



International Journal of Science and Research (1JSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

We assume that the insurance company has the possibility of
reinsurance. This means that the insurance company need a
portion of the premium income paid to reinsurance company,
When the insurance company have claim occurs, reinsurance
company should undertake some of the claims.

Questions about reinsurance:
1)A Borel measurable function R : [0,%) —>[0,0) that

satisties 0 < R(a) < «, Where R(«) is the part of the claim

paid by the insurance company when the size of the claim is
« the reinsurance company covers « — R(a).

2)The premium rate g, paid to the reinsurance company.So
the premium rate left to the insurance company is
P =P—0;.

3)A control strategy is a process 7 = (R,, L), where R isa

reinsurance strategy , L is the cumulative amount of

dividends paid out fromsto t.
4)The control strategy is admissible, if it satisties the
following conditions:

e The process R, is predictable;that is, the function
(w,0) > R (@,a) is ft, x Borel measurable for every
t>s.

e The process L s predictable , nondecreasing ,

cégléd.

e Forany t >s, theprocess L verifies

L < x+J‘: P, dv - z R U).

i=N +1
We denote by IT the set of all the admissible control
strategies. Given an admissible control strategy 7 , the

controlled risk process X" (t) is given by
Nx
X" =x+[pav- > R U)-L.
i=N_+1
Where 7, is the time of occurrence of the i th claim.
We define the corresponding ruin time ” of the company as
" =inf{t>0:X"(t) <0}

and the return function V_(x,t) as the cumulative expected

discounted dividends from S to t with
X >0 .We can write V_(x,t) as

V” (X, S) = E(x,s) (J’sr" e’C(l—s)dLI )’

Where ¢ > 0 is the discount factor.
The optimal return function is defined as

V(x,s)=sup{V_(x,s),7 €I}, x>0
To simplify notation we define V(x,s) =0,x <0

initial reserve

3.Basic Properties of the Value Functions

Proposition 2.1 The optimal value function v (x,s) is well
defined and satisfies

sV(x,s)s x+£.

X+

c+p
Proof: For any admissible strategy 7= = (R,L ) eIl,t>s,
we have

L, < X+J: Pg,dv < X+Lt pdv < (X + p(t—s))l )
o(t) = (x+ p(t—s)) sy

Than, since e is a positive and decreasing function,
V_(x,8) < E(x,s)(f e dgp(t)) = x+ pJ? et = x+§
By definition

V(x,8)=sup{V, (x,s), 7 eIl}< x+§.

So V (x,s) is well defined and satisfies the second inequality

of the proposition.
Let us prove now the first inequality. Given the initial

condition (x,s) , consider the admissible strategy
7, =(Ry, Ly ) e TT, where R, =R, .that is, does not take
reinsurance strategy, L, which pays X as a lump sum at

time S and than pays the incoming premium as dividends
until the first claim, More precisely, L, = X+ p(t —s). for

t <z, Thenwe have

V (x,s)=x+E (T’e’°("s)dL)=x+ )
zzo( ) (x,s) J’S t C+ﬁ

So by definition we get the result.

Proposition 2.2
satisfies
y—x<V(y,s)-V(x,s)<V(x, s)(eC“O*S)(l— q)"™ _1)

Fory > x> 0.

The optimal value function Vv (x,s)

Proof. (1). Given >0, take an admissible stratefy

z=(R,L)ell" such that

(x3)”
V_(x,s)2V(x,s)—e for y>x>0, we define a new

strategy

7= (R.,L,) eI, : pay immediately (y - x) as dividends

at time S and then follow the strategy = , The 7 is
admissible and we have

V(y,s)2V_(y,8)=V, (x,8)+(y—x)2V(x8)-&+(y-x)
So we obtain the first inequality

V(y,s)-V(x5s)>y-x

Let us prove the second inequality. Given initial stat
(v.s).(x,s) where y>x>0 and £>0 , consider an
admissible strat 7 eI, such that V_(y,t) >V (y,t)-e.
Take now the strategy re H(RX-’LS) which, starting with state

(x,s), pay no dividends and does not take reinsurance
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strategy if X g (x, s)<y and follow strategy 7 after current
state X" (x,s) reaches y .The strategy = is admissible. In
the even of no claims, the surplus X" (x,s) reaches y at

X
; then, since the probability of reaching

time t, P A

p
y before the arrival of the first claim is
P(N,=0)=C’q’(1-q)" =(1-q)".
we get
V(xs)e“ ™ (1-q)" 2V (y.t )=V (y.s).
So

V(y.8) -V (x5) <V (x5)(e“ (1-q)" -1).

t —s
Where n_ = .
o

Hence we obtain the result.

4.HJB Equations and Verification

Lemma 3.1 For any (x,s) and any stopping time ¢, we
can write

V(x,s) = sup E.., U o S)dL ey (X CAT )}

zell,

Proof. We proof this lemma for the case ¢ equal to a fixed
time T >s. We call

V(xsT)= sup E, )D. e

< B

Let us prove first that V(x,s)sV(x,s,T) Take any

oL e Ny (x/ Tac )]

admissible strategy 7 e H we can write

s) !
V(xs)=E,, [ j e +e TN (X7 T AT )J
<E., (f e dL, ) +E,., (e’““’v (X, (] )

=V (x,5,T)

By definition we get the result.
Proving by the same method, we can get

V(x,5)>V(xsT)

So we get the result.

Theorem 3.2: The optimal value function V (x,t) satisfies

the above properties and respectively about x,t left and right
differentiable left and right derivative satisfy HIB equations

v (xt) (1 (x0) v (xt)

ot X

sup{l(x,t)+ —H\l(x,t)}o,t¢k5

AV (x,k8) +p[ 'V (x~y.k&)F, (y) - pV (x,k5) = 0,t = k&

Where AV (x,ks) =V (x,k8) -V (x,ks ).

Proof.1) Now we consider t # ko . By lemma 3.2.1 we have
, for any stopping time ¢, we get

V() E I e (X!,

here exists h such that t <h <z and [t,

shasl+e V(X ont)T

h] e (k8,(k +1)5),

S0 we get
That is
h _o(s—t) L L
e I(X_,s)ds VX ,h)=V (X ,t
pog (L0 (ki) v(xi)
' (h-t) (h-t)
V(X" t)-V(xt e’ 1
+e—<9(n-t)( ( N ) ( ))+( )V(X,t)
(h-t) (h-t)
Taking h — t, we have
oV (x,t) V(x t)
Ozl(x,t)+T+( —1(x,1))————= -V (x,t)
Since there exists a admissible strategy |” satisfies
. o'V (xt o'V (x,t
0=1 (x,t)+%) (c—1(x t))L) oV (x,t)
OX

So the value function V (x,t) satisfies

sup{l(x,t)+% (c=1(x,1)) V(Xt)—g\/(x,t)}z

LeA

In the same way, we can get

sup{l(xt)+ VD |(xt))‘”(“) (x,t)}=0.

So we get the result.
2) Next we discuss t =k, k =1,2,---
By the definition of value function,we can get

V(xks ) =p[ V(x-yks)F, (y)+@-p)V (x,k).
Since x <0 ,we have V (x,t) =0,s0
(x,ké.) p.[ (x—y, k)R, (y)+@-p)V (x,kS).
V(%8 )=V (k&) +p[ V (x=y,ké) -V (xk5)dR, (y) =0,
By 1),2) we get the result.

Theorem 3.3 Assume that @ (X,t) is increasing about X ,
piecewise continuous about t ,has a jump at t =ks, and
satisfies HJB equation. So ¢(x,t)=V(x,t) and the

corresponding optimal strategy is 1"
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Proof. Since the risk process (X" (s),s) satisfies X =x, so
we have

e“’(“‘”(p(x; , h) - (p(XIL ,t) = e‘“““%p(x; , h) - (p(x,t)
Taking expectation and comparing with HJB equation, we
obtain

0=E,, [e""Vo(X;,h)-o(xt)+ Lhe'g(s‘t)l (XL,s)ds.

Then
h
o(xt)> EML e II(X ! s +e " Vo(X,,h)
Taking h — 7 and combining with the boundary conditions
(p(xf,r) =0, we get

o(xt)> E.[re’g(s")l (XSL,s)ds =V"(x1).

When the dividend strategy L is optimal strategy L, we get
o(xt)= EJTe'g(S")I* (Xf,s)ds.
So
o(x,t) =supV"(x,t)=V(xt)
LeA '

Let us analysis of the optimal strategy L :
By the HJB equation, we get

sup{(l av(x’t))l(x,m vixy) &Y (x,t)} “o.

oX ot oX

Lea

Since |(XSL,S) satisfies OSl(X:,s)SlO when

oV (x,t) o .
1-———><0, the equation is decreasing about I(x,t)
oX

. oV (x,t)
, so we take I'(x,t)=0: when 1-———=>0, the
OX

equation is increasing about 1(x,t), sowe take I (x,t) =1,
» thatis
oV
v x >1,

OX

v (xt)

e[ol ] ———==1,

oX
oV (x,t
At
OX

01

1" (x,t) =
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