
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 6, June 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Conversion of Nonlinear Quadcopter Mathematical 

Model to Linear Simplified Model 
 

M Rehan Khan
1
, Sidra Malik

2
 

 

1Institue of Avionics & Aeronautics (IAA), Air University, Islamabad  

 
2Preston University, Islamabad 

 

 

Abstract: Quadcopter control is a fundamentally difficult and interesting problem. With six degrees of freedom (three translational and 

three rotational) and only four independent inputs (rotor speeds), quadcopters are severely under actuated. In order to achieve six 

degrees of freedom, rotational and translational motion are coupled. The resulting dynamics are highly nonlinear, especially after 

accounting for the complicated aerodynamic effects. Finally, unlike ground vehicles, helicopters have very little friction to prevent their 

motion, so they must provide their own damping in order to stop moving and remain stable. Together, these factors create a very 

interesting control problem. We will present a very simplified model of quadcopter and removes nonlinearity from system modeling by 

using tayler expansions and trigonometric identies. 
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1. Introduction 
A quad copter, also referred to as drone, is a type of aerial 

vehicle that uses four motors to hover and fly. It can be 

controlled remotely by an operator, or fly autonomously with 

a flight plan. Quad copters have many different applications; 

search and rescue missions, aerial photography and 

recreational flying. They offer one significant advantage over 

conventional helicopters since they lack all the complex and 

expensive mechanical linkage used in helicopters, which 

reduces the price. Quad copters lack a natural state of 

equilibrium, and therefore require a control system to 

stabilize it. 

 

In order to carry out mathematical analyses and propose 

control laws, a mathematical model of the vehicle was 

required. Since the vehicle moves in 6DoF (six-degrees of 

freedom), a suitable coordinate system handling these 

freedoms was needed. 

 

Quad copter was conceived for the purpose of non-

destructive evaluation of hard to reach structures. By 

carrying equipment on a highly mobile platform to areas that 

a human being cannot easily reach without the aid of 

additional equipment such as ladders, ropes and harnesses, 

and lifts, Quad copter will be able to greatly reduce the 

amount of time it takes to inspect a bridge or building. By 

diminishing time required and streamlining the inspection 

process, Quad copter could allow inspectors not only to 

conduct more thorough inspections, but also to conduct more 

inspections in a shorter amount of time, which could in turn 

help to prevent disasters such as the Interstate 35 bridge 

collapse. The end result would be that the safety and peace of 

mind that people expect when traveling would be nearly 

complete 

 

2. System Model 
 

In this section, the quad rotor system’s multiple inputs and 

outputs will be identified and the equations of motion 

governing the dynamics of the system will be derived. The 

first step is to identify the plant and 

the inputs and outputs of the plant itself and then to establish 

the framework to derive the equations of motion using 

Newton’s Laws. 

 

A. Plant Identification 

 
Figure 1: Plant Inputs and Outputs 

 

Figure 1 shows the inputs and outputs of the plant. The 

inputs are angular velocities in radians per second and the 

output is a 12x1 vector which is discussed below. The 

angular velocity is converted through an airfoil blade. The 

Dynamics of the airfoil blade is included in the dynamics of 

the plant. In order to control the angular velocity of the 

blades, we must control the voltage applied to the motors in 

the quad rotor. Below shows how the motors can be 

controlled through pulse-width modulation (PWM) the axel 

of the motor is geared with a five to one reduction gear. The 

result of varying duty cycles of the motor drive stage results 

in varying angular velocities. 

 
Figure 2: Motor and gear control 

 

B. Reference Frame 

The quad rotor system operates in two coordinate frames: 

inertial and body. The inertial frame (also referred to as the 

earth frame) is the coordinate axis where Newton’s Laws 

apply. To complicate matters, the countering forces to 

achieve hover are applied to the body frame which is fixed to 
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the quad rotor itself and is allowed to rotate and translate. 

This dual-frame coordinate system is shown below along 

with a free body diagram of the quad rotor system. 

 
Figure 3: Reference Frame 

 

Now that the coordinate reference frame is identified we can 

begin to represent the system mathematically. The 

Mechanism through which the quad rotor can be controlled 

is thrust provided by airfoil blades attached to four 

independently controllable motors attached at a fixed 

distance (l) from the center of the quad rotor (P). By varying 

the relative magnitudes of the thrusts, we can control the 

attitude (yaw, pitch, roll) and position (X,Y,Z) of the system 

in inertial coordinates. As mentioned previously, the thrust 

forces are applied in the body frame; therefore, 

transformations must be made. 

 

3. Mathematical Model 
 

Now we define the states of the system that include a 

mixture of body and inertial components comprised of 

translational and rotational positions and velocities.  We 

define the following   

∑ F = m𝑥                                                 

∑ M = I𝜃  
Above equations are for inertial frame 

U = Tangential Velocity in body frame  𝑖  
V = Tangential Velocity in body frame  𝑗  

W = Tangential Velocity in body frame 𝑘  

P = Rotational Velocity in body frame 𝑖  
Q = Rotational Velocity in body frame 𝑗  

R = Rotational Velocity in body frame 𝑘  

𝑣 ᵇ = 
𝑢
𝑣
𝑤

  

𝑤 ᵇ=  
𝑝
𝑞
𝑟
  

Φ =   

𝜑
𝜃
𝜓

  

   𝑟  =  

𝑝ᵢ

𝑝𝑗

𝑝𝑘

  

Combining the four vectors defined above yields the state 

vector which is used in the derivation of the quad rotor 

dynamics shown in the appendix 

C. State Vector 

In the inertial frame, the acceleration of the quadcopter is 

due to thrust, gravity, and linear friction. We can obtain the 

thrust vector in the inertial frame by using our rotation 

matrix X to map the thrust vector from the body frame to the 

inertial frame. Thus, the linear motion can be summarized as 

X   =  

𝑣 ᵇ
𝑤 ᵇ
𝛷
𝑟 

  

𝑋 =  
𝑑

𝑑𝑡
𝑋 

By using newton’s law 

∑ F = m  
𝑑

𝑑𝑡
 
𝑖
𝑣 ᵇ 

 𝑑
𝑑𝑡

 
𝑖
𝑣 ᵇ =  

𝑑

𝑑𝑡
 
𝑏
𝑣 𝑏 + (𝑤 ᵇ + 𝑣 ᵇ ) 

So 

∑ 𝐹𝑖  = m   
𝑑

𝑑𝑡
 
𝑖
𝑣 ᵇ =  

𝑑

𝑑𝑡
 
𝑏
𝑣 𝑏 + (𝑤 ᵇ + 𝑣 ᵇ ) 

 𝑑
𝑑𝑡

 
𝑏
𝑣 ᵇ = 

1

𝑚
∑ 𝐹𝑏  - (𝑤 ᵇ + 𝑣 ᵇ) 

As 

∑ F = 𝐹𝐺+ 𝐹𝑇 

𝐹𝐺
𝑖 =   

0
0

𝑚𝑔
  

𝐹𝑔
𝑏  = mg 

−𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑
𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑

  

𝐹𝑇
𝑖 =   𝑇𝑗

4

𝑗 =1

 

𝑇𝑗 = 𝑏 𝛺𝑗
2 

𝛺𝑗 = 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑏𝑙𝑎𝑑𝑒 

𝐹𝑇
𝑏 =   

0
0

−𝑇
  

𝑑

𝑑𝑡
 
𝑢
𝑣
𝑤

 

𝑏

=  
1

𝑚

 

 
 

𝑚𝑔  
−𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑
𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑

 

𝑏

           
𝐺𝑟𝑎𝑣𝑖𝑡𝑦

 +   
0
0

−𝑇
 

𝑏

   
𝑇𝑕𝑟𝑢𝑠𝑡  

 
 

 _  
𝑝
𝑞
𝑟
 

𝑏

𝑋  
𝑢
𝑣
𝑤

  

So 

𝑑

𝑑𝑡
 
𝑢
𝑣
𝑤

 =  
1

𝑚
 𝑚𝑔  

−𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑
𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑

  +   
0
0

−𝑇
 

𝑏

  _  
𝑝
𝑞
𝑟
 𝑋  

𝑢
𝑣
𝑤

  

= 𝑔  
−𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑
𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑

  + 
1

𝑚
 

0
0

−𝑇
  -  

𝑞𝑤 − 𝑟𝑣
𝑟𝑢 − 𝑝𝑤
𝑝𝑣 − 𝑞𝑢

  

𝑑

𝑑𝑡
 
𝑢
𝑣
𝑤

  =  

−𝑔𝑠𝑖𝑛𝜃 − 𝑞𝑤 + 𝑟𝑣
𝑔𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑 − 𝑟𝑢 + 𝑝𝑤

𝑔𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑 +
1

𝑚𝑇
− 𝑝𝑣 + 𝑞𝑢

  

 

Then resulted equations are 

𝑢 =𝑟𝑣 − 𝑞𝑤 − 𝑔𝑠𝑖𝑛𝜃                               (1) 

𝑣 =𝑝𝑤 − 𝑟𝑢 +  𝑔𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑                    (2) 

𝑤 =𝑞𝑢 − 𝑝𝑣 + 𝑔𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑 +
𝑏

𝑚
 𝑤1

2 + 𝑤2
2 + 𝑤3

2 +

𝑤42                             (3) 

The final nonlinear model of the quad copter is compactly 

presented here. 
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4. Linearized Model  
 

In order to apply linear control theory, a linear system is 

needed. Almost all systems are in some sense nonlinear. 

When approximating a nonlinear system by a linear one, it is 

important to determine if the approximation is good and can 

be motivated. By assuming that the quadcopter is kept within 

some equilibrium i.e., hovering, a linearization of the 

nonlinear system can be motivated. Furthermore, linear 

systems are often easier to control and to analyze and many 

popular control methods are only applicable on linear 

systems. Therefore, a linearization of the nonlinear system in 

this section is made. The linearized system can be derived by 

doing a first order T.E (Taylor expansion) about some 

equilibrium. For an arbitrary nonlinear system 

u= 𝑢₀+∆𝑢  ,     𝑢₀ = 0 

v= 𝑣₀+∆𝑣   ,     𝑣₀ = 0 

w= 𝑤₀+∆𝑤   ,   𝑤₀ = 0 

p= 𝑝₀+∆𝑝   ,     𝑝₀ = 0 

q= 𝑞₀+∆𝑞   ,     𝑞₀ = 0 

r= 𝑟₀+∆𝑟   ,        𝑟₀ = 0 

𝜃= 𝜃₀+∆𝜃   ,     𝜃₀ = 0 

𝜑= 𝜑₀+∆𝜑   ,     𝜑₀ = 0 

𝜓 = 𝜓₀+∆𝜓   ,     𝜓₀ = 0 

Trigonometric Identity 

Cos (α + β) = Cosαcosβ – Sinαsinβ 

Sin (α + β) = Sinαcosβ + Cosαsinβ 

From initial conditions and trigonometric identities 

Sin ( 𝑥₀+∆𝑥) = Sin ∆𝑥 = ∆𝑥 

Cos ( 𝑥₀+∆𝑥) = Cos∆𝑥 = 1 

So 

𝑢 = (𝑟₀+∆𝑟) (𝑣₀+∆𝑣) − (𝑞₀ + ∆𝑞)(𝑤₀ + ∆𝑤) − 𝑔𝑠𝑖𝑛(𝜃₀ +

 ∆𝜃) 

=(𝑟₀𝑣₀ + 𝑟₀∆𝑣 +  ∆𝑟𝑣₀ + ∆𝑣∆𝑟) − (𝑞₀𝑤₀ + 𝑞₀∆𝑤 +

 ∆𝑞𝑤₀ + ∆𝑞∆𝑤) 

 –g (sin𝜃₀cos∆𝜃+Sin∆𝜃cos𝜃₀) 

= ∆𝑟∆𝑣   
𝑣𝑒𝑟𝑦  𝑠𝑚𝑎𝑙𝑙

𝑠𝑜 𝑤𝑒  
𝑛𝑒𝑔𝑙𝑒𝑐𝑡  𝑖𝑡

− ∆𝑞∆𝑤   
𝑣𝑒𝑟𝑦  𝑠𝑚𝑎𝑙𝑙

𝑠𝑜 𝑤𝑒
𝑛𝑒𝑔𝑙𝑒𝑐𝑡  𝑖𝑡

-gsin∆𝜃 

So  

𝑢 = - gsin∆𝜃 

𝑢 = -g∆𝜃                          (4) 

 

𝑣 = ∆𝑝∆𝑤   
𝑣𝑒𝑟𝑦  𝑠𝑚𝑎𝑙𝑙

𝑠𝑜 𝑤𝑒  
𝑛𝑒𝑔𝑙𝑒𝑐𝑡  𝑖𝑡

− ∆𝑟∆𝑢   
𝑣𝑒𝑟𝑦  𝑠𝑚𝑎𝑙𝑙

𝑠𝑜 𝑤𝑒
𝑛𝑒𝑔𝑙𝑒𝑐𝑡  𝑖𝑡

+ gcos∆𝜃𝑠𝑖𝑛∆𝜑 

So 

𝑣  = g∆𝜑                                      (5) 

𝑤 =𝑔𝑐𝑜𝑠∆𝜃𝑐𝑜𝑠∆𝜑 +
𝑏

𝑚
 𝑤1

2 + 𝑤2
2 + 𝑤3

2 + 𝑤4
2  

𝑤 = 2𝑤∆𝑤                            (6) 

 

5. Conclusion 
 

The modeling of the quadcopter is crucial and has to be 

handled with care. The use of Euler angles and quaternions is 

quite common when expressing rotations in 6DoF.. The 

modeled body forces and torques are determined to be 

among the most significant ones. Other prominent effects 

which are of interest, are aerodynamics. Extensive modeling 

regarding aerodynamics can be made. In this paper only 

quadcopter dynamics is modeled. In order to analyze and 

model other aerodynamic effects, experiments measuring 

properties of the vehicle have to be setup and performed. 

These experiments demand much care and preparation and 

would probably need an entire thesis project worth of time. 

Although, by having more knowledge of the vehicle’s 

aerodynamics, better control algorithms could be derived. At 

the end of the modeling, the derived nonlinear model is 

linearized about hovering. When applying a first order T.E, 

all nonlinearities disappear and are not compensated for in a 

linear control. A solution to this would be to try to control 

the full nonlinear model. But since it is quite complex, it 

would not be as straight forward as the application of a linear 

controller. To simplify control, the nonlinear model can be 

approximated by a simpler nonlinear model. These nonlinear 

functions could be approximated by the small angle 

assumption which would simplify control, note that the 

resulting expression would still be nonlinear. Furthermore, it 

is also important to determine which nonlinearities should be 

compensated for. It might be desirable to leave some 

nonlinearities uncompensated.  
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