
International Journal of Science and Research (IJSR)
ISSN (Online):

Index Copernicus Value (2016): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Rider: A Multi Layer Framework

For Road Condition Estimation

Sona P
1
, Divya M

2

1, 2AWH Engineering College, Calicut University, Department of Computer science & Engineering, Kuttikkatoor, Kozhikode, India

Abstract: Rider: A multilayer framework for road condition estimation, is an agent based multi-layer framework to estimate road

condition details and to support various applications for vehicular social networks (VSNs)formed by in-vehicle or mobile devices used

by drivers, passengers, and pedestrians. The programming model of the framework incorporates features that support collaborations

between mobile agents to provide communication services on behalf of owner applications, and service (or resident) agents to provide

application services on mobile devices. Built on top of the mobile devices operating systems, the framework architecture consists of

framework service layer, software agent layer and owner application layer. By using this application developed on the framework can

autonomously and intelligently self-adapt to rapidly changing network connectivity and dynamic contexts of VSN users.

Keywords: VANET, VSN, software agent, mobile agent, agent migration

1. Introduction

Rider, a multi-layer framework for road condition estimation

that is able to utilize road condition information and provide

a high level software platform for VSN applications. Rider

hides the complexity of dealing with changing network

connectivity and varying user services requirements in

VSNs, by providing a programming model with extensibility

support. Furthermore, Rider supports dynamic agent

collaborations and service matching during runtime of

mobile devices. Thus, more autonomous, intelligent and

adaptive applications can be developed for the dynamically

changing environments of VSNs. It can perform well under

dynamically changing connectivity, and achieve good time

efficiency with low computation and communication

overhead.

2. Related works

Literature survey deals with the related techniques which

contribute to the development of Rider system architecture.

Here present ten most important papers for developing the

problem definition.

Information interaction is a crucial part of modern

transportation activities. The idea of Vehicle-to-Passenger

communication (V2P)[1], which allows direct, instant, and

exible communication between moving vehicles and

roadside passengers. With pocket wireless devices,

passengers can easily join VANETs as roadside nodes, and

express their

travel demands, e.g., taking a free ride or calling a taxi via

radio queries over VANETs. Once a matched vehicle is

found through the disseminated queries, the driver can

decide

whether to provide corresponding services, especially the

carrying of passengers and goods.

 Here investigate the main challenges in vehicle calling;

establish a trip history model to predict vehicle movement,

and develop typical query dissemination schemes to match

the target vehicle in vehicular networks. With V2P over

VANETs, vehicle transportation is capable of open and

efficient P2P information interaction, and thus benefits from

relevant efficiency improvement. Based on a realistic travel

survey and simulation, and prove that vehicle calling is

effective and efficient in casual carpooling and taxi calling.

In V2P, both vehicles and passengers need necessary

hardware equipment to support the communication. When it

comes to vehicles, GPS and electric maps are widely

deployed, as well as wireless devices.

Since there’s no standard human-machine interface, assume

that some signal lights, buzzers, or graphical or phonetic

interfaces can inform the driver of vehicle calling, allowing

the driver to answer yes or no by pushing buttons on the

device. To individuals, previous wireless mobile devices,

such as cell phones, i-Pods, PDAs, and laptops, are not

designed for vehicular communication. So, here assume that

passengers have pocket wireless devices as vehicle callers in

order to perform this task, which can be regarded as a cheap

device with an electric map and simple input/output.

In the field of ubiquitous computing, a class of applications

called context-aware services attracted great interest

especially since the emergence of wireless technologies and

mobile devices. Context aware application [2] can

dynamically capture a range of information from its

environment and this information represents a context, the

application adapts its execution according to this context. An

important challenge in ubiquitous computing is dealing with

context. Ontologies presents the most promising instrument

for context modelling and managing due to their high and

formal expressiveness and the possibilities for applying

ontology reasoning techniques.

To build context aware services, here need to define

mechanisms for the adaptation of their behaviour according

to the current context situation. Such mechanisms will

Favourite loosely coupling between the core services and its

adaptations seen as transversal preoccupations. The

adaptations are eventually conditioned by the existence of

relevant situations to the current context. The Request

Paper ID: NOV164575 http://dx.doi.org/10.21275/v5i6.NOV164575 1709

International Journal of Science and Research (IJSR)
ISSN (Online):

Index Copernicus Value (2016): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Notifier notifies, in a synchronous or asynchronous mode,

the Service Identifier with the active situation and Id of

Service in order to adapt this service to the given situation.

The interpretation mechanism operated by Reconfigure

Service, recover situations and weave the necessary

adaptation aspects, following a set of adaptation rules, and

user context in services to produce a semantic contextual

service.

In the last few years telecommunications and internet have

spread all over the world, in a pervasive way, connecting

millions of devices, people, sensors and services without a

planned strategy. In such scenario the discovery of services

represent still an open challenging research field. To address

that problem [3] proposes context aware semantic service

discovery architecture designed to perform distributed

Service Discovery in heterogeneous networks. This novel

architecture is technology independent and compatible with

most of the existent service discovery protocols; it inherits

and extends the results of the last research groups in the field

of context-aware service discovery based on the use of

semantic languages.

There exist distributed scenarios [4] in which the need for

dynamism, mobility, and adaptivity, has to be addressed with

highly dynamical approaches. These scenarios present

different challenges and difficulties: efficient access to

heterogeneous and distributed data sources, dynamic load

balancing, unstable connections and communication failures,

etc. So, different approaches and middleware have appeared

to tackle these challenges and help the developer of

distributed applications. In particular, mobile agent

technology can provide significant advantages for the

development of applications in these contexts. In this paper,

here emphasize the benefits that mobile. Agents can provide

to distributed systems by illustrating them with real

distributed Systems.

LOQOMOTION (Location dependent Queries On Moving

ObjecTs In mObile Networks) is a [5] distributed location-

dependent query processing system whose architecture is

based on mobile agents. The system deploys a network of

agents to perform the query processing over a distributed set

of computers, called proxies, which manage information

about objects moving within different geographic areas: each

proxy is in charge of one proxy area and so the data

management tasks are distributed. Moving objects (e.g.,

cars) are represented as circles in the figure, and the dashed

ellipses represent the different proxy areas. Each proxy has a

Data Management System or DMS (e.g., a Database

Management System) that stores information about the

moving objects within its proxy area and can answer queries

about them.

In this scenario, assume for illustration purposes that the user

submits a query that must retrieve the white objects located

within a certain distance of each black object, that is, a query

that retrieves the white objects within the circular relevant

areas shown around the black objects. As the objects are

continuously moving, the answer to the query must be

updated continuously, with a certain refreshment frequency.

Currently there are no Internet access authentication

protocols available that are lightweight, can be carried over

arbitrary access networks, and are exible enough to be

reused in all the likely future ubiquitous mobility access

contexts.[6] article proposes the PANA/UMTS

authentication protocol for heterogeneous network access as

a step towards filling this gap. A security analysis of the

PANA/UMTS protocol is also provided. This article aims

primarily at contributing to the design of authentication

protocols suitable for use in future heterogeneous Internet

access environments supporting ubiquitous mobility

Agilla [7] is a mobile agent middleware that facilitates the

rapid deployment of adaptive applications in wireless sensor

networks (WSNs). Agilla allows users to create and inject

special programs called mobile agents that coordinate

through local tuple spaces, and migrate across the WSN

performing application-specific tasks. This utility of code

and state has the potential to transform a WSN into a shared,

general-purpose computing platform capable of running

several autonomous applications at a time, allowing us to

harness its full potential.

 Mobile agents are special processes that can autonomously

migrate across nodes. Agilla provides two forms of

migration, strong and weak, to support diverse application

needs for self- adaptation. Strong migration transfers both

the code and state, allowing the agent to resume execution at

the destination. It is useful for performing computations that

span multiple nodes. Weak migration only migrates the code.

It exhibits less overhead since the state does not need to be

transferred, but resets the agent. When an agent migrates, it

can either clone or move. If an agent is cloned, a copy of it

arrives and starts executing at the destination while the

original one resumes on the original node. If an agent is

moved, it will no longer exist on the original node after it

arrives at the destination. An agent’s life cycle begins when

it is either injected into the network from a base station or

cloned from another agent already in the network. Each

agent executes autonomously performing application-

specific tasks, and multiple agents may reside on the same

node. When an agent completes its tasks, it dies freeing the

computational resources it used.

3. Supporting Multilayer Framework

Rider is an agent based multi-layer framework to support the

various applications of for vehicular social networks (VSNs)

formed by in-vehicle or mobile devices used by drivers,

passengers, and pedestrians. The programming model of the

framework incorporates features that support collaborations

between mobile agents to provide communication services

on behalf of owner applications, and service (or resident)

agents to provide application services on mobile devices.

Built on top of the mobile devices operating systems, the

framework architecture consists of framework service layer,

software agent layer and owner application layer. By using

this application developed on the framework can

autonomously and intelligently self-adapt to rapidly

changing network connectivity and dynamic contexts of

VSN users. A practical implementation and experimental

evaluations of Rider are presented to demonstrate its

Paper ID: NOV164575 http://dx.doi.org/10.21275/v5i6.NOV164575 1710

International Journal of Science and Research (IJSR)
ISSN (Online):

Index Copernicus Value (2016): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

reliability and efficiency in terms of computation and

communication performance on popular mobile

3.1 System Architecture

Rider consist of following layers 1.Framework service layer

2. Resident agent layer 3. Mobile agent layer 4. Owner

application layer

Figure 1: System Architecture

Framework service layer: This layer initializes the runtime

environments of Rider, extracts the context information from

the VSN, and provides the core functions and generic

services as framework services to the upper layer. The

framework services are only accessed by the resident agent

layer but not by other layers. In order to meet the unique

Requirements of VSN applications beyond basic services

like time service and ID name service. It has two functions:

Runtime management functions and network management

Functions. The runtime management is responsible for the

on time sensing of the traffic situations in the road. And

provide latest information given to the other users in the

VSN. Network management is responsible for the dynamic

network connectivity in VSN.

Resident agent layer: The resident agents provide all

application services of Rider on each node to visiting mobile

agents. Resident agents can be deployed automatically on all

the services that the resident agents provide. Application

services provided by the resident agent layer can be built on

the services provided by the framework service layer.

Framework services only implement basic and generic

functions and services that are required by most VSNs

applications. Thus, the services provided by this layer

contain two parts: demand to any mobile node that

participates in the same VSN. Once resident agents are

deployed to a mobile node, they will remain in it to provide

various application services simultaneously as long as the

node is a part of the VSN. Mobile agents can directly use all

the services that the resident agents provide. Application

services provided by the resident agent layer can be built on

the services provided by the framework service layer.

Framework services only implement basic and generic

functions and services that are required by most VSNs

applications. Thus, the services provided by this layer

contain two parts: (i) framework services provided by the

framework service layer and (ii) application specific services

developed by application developers. Framework services

could be reused by every VSN application, while application

specific services could be reused by a specific type of VSN

application on the mobile devices during run-time.

Mobile agent layer: The mobile agents run on top of

resident agents and are used to execute different application

services provided by resident agents. They do not contain

any application services in their codes. All the services a

mobile agent needs come from the resident agents, such as

the services for specific applications, migration service, etc.

A mobile agent only contains basic information, such as its

migration mode, processing scheme for executing results, as

well as computation and communication results. Also,

mobile agents are used for transferring necessary resources

or application services to some mobile devices when they do

not contain such resources or services. Moreover, the data of

task execution result gathered from a mobile agent could be

shared among multiple VSN applications in one device.

Owner application layer: The applications are owners of

mobile agents. An application provides the user interface to

its users who use mobile devices in their vehicles. Through

the user interface, the user can select the developed functions

he/she prefers, and the owner application of Rider could

automatically initiate a mobile agent to execute the services

of Rider to accomplish the corresponding function in the

VSN system, or release multiple mobile agents to

accomplish different tasks simultaneously. Rider supports

multiple mobile agents with multiple owner applications

working at the same time. In addition, the owner applications

can monitor the status of mobile agents they release with the

help of resident agents distributed on each node.

3.2. Adaptation to Dynamic Network Connectivity

Since the network connectivity of the underlying VANET is

dynamic and frequently changes, each mobile node can join

or leave the network anytime and anywhere, which may

cause VSN application failures. For example, without

knowing the failures of targeting nodes when mobile agents

execute tasks around VANETs, they may get lost in such

networks and fail to bring the expected results back to the

users, while the lack of sufficient services and resource in a

new mobile node joining a VSN may also impact the

correctness of the execution results of mobile agents for

VSN applications. Thus, Rider provides self healing and

self-configuring capabilities over dynamic network

connections as key framework services to VSN applications.

In Rider, for VSN applications to self-heal, it enables the

resident agents deployed on every mobile node to continue

monitoring the status of a VANET (e.g., which nodes have

just become unavailable in a VSN), and provide the

information to the mobile agents to help them to adapt to

node or link failures. Also, for self-configuration, Rider

provides a service that can

Paper ID: NOV164575 http://dx.doi.org/10.21275/v5i6.NOV164575 1711

International Journal of Science and Research (IJSR)
ISSN (Online):

Index Copernicus Value (2016): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

dynamically and automatically deploy the core functions and

services to a new mobile node when it joins a VSN upon

VANETs, and if a mobile device does not have the necessary

resources or services, mobile agents can also automatically

transfer the necessary resources or services between mobile

nodes.

3.3 Adaptation to Users Dynamic Contexts

In a VSN system, because of the opportunism of user

connections, the changing contexts of the users may also

result in users dynamic contexts. However, traditionally, the

descriptive information of the service requester is compared

to that of the service provider, and their similarity is

measured using traditional service matching by simple string

matching methods. Such an approach cannot work well as it

is not realistic to require service requesters and service

providers to use exactly the same contexts (e.g., words about

their destinations in a rideshare application) in open and

dynamically changing environments of VSNs.

Here adopt a hierarchical architecture for Rider, so as to

provide a light-weight but scalable framework and facilitate

agent collaborations and resource reuse for multiple VSN

applications on mobile devices. The architecture of Riders

four layers from the bottom up: the runtime management

layer, resident agent layer, mobile agent layer, and owner

application layer.

3.4 Dynamic Network Environment

In Rider, consider two situations when mobile agents are

executing the applications while the network environment of

VSN changes: First situation: Mobile nodes become

disconnected when mobile agents are executing applications

in a VSN system. Second situation: New mobile nodes join a

VSN system when mobile agents are executing applications.

In Rider, develop a novel network status service in its

framework service layer, which makes use of the network

APIs, where every node can listen and determine how many

nodes are currently available in the VANET. In addition,

Here adopt a scheme that enables resident agents to share all

the IDs of currently connected nodes, as well as available

service lists of mobile devices. By using this service, the

framework service layer can inform the upper layer about the

real-time networking status of the VSN, such as the current

list of node IDs and available services. At the same time,

considering the diverse VSN scenarios and specific

performance concerns of different VSN applications, Rider

does not put any constraint on the application behaviours

like specific migration schemes of mobile agents. Instead, to

ease the developers efforts, Rider provides three generic

migration strategies for application developers to develop

mobile agents.

4. Steps of operation

Procedure (Driver Calling)

Finding nearest vehicle

1. Set passenger latitude and longitude

 latitude=LocationService.latitude

 longitude=LocationService.longitude

2. Take matching latitude and longitude from database table

driver

3. If there is a match available then return its vehicle no,

name and phone no from the registration and driver table

• Procedure-Road Disruption

Finding road disruption

1. Set lastupadate=-1

 shakethreshold=1400

 tempplace=null

2. Get services from sensor manager and telephony

manager for sensor reading and device id

3. If (curtime-lastupdate)>100ms)

 difftime=curtime-lastupdate

 lastupdate=curtime

4. Find the value of 3D co-ordinates

 (Y, 4)>10 then top Shake

 If(X,4)>-10 then left shake

 If(x, 4)>10 then Right Shake

 If(Y,4)>-10 then Bottom shake

 5. Check the axis shake

 X=values[sensormgr.DATA_X]

 Y= values [sensormgr.DATA_Y]

Z= values[sensormgr.DATA_Z]

6. Calculate speed value

speed= [(X+Y+Z-LastX-LastY- LastZ)/difftime]*1000

7. if (speed >shakethreshold)

Search data in db to find the place where the disruption

is entered. If not entered update database table ‘shake’

in the same location

8. Set LastX=X

 LastY=Y

 LastZ=Z

 9. Repeat the operation

5. Impacts and Cost

Considering the limited resource of mobile devices (i.e.,

computing power, storage capacity, and battery energy),

unstable networking connections of VANETs, and time

efficiency requirements of most VSN application scenarios,

the impacts and costs of mobile VSN applications on mobile

devices are always a concern. Thus, it adopt weak adaptation

as the primary option in Rider, so as to decrease the resource

requirements on mobile devices and ensure that VSN

applications developed on Rider have considerable time

efficiency in finishing tasks. Also, in order to reduce

networking overhead of VSN systems, Rider divides data

into two types: shared and nonshared. The shared data

contain only the basic context information (e.g., ID name

and available services) of the local device, which will be

shared with the VSN system by the resident agents. On the

other hand, non-shared data contain the agent codes,

application specific services, existing data in local mobile

devices, and execution results of mobile agents, etc. In

addition, when developers develop mobile agents, they can

decide whether the mobile agents should store the processing

results locally in the mobile devices, and what data mobile

agents should carry over to the next devices to which they

migrate.

Paper ID: NOV164575 http://dx.doi.org/10.21275/v5i6.NOV164575 1712

International Journal of Science and Research (IJSR)
ISSN (Online):

Index Copernicus Value (2016): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

6. Conclusion

Rider, an agent based multi-layer framework to road

condition estimation that is able to utilize the information

from the sensor and provide a high level software platform

for VSN applications. Rider hides the complexity of dealing

with changing network connectivity and varying user

services requirements in VSNs, by providing a programming

model with extensibility support. Rider also provides a rich

set of framework services to support application

development using Java with the standard API format.

7. Future Scope

Rider provides a modelling paradigm which can facilitate the

creation and deployment of different VSNs applications.

Furthermore, Rider supports dynamic agent collaborations

and service matching during runtime of mobile devices.

Thus, more autonomous, intelligent and adaptive

applications can be developed for the dynamically changing

environments of VSNs.

References

[1] N. Liu, M. Liu, J. Cao, G. Chen, and W. Lou, When

Transportation Meets Communication: V2P over

VANETs, In Proc. IEEE ICDCS, 2010, pp. 567-576.

[2] H. Chen, T. Finin, and A. Joshi, An ontology for

context-aware pervasive computing environments, The

Knowledge Engineering Review, vol. 18, no. 03, pp.

197207, 2003.

[3] K. Fujii, and T. Suda, Semantics-based context-aware

dynamic service composition, ACM Trans. on

Autonomous and Adaptive Systems, 2009, vol. 4, no. 2,

Article 12.

[4] A.R. El-Sayed and J. Black, "Semantic-Based Context-

Aware Service Discovery in Pervasive-Computing

Environments". Carlos Bobed, Sergio Ilarri, and Eduardo

Mena IIS Department, University of Zaragoza, Zaragoza,

Spain,

[5] "Distributed Mobile Computing: Development of

Distributed Applications Using Mobile Agents”, in IEEE

conference, July 2010.

[6] Paulo S. Pagliusi and Chris J. Mitchell Information

Security Group Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK,"Heterogeneous Internet

Access via PANA/UMTS", August 31, 2004

[7] C. L. Fok, G. C. Roman, and C. Lu, Agilla: A Mobile

Agent Middleware for Sensor Networks, ACM Trans. on

Autonomous and Adaptive Systems, 2009, vol. 4, no. 3,

Article 16.

Author Profile

Sona P received the B Tech degree in Computer Science and

Engineering from university of Calicut in 2009 and she is currently

persuading her M-tech in Computer Science and Engineering from

Calicut University.

Divya M received the B Tech and M Tech degrees in Computer

Science and Engineering from Calicut University in 2008 and 2013,

respectively. She is working with AWH Engineering College since

December 2010.

Paper ID: NOV164575 http://dx.doi.org/10.21275/v5i6.NOV164575 1713

