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Abstract: One of the more common statistical tests of significance is the test for paired data. Paired data can be obtained from 

experimental units when measurements are obtained before and after the administration of a treatment. In this paper,  comparison is 

made between adaptive tests, non parametric wilcoxon test and traditional paired sample t test. For comparison of power, Monte – Carlo 

simulation method is used here. The new adaptive procedure is shown to preserve the size of the test at its nominal level for all 

continuous distributions. This research work finally comes to the conclusion that in case of normal distribution traditional t test is more 

powerful than the others. Whereas in case of long tailed or skewed distribution the adaptive tests are more powerful.  
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1. Introduction 
 

Persons involved in analysing data often choose a statistical 

procedure after having examined the data. For example, it is 

not uncommon for a practitioner to transform or smooth data 

before applying a normal theory test of hypothesis. Such 

two-staged analyses are termed adaptive since the data 

determine the transformation used and then the same data 

are used in the testing procedure.  

 

Many adaptive tests have been developed in an effort to 

improve the performance of tests of significance. We will 

consider a test of significance to be "adaptive" if the test 

procedure is modified after the data have been collected and 

examined. Adaptive tests of significance have several 

advantages over traditional tests. They are usually more 

powerful than traditional tests when used with linear models 

having long-tailed or skewed distributions of errors. In 

addition, they are carefully constructed so that they maintain 

their level of significance. That is, a properly constructed 

adaptive test that is designed to maintain a significance level 

of  will have a probability of rejection of the null 

hypothesis at or near  when the null hypothesis is true. 

Hence, adaptive tests are recommended because their 

statistical properties are often superior to those of traditional 

tests. The adaptive tests have the following properties: 

 The actual level of significance is maintained at or near 

the nominal significance level of α 

 If the error distribution is long-tailed or skewed, the 

adaptive test is usually more powerful than the traditional 

test, sometimes much more powerful. 

 If the error distribution is normal, there is little power 

loss compared to the traditional tests. 

 Adaptive tests are practical. 

 

The adaptive tests automatically reduce the influence of 

outliers. They are sometimes said to be robust; but to be 

clear about robustness, we should describe the two kinds of 

robustness. A test is said to be robust for size if its actual 

significance level is quite close to the nominal significance 

level, even when the usual assumptions are not met. For 

example, a test that is derived by assuming normality of the 

error distribution would be robust for size if it maintains its 

level of significance with non-normal errors. A test is said to 

be robust for power if it has high power relative to other 

tests when the usual distributional assumptions are not met. 

Many traditional tests are robust for size with non-normal 

errors but are not robust for power. Our objective is to study 

some adaptive tests that are robust for size and robust for 

power. 

 

2. Objectives 
 

This research work proposes adaptive procedure for 

analyzing paired data. The procedure uses a function of 

ordered absolute values of the differences to measure tail 

heaviness of the underlying distribution. The value of the 

measure is then used to choose an appropriate signed rank 

test. The new adaptive procedure is shown to preserve the 

size of the test at its nominal level for all continuous 

distributions and typically has nearly the same power as the 

best signed rank test for a wide range of distributions. 

 

3. Test Procedures 
 

Mathematically, let d1,......,.dn.i.d. paired differences from a 

continuous distribution F. The di are naturally symmetric 

about a center μ.We are interested in testing whether this 

center is equal to a known value .Without loss of generality, 

assume that μ = 0, i.e. we are interested in testing: H0 : μ = 0  

H1 : μ  0.It’s well known that when the di’s follow a 

normal distribution, the optimal test is the t-test. However, if 

we know that d comes from a heavy-tailed distribution, e.g. 

t2 or Cauchy, then the signed rank tests with t2 (Gastwirth, 

1970) or Cauchy scores (Capon, 1961) have higher power 

than the t-test. We propose an adaptive procedure (denoted 

by MG) that first uses functions of order statistics of |di| to 

obtain the information about the tailheaviness of the 

underlying distribution, and then use it to choose an 

appropriate signed rank test to analyze the pairs. The 

procedure strictly keeps the size of the test at the nominal 

level for all sample sizes, and has about the same power as 
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the best signed rank test in a wide range of distributions, 

including the t family. 

 

3.1 T test 

 

Let di be the difference between the measurements for the 

ith pair and let n equal the number of pairs. The usual t test 

statistic is  

where  is the average of the differences and s2 is the usual 

unbiased estimator of the variance of the differences. If the 

differences are normally distributed then, under the null 

hypothesis, the test statistic t will be distributed as a t 

distribution with n — 1 degrees of freedom. This test is 

popular because it is the most powerful test if the differences 

are normally distributed. 

 

3.2 Adaptive tests based on ranked scores: 

 

For rank-based tests we let be the rank of |di| among | d 1 

| , . . . , |dn| and we let  if di > 0 and 

= 0 if di < 0. With this notation the SR test is based on 

 , where the sum is over the n differences.  

In the SR test we sum the ranks, but it is easy to create other 

rank-based tests that use the sum of a function of the ranks. 

If we define a general function of  as a(, ) the sum 

over the positive differences is  

 where a(i)=J(  

We perform the test by first calculating the test statistic 

Z=  

 

Miao and Gastwirth (2009) published an adaptive rank-

based test that used a measure of tail-heaviness to determine 

the set of rank scores to be used to perform the test. Under 

the null hypothesis the differences are symmetric about zero, 

so one measure of variability is s =  

. Note that s will be sensitive to outliers. Another measure of 

variability, which is not sensitive to the presence of a few 

outliers, is  

Miao and Gastwirth (2009) proposed that the tail heaviness 

measure SM =  be used as a measure of tail- heaviness. If 

the differences are normally distributed about zero with a 

standard deviation of , then  and  should 

approximate  , so SM should be close to one. If the 

distribution has heavy tails, then s will be large compared to 

M, which will produce a ratio that will greatly exceed one. 

This test, which will be called the MG test, uses SM to select 

a set of rank scores. 

 

When the data comes from a light-tailed normal distributions 

or short-tailed uniform distributions, the normal scores test 

is known to have high power; when the tail-heaviness of the 

underlying distributions is somewhat medium, like logistic, 

double exponential or contaminated normal distributions, the 

Wilcoxon test is highly correlated with the maximum 

efficiency robust test (Gastwirth, 1966) and the Wilcoxon 

test should be used. Furthermore, if the data is heavy-tailed, 

e.g. from a t2 then the appropriate signed rank test is the t2 

scores . We choose the following 3 score functions which 

include the extreme members of the t family of distributions: 

J1(u)=u( wilcoxon scores) 

J2(u)=  ( t2 scores) 

J3(u)=  

 Conditions for the Adaptive Test: 

sM ≥ 2.7, use the Cauchy scores test; 

 2.7 > sM ≥ 1.2, use the t2 scores test; 

1.2 > sM ≥ 1.02, use the Wilcoxon test; 

 

4. The Monte Carlo Study 
 

For the simulation study of the t- test , Wicoxon test, t2 

score test and Cauchy score test, four families of 

distributions are selected. These are – the Normal, the 

Cauchy, the Logistic and the Lognormal distribution. 

 

The study was conducted on computer at the Department of 

Statistics, Dibrugarh University. To generate the standard 

normal deviate, the method described in Monte Carlo 

Method by Hammersly and Handscomb(1964) were used 

and deviate from the other distributions were generated by 

using the inverse distribution function on uniform deviates. 

 

In studying the significant levels, we first considered 

distributions with location parameter equal to zero and with 

equal scale parameters. Specifically, we considered the 

distribution functions F(x -µ ) , where µ were the location 

parameters. For each set of sample , the experiment was 

repeated 10,000 times and proportion of rejection of the true 

null hypothesis was recorded.  

 

For the power study of the tests, random deviates were 

generated as above for each group and added to   . 

Proportion of rejections based on 10,000 replications at the 

levels .10, .05 for different combinations of   were 

recorded.  
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Table 1.1: Empirical level and power of different tests under normal distribution 
Sample 

sizes 

Sample 

mean 

(µ1,µ2) 

T test 

10% 5% 

Wilcoxon test 

10% 5% 

T2 score test 

10% 5% 

Cauchy score test 

10% 5% 

(10,10) 

 

 

 

 

 

(30,30) 

(0,0) 

(0,.2) 

(0,.4) 

(0,.6) 

(0,.8) 

 

(0,0) 

(0,.2) 

(0,.4) 

(0,.6) 

(0,.8) 

.0971 .0484 

.1297 .0669 .2126 

.1232 .3450 .2250 

.4990 .3568 

.1078 .0549 

.1913 .0772. 4350 

.1390 .7106 .2421 

.9323 .3839 

 

.1075 .0524 

.1418 .0683 .2271 .1271 

.3568 .2251 .5060 .3544 

.1026 .0509 

.1903 .1091 

.4333 .3075 

.7095 .5889 

.9010 .8291 

.1279 .0692 

.1600 .0887 .2416 

.1486 .3637 .2513 

.5093 3832 

.1279 0692 

.1901 .1204 .4130 

.2949 

.6702 .5540 

.8669 .7874 

.1017 .0459 

.1183 .0568 .1698 

.0892 .2588 .1495 

.3694 .2418 

.1014 .0483 

.1143 .0776 

.2753 .1798 

.4874 .3560 

.7037 .5788 
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Figure 1.1: Empirical power of tests under normal distribution at 10% level with sample size (30,30) 

 

Table1.2: Empirical level and power of tests under Cauchy distribution  
Sample 

sizes 

(µ1,µ2) T test 

10% 5% 

Wilcoxon test 

10% 5% 

T2 score tests 

10% 5% 

Cauchy score test 

10% 5% 

10,10 

 

 

 

 

(30,30) 

(0,0) 

(0,.2) 

(0,.4) 

(0,.6) 

(0,.8) 

(0,0) 

(0,.2) 

(0,.4) 

(0,.6) 

(0,.8) 

.0485 .0168 

.0525 .0187 

.0626 .0237  

.0776 .0316 

.0964 .0434 

.0695 .0219 

.0712 .0234 

.0788 .0286 

.0895 .0377 

.1095 .0486  

.0992 .0443 

.1051 .0496 

.1230 .0625 

.1517 .0776 

.1835 .1001 

.1013 .0511 

.1178 .0607 

.1607 .0934 

.2301 .1441 

.3136 .2094 

.1181 .0611 

.1268 .0696 

.1458 .0847 

.1718 .1094 

.2200 .1419 

.1236 .0686 

.1448 .0813 

.2130 .1271 

.3094 .2101 

.4254 .3103 

.0966 .0409 

.1040 .0467 

.1234 .0589 

.1580 .0811 

.2023 .1073 

.1024 .0535 

.1236 .0652 

.1907 .1094 

.2905 .1873 

.4172 .2912 
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Figure 1.2: Empirical power of tests under Cauchy distribution for 10% level with sample sizes (30,30) 
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Table1.3: Empirical level and power of tests under Logistic Distribution 
Sample 

sizes 

(µ1,µ2) T test 

10% 5% 

Wilcoxon test 

10% 5% 

T2 score tests 

10% 5% 

Cauchy score test 

10% 5% 

(10,10) 

 

 

 

 

(30,30) 

(0,0) 

(0,.2) 

(0,.4) 

(0,.6) 

(0,.8) 

(0,0) 

(0,.2) 

(0,.4) 

(0,.6) 

(0,.8) 

.0930 .0428 

.1044 .0516 

.1331 .0706 

.1778 .1003  

.2395 .1431 

.1131 .0562 

.1353 .0631 

.1798 .0831 

.2980 .1183 

.4266 .2676 

.1046 .0480 

.1157 .0539 

.1465 .0720 

.1924 .1071 

.2520 .1501 

.0999 .0493 

.1315 .0660 

.2180 .1317 

.3557 .2429 

.5199 .3888 

.1233 .0669 

.1342 .0732 

.1635 .0938 

.2124 .1307  

.2740 .1777 

.1267 .0648 

.1482 .0842 

.2324 .1448 

.3538 .2505 

.5144 .3854 

.1031 .0464 

.1074 .0492 

.1278 .0598 

.1573 .0799 

.1981 .1105 

.1008 .0483 

.1143 .0577 

.1687 .0901 

.2508 .1562 

.3674 .2448 
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Figure 1.3: Empirical power of tests under Logistic distribution at 10% level with sample size (30,30) 

 

Table1.4: Empirical level and power of tests under lognormal distribution: 

Sample 

sizes 

 

(µ1,µ2) T test 

10% 5% 

Wilcoxon test 

10% 5% 

T2 score test 

10% 5% 

Cauchy score test 

10% 5% 

(10,10) 

 

 

 

 

(30,30) 

(0,0) 

(0,.2) 

(0,.4) 

(0,.6) 

(0,.8) 

(0,0) 

(0,.2) 

(0,.4) 

(0,.6) 

(0,.8) 

.0782 .0338 

.0985 .0437 

.1490 .0766 

.2246 .1317 

.3105 .2052 

.0945 .0365 

.1124 .0498 

.1700 .0860 

.2460 .1471 

.3390 .2218 

.1044 .0518 

.1357 .0695 

.2075 .1190 

.3076 .1834 

.4117 .2633 

.1046 .0507 

.1746 .1002 

.3645 .2464 

.5825 .4536 

.7568 .6481 

.1285 .0684 

.1659 .0943 

.2504 .1629 

.3607 .2540 

.4805 .3589 

.1261 .0632 

.2219 .1389 

.4641 .3460 

.706 .5870 

.8647 .7829 

.1027 .0441 

.1370 .0664 

.2259 .1255 

.3386 . 2079 

.4534 .2972 

.0976 .0448 

.1977 .1178 

.4395 .3152 

.6896 .5556 

.8517 .7539 
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Figure 1.4: Empirical power of tests under lognormal distribution at 10% level with sample size (30,30) 
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5. Discussion 
 

For comparison purposes we have considered various 

combinations of sample sizes with equal. We have also 

considered different ses of µi’s for the study. 

 

From Tables 1.1 – 1.4 it is observed that the parametric t-test 

maintain the nominal level except the Cauchy and skew 

distribution lognormal. In these cases t-test seems to be 

conservatives. Wilcoxon test and all other score based test 

are found to be robust against the distributions in terms of 

the level concerned.  

 

Table 1.1 shows the power of tests under normal 

distribution. We have seen that power of t- test is higher than 

the other tests in this distribution in presence of various 

combinations of location parameters. Power of Wilcoxon 

test is found to be slightly less than the t-test but more than 

other score base tests.. 

 

Table 1.2 gives the power of tests statistics under Cauchy 

distribution. Here ,we observe that t2 test is more powerful 

than other tests at 10% and 5% level of significance.  

 

Table 1.3 displays the power of tests under logistic 

distribution. We have seen that Wilcoxon , t2 test are more 

powerful than other two tests with at 10% and 5% level.  

 

Table 1.4 shows the power of tests under lognormal 

distribution. Here t2 score test and Cauchy score test are 

more powerful than the all other tests at 10% and 5% level 
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