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Abstract: On account of the effect of limited treatment resources on the control of epidemic disease, the transmission dynamic and 
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1. Introduction 
 

Kermack and McKendrick divided the total population 

(𝑃𝑡) into three compartments such as susceptible (𝑆𝑡), 
Infective (𝐼𝑡) and Removable (𝑅𝑡) individuals, so that: 

 

t t t tP S I R    (1) 

 

Where 

 

t
t t

dS
iS I

dt
 (2)  

 

t
t t t

dI
iS I gI

dt
  (3)  

 

t
t

dR
gI

dt
 (4)  

 

2. Model Formulation 
 

In this model, we divide the total population into four 

compartments such as Susceptible, Infective, Hospitalized 

and Recovered individuals. We assume that: 

 

 S is the number of susceptible individuals who are not 

infected but could become infected. 

 Iis the number of infective individuals who are infected 

by the disease and can transmit it to the susceptible.  

 H is the number of individuals who are admitted in the 

hospital to take treatment for a specified period. 

 R is the number of recovered or removed individuals. 

These may or may not have the disease, but they can't 

become infected and they can't transmit the disease to 

others.  

 

A susceptible, infective or hospitalized individual can 

willingly become recovered or removed.  

 

The model variables and parameters are defined as follows 

 

( )N t  Total population individual at time t 

S ( )t Susceptible individual at time t 

( )I t  Infective individual at time t 

( )H t  Hospitalized individual at time t 

R( )t  Recovered individual at time t 

ARecruitment rate of the population 

  Death removal rate 

p Infection transmission probability per contact 

  Effort rate against infection and thus  

β = p(1-τ) is the effective infectious contact  

rate 

 Rate at which infective individual are admitted as a 

patient 

1


Average period of the infected individual spent in the 

hospital 

 Proportion of individuals that leaves S, I or A 

compartment to R 

 

The susceptible sub-population S(t) is generated from 

constant recruitment of individual at a rate A . They 

acquired infection via horizontal transfers from individual 

in the infective class, I(t) at a rate (1 )p    and thus 

become infective individual in the susceptible infective 

and admitted class become removed due to treatment on 

the danger of infection at the rate 𝜃 (0 < 𝜃 < 1). Infective 

individuals are admitted and treated at the rate ∅ admitted 

individuals stay in hospital for an average period of 
1


after which a proportion 𝜃 become recovery while (1-𝜃) go 

back to infective class and not due to the fear of the 

consequence of being admitted. Thus as the admitted 

individual spent an average period of 
1


in the hospital 

then Ѱ𝜃 and Ѱ(1-𝜃) are the transition rates from H 

compartment to R compartment and back to I 

compartment respectively. 

 

Furthermore, natural death occurs in all classes at a rate µ. 

The corresponding mathematical equation of model can be 

Paper ID: NOV164350 http://dx.doi.org/10.21275/v5i6.NOV164350 894



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 6, June 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

described by a system of ordinary differential equations 

given in (5) 

 

1

2(1 )
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3 ( )
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where ( )T I rI . Now 
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                          (5)
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(6) 

 

Consider the closed set: 

( , I, ,R) :
A

S H S I H R


 
       

 
(7) 

 

In order to study the dynamics of the system (5) in Ω, the 

positive-invariance and attractiveness of Ω with respect to 

the system(5) is established as follows now the rate of 

change of the total population, obtained by adding all the 

equation in the system (5) is given by 

 

dN
A N

dt
   (8) It follows from (8) that whenever 

A
N


  then 0

dN

dt
  implying 

dN

dt
 is bounded by 

.A N Thus a standard comparison theorem can be 

used to show that ( ) (0) (1 )t tA
N t N e e 



     , 

thus Ω is positively-invariant (i.e. all solution in Ω remain 

in Ω for all time).  

 

Furthermore, if ( )
A

N t


  then either the solution enters 

Ω in finite time or N(t) approaches 
A


 and the infected 

variables (i.e., all solution in eventually enters Ω). 

Therefore the model is well-posed epidemiologically and 

mathematically (Hetthcote, 2000). And hence it is 

sufficient to study the dynamics of the system (5) in Ω. 

 

3. Model Analysis 
 

3.1 Existence and Local Stability of Disease-Free 

Equilibrium 

 

The disease-free equilibrium is the state in which the 

population is free of disease, so that we have only 

susceptible and recovered individuals. Thus the model has 

a disease–free equilibrium, obtained by setting the right-

hand side of (5) to zero given by 

 

1

1
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* * * *

0

1 1

: ( , I , ,R ) ,0,0,
A A

E S H
K K





 
  
 

(9) 

 

Using the next generation operator technique described by 

Diekmann and Heesterbeek (2000) and subsequently 

analyzed by Van Den Driessche and Watmough (2002), 

we obtained the basic reproduction number 0R  of the 

model equation (5) which is the spectral radius (ρ) of the 

next generation matrix K.  

 

That is KR 0 , where 
1K FV   the matrix of F (for 

the new infection terms) are obtained from the infected 

compartment (i.e., I and H) at disease-free equilibrium and 

are given respectively by 

 

1

3

3

*

3

*

0
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dt N
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I K H rI

dt

S

F N

r K

K S
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and 

2

( )

K
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K
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The basic reproduction number is then given as: 
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F
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Theorem:  

 

The disease-free equilibrium𝐸0 of the model is locally 

asymptotically stable (LAS) if 0 1R  . 

 

Proof. 
 

We used the Jacobean stability approach to prove the local 

stability of the disease-free equilibrium state. Now, we 

observed that the variable R does not appear in the first 

three (3) equations of the system (5). 

 

Thus, using the relation 

 

S I H R N     

( )R N S I H    (13)  

 

Linearization at 𝐸0, gives the Jacobian matrix: 
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(14) 

 

Considering (5) at 0E , we can deduced that 
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Using elementary row transformation, equation (14) 

becomes 
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H(𝐸0)=

 
 
 
 
 −𝐾1 −

𝛽𝑆∗

𝑁∗ 0

0 − K2 −
𝛽𝑆∗

𝑁∗  𝜓(1 − 𝜃)

0 𝜙 −𝐾3 +
(𝜙+𝑟)ѱ(1−𝜃)

 K2−
𝛽𝑆∗

𝑁∗   
 
 
 
 

 

(16) 

 

And clearly, the eigen values are 

 

1 1 0K     
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Since from equation (15) 
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Now 3  to be negative, we must have 
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Thus λ3< 0 if R0< 1 implying all the eigen values have 

negative real parts and by Jacobean stability E0 is LAS. 

This completes the proof. 

 

The epidemiological implication of the theorem is that 

infection can be under control in the population (when R0< 

1) if the initial sizes of the sub-populations of the model 

are in the basis of attraction of DFE (E0). In order to 

ensure that corruption is independent of the initial sizes of 

the sub-populations of the model, it is necessary to show 

that E0is globally-asymptotically stable. 

 

3.2 Global Stability of Disease–Free Equilibrium 

 

Theorem: 

 

The disease-free equilibrium E0 of (5) is globally 

asymptotically stable (GAS) in Ω if R0 ≤ 1. 

 

 

Proof. 

 

One common approach in studying the global asymptotic 

stability of the DFE is to construct an appropriate 

Lyapunov function. Consider the Lyapunov function 
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Since all model parameters are non-negative and from 

(15), we have  
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It follows that whenR0 ≤ 1, L′ ≤ 0 , the equality is zero 

holds when 0R =1 and I=0.  

 

Therefore, the largest compact invariant set 

 ( , I, ,R) ' 0S H L   is the singleton {E0}. Hence, by 

the LaSalle invariance principle, E0 is overall globally 

asymptotically stable and hencethe proof is complete. 
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The above theorem shows that infection will be under 

control regardless of the initial profile of the sub-

population in the community if R0 can be brought down to 

a level less than unity. 

 

3.3 Existence of Disease-Endemic Equilibrium  
 

At the disease endemic equilibrium we have persistence of 

infection. Thus at least one of the infected class is greater 

than zero. In order to find the positive endemic 

equilibrium of the system (5), denoted by 
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The equations in the system (5) are solved as explained in 
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Solving the equations of the model (5) at steady-state gives 
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



   





   

 

**
**

**

1 2 3

**[ ( ) (1 )] { [ ( ) ] }** 2 3 3 3
**( )[ ( ) (1 )]

1 2 3

( )

( )[ ( ) (1 )]

A K K r A K r ArK
R

K K K r

A r
H

K K K r

       

    

 

   

      


   




   

 
(22)  

 

Using the second equation of system (22) in (21) and 

simplifying it gives 

** 3

** **

1 2 3

** 3
1 **

2 3

** 3
1**

2 3

( )[ ( ) (1 )]

[ ( ) (1 )]

[ ( ) (1 )]

K A
I

N K K K r

K A
K

N K K r

K A
K

N K K r



   




  




  


   

 
  

 
  

 

** 3
1 **

1 2 3

1
K [ ( ) (1 )]N

K
K

K K r




  

 
      

 

i.e., 
**

1 0( 1)K R    (23) 

 

Since all model parameters are assumed and non-negative 

with 𝜇 > 0, it follows that λ∗∗ > 0, whenever R0 > 1. The 

components of E∗ are then determined by substituting (23) 

into (22), given by: 
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**

1 1 0 1 0 1 0

** 0 3

0 2 3

** 0

0 2 3

2 3

** 3 3 0

0 2 3

( 1)

( 1)

[ ( ) (1 )]

( )( 1)

[ ( ) (1 )]

( {[ ( ) (1 )]

       [ ( ) ]} )( 1)

[ ( ) (1 )]

A A A
S

K K R K R K R

R AK
I

R K K r

A r R
H

R K K r

A K K r

K r ArK R
R

R K K r

  



  

   

 

   

  
 




  

 


  

  

    


  

(24) 

 

Noting that R0 < 1 implies that the force of infection at 

steady state (λ∗∗) negative (which is biologically 

meaningless). Hence the model has no positive equilibria 

in this case. Thus, we established the following result. 

 

3.4 Local Stability of Disease Endemic Equilibrium 

 

Similarly, as in local stability of disease–free equilibrium, 

we used the Jacobian stability approach to prove the 

stability of the disease endemic equilibrium state. Noting 

the relation R=N-(S+I+H), the Jacobian matrix of system 

(5) at E∗ is given by 

 
** **

( ) 0
1** **

** **
*( ) ( ) (1 )

2** **

0
3

I S
K

N N

I S
H E K

N N

r K

 

 
 



 
   
 
 
 

    
 
  
 
  
 

 (25) 

From (5) at E∗, we have 
** **

**

1**

** **

2 ** **

(1 )

I S
A K S

N

S H
K

N I



  

 


 

 

**

3 **

** ** ** **

**

( )

( )

r I
K

H

S I H rI

R



 





  


(26) 

Using elementary row operation (25) becomes: 

 

** ** **
1 0

** **

*
( ) 0 (1 )

( ) (1 )
0 0

3

I K N S

N N

H E M

r
K

M

 

 

  

     
     
 

   
  

  
 
 
 

(27)  

where

** 2 ** **

2 ** ** ** **

1( )

S S I
M K

N I K N N

 



 
   
 

 

(28)  

Thus, clearly the eigen values are:  

** **

1
1 **

0
I K N

N




 
   

 
 

Since from (26)

**

2 **

S
K

N


  and 

3 3

( ) (1 )r
K

M

  


  
   

 
(29) 

Now for λ3 to be negative, we must have 

3 ( ) (1 )
0

K M r

M

     
  

i.e., 
** 2 ** **

( ) (1 )
3 2 ** ** **(

1

S S I
K K r

N I K N

 
  



 
 

     
  
 

 

Simplifying this, we obtain 
** 0I   

Substituting (24) and simplifying, we obtain 0( 1) 0R   .  

 

Thusλ3 < 0. If R0 > 1 implies that, all the eigen values 

has negative real parts.  

 

4. Conclusion 
 

A mathematical model with constant recruitment rate and 

standard incidence for the transmission dynamics of 

infection as a disease was proposed. The basic 

reproduction number (R0)was obtained and the analysis 

revealed that for R0≤1, the disease-free equilibrium is 

globally asymptotically stable. Although, the illicit and 

secretive nature of infection can never allow for its total 

eradication, but it can be curbed (reduced) to a bearable 

level. And for whatever reason if R0>1 the disease-free 

equilibrium point is unstable and the endemic equilibrium 

emerges. 
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