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Abstract: In this paper, the concept of pathos Vict graph of a tree is introduced. Its study is concentrated only on trees. A 

characterization of those graphs whose pathos Vict graph of a tree are planar, outerplanar, maximal outerplanar, minimally 

nonouterplanar, maximal minimally nonouterplanar and crossing number one were obtained. Also a necessary and sufficient conditions 

for PVn(T) to be eulerian is established. 
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1. Introduction 
 

The concept of pathos of a graph G was introduced by 

Harary[2] as a collection of minimum number of edge 

disjoint open paths whose union is G. The path number of 

a graph G is the number of paths in pathos. 

 

Stanton [6] and Harary [4] have calculated the path 

number for certain classes of graphs like trees and 

complete graphs. The path number of a tree T is equal to 

K, where 2K is the number of odd degree vertices of T. 

Also the endvertices of each path of any pathos of a tree 

are odd vertices is given by Gudagudi [1]. All undefined 

terminologies will conform with that in Harary [3]. All 

graphs considered here are finite, undirected and without 

loops or multiple edges. The pathos vict graph of a tree T, 

denoted as PVn(G) is defined as the graph whose vertex set 

is the union of the set of vertices, set of cutvertices and set 

of paths of pathos of T, in which two vertices are adjacent 

if and only if corresponding vertices of T are adjacent and 

the vertices lies on the path Pi
 
of pathos and the vertices 

are adjacent to the cutvertices. 

 

Since the system of pathos for a tree is not unique, the 

corresponding pathos vict graph is also not unique. In Fig-

1, a tree T and its different pathos Vict graphs PVn(T) are 

shown. 

 

The edge degree of an edge uv of a tree T is the sum of the 

degrees of u and v. The pathos length is the number of 

edges which lie on a particular path Pi of pathos in T. A 

pendant pathos is a path Pi of pathos having unit length 

which corresponds to a pendant edge in T. A pathos vertex 

is a vertex in PVn(T) corresponding to the path Pi of pathos 

in T. 

 

The following results are required to prove our further 

results. 

 

 
Figure 1 

 

The following results are required to prove our further 

results. 

 

Theorem A[5]: If G is a nontrivial connected (p, q) graph, 

Ci be the number of cutvertices in G and li be the number 

of edges incident with the cutvertices in G. Then vict graph 
Vn (G) has p+ i=0nCi vertices and [i=0n(li+Ci)]+q edges. 
 

Theorem B[5]: Let G be (p, q) graph. Then vict graph 

Vn(G) is outerplanar if and only if G is nonseparable 

outerplanar and G is either a path or a cycle. 

 

Theorem C[3]: A graph G is outerplanar if and only if it 

has no subgraph homeomorphic to K4 or K2, 3.  

 

Theorem D[3]: Every maximal outerplanar graph G with 

p vertices has (2p-3) edges. 

 

Theorem E[3]: If G is any planar (p, q) graph with p≥3, 

then q≤3p-6. Furthermore, if G has no triangles then q≤2p-

4. 

 

2. Pathos Vict Graphs 
 

We start with few preliminary results. 
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Remark 1: No vertex of PVn(T) is a cutvertex. 

 

Remark 2: The edge degree of an edge uv in a tree is odd 

if the degree of one vertex is even and other odd. 

 

Remark 3: The edge degree of every edge in a tree is even 

if and only if every vertex is of odd degree. 

 

Remark 4: For any tree T, Vn(T) is a subgraph of PVn(T). 

 

Remark 5: The degree of the pathos vertex in PVn(T) is 

equals to the pathos length of the corresponding path Pi+1 

of paths in T. 

 

Remark 6: Every pendantpathos in a tree T corresponds to 

a pendant edge in PVn(T) which adds one vertex to 

PVn(T). 

 

Remark 7: If T=K1, n where n is even. Then degree of each 

pathos vertex pi is 3. 

 

Remark 8: If T=K1, n where n is odd. Then degree of each 

pathos vertex pi is 3 except one pathos vertex, which is of 

degree two. 

 

In the following theorem we obtained the number of 

vertices and edges in a pathos vict graph. 

 

Theorem 1: If a graph G is a (p, q) graph where Ci be the 

number of cutvertices in G, li be the number of edges 

incident with the cutvertices in G, k be the number of 

paths in G and Pi be the path length of a pathos, the pathos 

vict graph PVn(T) has p+k+i=1n(Ci) vertices and 
[i=1n(Ci+li)+q]+ [i=1n(Pi+1)] edges. 
 
Proof: By the definition, the number of vertices in PVn(T) 

is p+k+i=1n(Ci). By Theorem A, the number of edges in 

Vn(G) is [i=1n(Ci+li)+q]. 
 

The number of edges in PVn(T) is the sum of edges in 

Vn(G) and the number of vertices which lie on the paths Pi 

of pathos of G, by the Remark 5, which is i=1n(Pi+1). 
Hence the number of edges in PVn(T) is [i=1n(Ci+li)+q]+ 
[i=1n(Pi+1)]. 
 

3. Planar pathos vict graphs 
 

A criterion for pathos vict graph to be planar is presented 

in the next theorem. 

 

Theorem 2: The pathos vict graph PVn(T) of a tree T is 

planar if and only if T does not contain two adjacent 

cutverices, which are adjacent to at least two paths, in 

which path of pathos does not contain these adjacent 

cutvertices and their neighbours. 

 

Proof: Suppose PVn(T) is planar. Then Vn(T) is planar. 

Now assume there exist two adjacent cutvertices u and w 

which are adjacent with at least two paths Pn, Pm at u and 

Ps, Pt at w with path length n, m, s, t ≥1. Suppose there 

exist a path of pathos Pl which contains x ∈ N(u), y ∈ 

N(w), u, w and paths either Pn, Pt or Ps, Pm. Now assume Pl 

contains Pm, Ps, u, w, x and y. Then the remaining paths of 

pathos PA contains Pn and path of pathos PB contains Pt. 

 

Since u, w, x, y, pl, pA and pB are the vertices of PVn(T) 

and u
Ꞌ
, w

Ꞌ
 be the vertices of PVn(T) corresponding to u and 

w. Then in PVn(T), the edges joining uu
Ꞌ
, ux, uw, ww

Ꞌ
, wy, 

plu, plw, plx, ply any two edges intersecting in any plane 

embedding of PVn(T), a contradiction. 

 

Conversely, suppose T Satisfies the conditions of the 

theorem, on plane embedding of PVn(T), the vertex pl is 

not adjacent to either x or y. Suppose it is not adjacent to 

x. Then the both the cutvertices u
Ꞌ
, w

Ꞌ
 are adjacent to x and 

y without any intersection in any plane embedding.  

 

Hence PVn(T) is planar. 

 

We now present a characterization of tree whose pathos 

vict graphs are outerplanar. 

 

Theorem 3. The pathos vict graph PVn(T) of a tree T is 

outerplanar if and only if G≅ 𝐾2. 

 

Proof. Suppose PVn(T) is outerplanar. Assume T has a 

vertex v of degree 2. The edges incident to v and the 

cutvertex v forms an induced subgraph homeomorphic to 

K4. Hence PVn(T) is nonouterplanar, a contradiction. 

 

Conversely, suppose T is a path Pt of length t≤1. By 

Theorem B, Vn(T) is nonseperable outerplanar. 

 

For t=0, the result is obvious. 

 

For t=1, the vertices joining to Vn(T) from the 

corresponding pathos vertex gives PVn(T) which is a 

triangle. By Theorem C, PVn(T) is outerplanar. 

 

We now present a characterization of tree whose pathos 

vict graphs are maximal outerplanar. 

 

Theorem 4: The pathos vict graph PVn(T) of a tree T is 

maximal outerplanar if and only if T is a K2.  
 

Proof: Suppose PVn(T) is maximal outerplanar. Then 

PVn(T) is connected. Hence T is connected. If PVn(T) is 

K3, then obviously T is K2. 

 

Let T be any connected tree with p≤2 vertices, q edges, Ci 

cutvertices, li be the number of edges incident with the 

cutvertices in T, k be the number of paths in G and Pi be 

the path length of a pathos. 

 

Then PVn(T) has [p+k+i=1n(Ci)] vertices and 

[i=1n(li+Ci)+q]+[ i=1n(Pi+1) edges. Since PVn(T) is 

maximal outerplanar, by Theorem D, it has 

2[p+k+i=1n(Ci)] -3 edges. Hence,  
 
[i=1n(li+Ci)+q]+ [i=1n(Pi+1)]= 2[p+k+i=1n(Ci)]-3. 

 
Thus for T=K2 we have li=0, Ci=0, p=2, k=1, Pi=1 and q=1.  

 
[i=1n(0+0)+1]+i=1n(1+1) = 2[2+1+i=1n0]-3 
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1+1+1=2[2+1]-3 
3=2[3]-3 
3=6-3 
3=3 

 

By Theorem D, it follows that G is a K2  

Necessity is thus proved. 

 

For sufficiency, suppose T is a path, Pn(n≤2). Then we 

consider two cases. 

 

Case1: Assume T is K1. Then PVn(T)= K1. Hence it is 

maximal outerplanar. 

 

Case2: Assume T is K2.Then PVn(T)= K3, Which is 

maximal outerplanar. 

 

For any plane graph G the inner vertex number i(G) of G 

is the minimum number of vertices not belonging the 

boundary of the exterior region in any embedding of G in 

the plane. We call the inner vertex number i(G) as Kulli 

number. 

 

A graph G is said to be minimally nonouterplanar if Kulli 

number is one or i(G)=1. 

In the next theorem we establish the result in which 

PVn(T) has a Kulli number one. 

 

Theorem 5: For any tree T, PVn(T) has a Kulli number 

one if and only if Δ (T)≤2 for every vertex v of T and T 

has a unique vertex of degree two. 

 

Proof: Suppose PVn(T) has a Kulli number. Assume Δ 

(T)>2. Let v be a vertex with deg(v)=3, let v1, v2, v3 are 

adjacent to v. In Vn (T) has a subgraph homeomorphic to 

K2, 3. Since it has two pathos vertices.Then any one vertex 

lies in the interior region of embedded PVn(T). Hence 

Kulli number of PVn(T) is more than one, a contradiction. 

Hence Δ (T)=2. 

 

Assume that there exist at least two vertices of degree 2 in 

T. Then Vn(T) has at least two blocks as P3+K1. Since T 

has exactly one pathos, let v be a pathos vertex which is 

adjacent to all the vertices of P3+K1. P3+K1. On embedding 

PVn(T) in any plane it has at least two Kulli number, a 

contradiction.Hence T has exactly one vertex of degree 

two. 

 

Conversely, suppose every vertex of T has degree≤2 and 

has a unique vertex of degree 2. Then Vn(T) has exactly 

one block as K4-x. A pathos vertex v is adjacent to every 

vertex of tree T. 

 

Which gives W5 as a subgraph. Hence PVn(T) has a Kulli 

number one. 

 

In the next theorem we prove that PVn(T) is maximal 

minimally nonouterplanar. 

 

Theorem6: For any tree T, PVn(T) has maximal Kulli 

number one if and only if Δ (T)≤2 has unique vertex of 

degree 2. 

 

Proof: Suppose PVn(T) of tree T has maximal Kulli 

number one. We consider the following cases. 

 

Case1: If Δ (T) ˂2. Then by Theorem 4, PVn(T) is 

maximal outerplanar, a contradiction. 

 

Case2: If Δ(T)>3. Then by Theorem 5, PVn(T) has greater 

than Kulli number one, a contradiction.  

 

Case3: If T has at least two vertices of degree 2. Then 

PVn(T) has greater than Kulli number one, a contradiction. 

 

Case4: If T has a unique vertex v of degree 2. By Theorem 

5, PVn(T) has Kulli number one. Now we Show that 

PVn(T) has maximal Kulli number one. Since T=K1, 2, then 

Vn(T)= K4-x and PVn (K1, 2 )=W5. 

 

Which has maximal Kulli number one. 

 

The next theorem characterizes PVn(T) in terms of 

crossing number one. 

 

Theorem 7: The pathos vict graph PVn(T) of a tree T has a 

crossing number one if and only if for any tree T with Δ 

(T)≥3 has exactly two adjacent vertices v1 and v2 with Δ 

(T) and remaining vertices are of degree either one or two. 

Also the path of pathos contains v1, v2, N(v1) and N(v2). 

 

Proof: Suppose pathos vict graph of a tree T has crossing 

number one. Then Vn(T) is planar. Now we assume 

Δ(T)≥2. Then we consider the following cases. 

 

Case1: Assume Δ(T)=2. Then T=Pn. By Theorem1 and 

Theorem E, [i=1n(Ci+Ii)+q]+ [i=1n(Pi+1)]≤3n-6. Hence 

Cr[PVn(T)]=0, a contradiction. 

 
Case2: Assume Δ(T)≥3 and T has exactly two adjacent 

vertices v1 and v2 with Δ(T) and remaining vertices are of 

degree either one or two. Also the path of pathos contain 

v1, v2, N(v1) and N(v2).Then we consider following 

subcases of case2. 

 

Subcase 2.1: Suppose T has three cutvertices v1, v2 and v3 

of degree Δ(T). Further assume that v1 is adjacent to v2 and 

v2 is adjacent to v3 and path of pathos contains these three 

vertices. Then in PVn(T), { v1, v2, N(v1), v3 v
I
1, v

I
2} forms a 

subgraph homeomorphic to K3, 3 where v
I
1, v

I
2 are 

corresponding vertices of v1, v2. Also {v3, v2, v1, v
I
2, v

I
3, 

N(v3)} forms another subgraph homeomorphic to K3, 3 

where v2
I
, v3

I 
are cut vertices and v2

I
, v3

I 𝜖 V[PVn(T)]. 

Hence Cr [PVn(T)]>1, a contradiction. 

 

Subcase 2.2: Suppose path of pathos does not contain 

either N(v1) or N(v2). Now assume path of pathos contain 

N(v1). Then there exist v1
I
 and v2

I ∈PVn(T) where v1
I
, v2

 I
 

corresponds to v1, v2
 ∈T. In PVn(T), v1

 I 
is adjacent to v1 

and N(v1). And v2
I 
is adjacent to v2 and N(v2) and pathos 

vertex p1 which is adjacent to v1, v2
 
and N(v1). Thus in 

planar embedding of PVn(T) in any plane, PVn(T) is 

planar. Thus Cr[PVn(T)]=0, a contradiction. On the other 

hand if path of pathos contains N(v2), we have 

Cr[PVn(T)]=0 again, a contradiction. 
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Conversely, suppose T holds the condition of the 

Theorem. Let v1
 
and v2 are two adjacent cut vertices of 

degree Δ(T)≥2, such that v1
I
 and v2

I ∈ PVn(T), 

corresponding to v1, v2
 ∈ T. Then there exist a pathos 

vertex p1 which lies on v1, v2, N(v1)and N(v2). 

 

In PVn(T), v1
I 

is adjacent to v1
 
and N(v1), also v2

I 
is 

adjacent to v2
 
and N(v2), p1 is adjacent to v1, v2, N(v1) and 

N(v2). This adjacency produces an induced subgraph 

homeomorphic to K3, 3. 

 

Hence Cr[PVn(T)]=1. 

 

The noneulerian property of PVn(T) is giving by the 

following theorem. 

 

Theorem 8: For any nontrivial tree T with p≥3 vertices 

PVn(T) is noneulerian. 

 

Proof: Suppose T is a tree with p<3 vertices. Then T is 

either K1 or K2. Assume if T=K1, PVn(T) =K1 and if T=K2, 

PVn(T) = K3. Then PVn(T) is eulerian. 

 

Suppose T is a tree with p≥3 verices. Let A={ v1, v2, --------, 

vn} be the set of vertices such that deg(vi)=odd, ∀ Vi ∈ A 

and B={ v1, v2, ------, vm} be the set of vertices in which each 

vj ∈ B, deg(vj)=even. In Vn(T), there exist subsets A1⊂ A, 

A2 ⊂ A and B1⊂ B, B2⊂ B such that if deg(vi) ∀ vi ∈ A1 is 

odd, then deg(vi) ∀ Vi ∈ A2 is even. Similarly for B1 and 

B2. In PVn(T), deg(vi) ∀ Vi ∈ A1, is even and deg(vi) ∀ vi ∈ 

A2 is odd. Similarly it is true for the subsets B1 and B2. 
Hence there exists at least one subset containing the 

vertices of odd degree. Hence PVn(T) is noneulerian. 
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