
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Tri-Angular Monitoring Approach for Real Time

Container Migration

1
Babu Ram Dawadi,

2
Rajendra Paudyal

1Department of Electronics and Computer Engineering, Tribhuvan University, Pulchowk Campus, Nepal

2Engineering Division, Nepal Telecom

Abstract: Container is the modern age distributed applications packaging toolkit over the cloud environment [1]. It features the

management of applications with easy plug and play ability, migration, replication, relocation, upgrading et cetera in the real time. Such

containers running different applications over the cloud infrastructure may consume different resources that require real time

monitoring. Monitoring of the applications over the distributed cloud environment is important for the better service delivery [2].

Containers allow a developer to package up an application with all of the parts it needs, such as libraries and other dependencies, and

ship it all out as one package to the multiple cloud. This gives a significant improvement in performance and size of the applications [3].

For efficient management of containerized applications in the distributed cloud environment, we have conceptualized to develop JAVA

based docker host monitoring with Container Migration Monitoring (CoMMon), a tri-angular monitoring approach in the IPv6 network.

Docker is open source platform independent tool to create, deploy, and run applications by using containers. The monitoring probe

collects different monitoring metrics and sends to remote surveillance system in the JSON format. The term tri-angular is proposed in

this paper with the concept that the source machine sends the metric information to the monitoring station before and after the migration

of containers while destination node sends the status of migrated container to the same monitoring station after the container is received

and verify the message from source and destination by unique container identification number (ID).

Keywords: Container, Cloud, Docker, IPv6 Network, Tri-angular, Time-series

1. Introduction

Resource virtualization and different level of service

provisioning is the main achievement of the cloud

computing. Cloud and the data center operation for the

best service delivery use extensively the virtual machines

with its profound benefits on resource control and isolated

workload management [4]. Cloud computing leverages the

presence of enterprises with powerful data centers that

provides resources on demand: the provision mechanism

relies on virtualization.

There are two different approaches to virtualization: (i)

Hypervisor technique, realization of the whole operating

system stack over a slice of the hardware resource (ii) A

container technique, uses the lower layers of the running

operating system (OS) to implement one or more

containers that are isolated environments to run an

application. Both types of virtualization are currently

available from public cloud providers. The choice between

the two approaches is a trade-off between flexibility and

efficiency. The hypervisor technique is less efficient, since

it implements the whole OS stack, but, for the same

reason, it is agnostic with respect to the host OS. Instead

the container is layered over the current OS kernel, and

therefore it is more efficient. A container-based approach

evolves towards the realization of complex but agile

distributed architectures, composed of small and

specialized services: the micro-service approach is a

promising design paradigm that is tightly bound to (or

merging with) the container technology. Container-based

virtualization presents an interesting alternative to virtual

machines in the cloud.

The difference between the two approaches may be

immaterial for the public cloud provider but the container-

based approach is definitely more attractive for the

designer who wants to implement (or develop) a

distributed architecture: the limit of adopting a certain OS

may be irrelevant, while performance issues are a key

factor. Virtualization serves flexibility, security, ease to

configuration and management, reduction of Total Cost of

Ownership (TCO) for many business systems. However, it

also meanwhile incurs some overhead of performance.

Performance monitoring of the virtualized machine (VM)

is key part for the businessman to maintain reliability of

the system and load balancing of the VM. With the

innovation of docker based container technology, there

seems to require extra levels of abstraction in the

virtualization still to improve the efficiency of services in

the virtual world.

Several studies have been performed to improve the

performance in the Virtual Machine technologies

including VM synthesis, repository management, Pareto

SLA et cetera. [5-7]. Docker provides efficient

management of container, which has several added

benefits in compared with VM operations and

management. Cloud services (IaaS, PaaS and SaaS) have

direct relationship with Serviced Based Applications

(SBA) in the business process and management where end

users are to be guaranteed with quality and performance

[8]. For this, efficient service monitoring on each layer is

required. These days service providers provide Monitoring

as a Service (MaaS) in the cloud with different dimensions

and motivations [9]. For the proper management, the

virtualized machines need to be continuously monitored

can only be done through the surveillance system.

Surveillance system monitors the performance of the host

machines during container migration from one machine to

another machine within or outside the cloud. Only the

surveillance system helps in maintaining the service level

agreement (SLA) of the services provided. With the

increase of number of applications in the cloud, resource

management is critical. Customers want to switch the

Paper ID: NOV164294 http://dx.doi.org/10.21275/v5i6.NOV164294 774

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

infrastructure service to meet the quality they want. On the

other hand, cloud service providers, after monitoring the

resources, shall migrate the resource under critical

condition over available idle infrastructure. We present

our surveillance (monitoring) system while migrating the

virtual resources to track for the successful migration.

2. Virtual Machine and Container

The container technology in the open source environment

has been conceptualized since past several years as a

Linux Container (LXC) that support isolated name spaces.

Docker provides additional advantages for efficient

container management and operation. Efficient virtual

machine management and monitoring in the federated

cloud environment is still in the phase of research but in

the meantime the container based technology is replacing

the heavy weight virtual machine technology with efficient

and light weight container technology for cloud

applications management, monitoring and operations.

Docker containers are featured as below [10]:

 Portability of applications over multiple clouds: Docker

provides the platform for building applications and its

dependencies into a single object as a container which

shall be migrated to any other docker enabled machine

and executes independently.

 Application centric: Docker engine is highly application

centric. It provides a best packaging of applications over

container.

 Tools specific: Docker tools help developer to

automatically assemble a container from source code

with full control over application dependencies, build

tools and packaging.

 Container re-use: Docker based containers are the base

images which shall be used and reused for packaging

any kind of applications and migrate it to any other

platform.

Virtual machines run with full OS, where all the

functionalities of OS required for its operation, while

Containers share the host’s OS and are therefore lighter in

weight, start up is comparatively faster, and have better

performance. The right way to think about Docker is thus

to view each container as an encapsulation of one program

with all its dependencies. The container is pluggable to

any host and it might have everything it needs to operate.

In a virtual machine, valuable resources are emulated for

the guest OS and hypervisor, which makes it possible to

run many instances of one or more operating systems in

parallel on a single machine. Every guest OS runs as an

individual entity from the host system consumes higher

resources. On the other hand, Docker containers are

executed with the Docker engine rather than the

hypervisor. Containers have therefore less isolation and

greater compatibility possible due to sharing of the host’s

kernel. A virtual machine could take up several minutes to

create and launch whereas a container can be created and

launched just in a few seconds. Also, a single server can

pack more than one containers. Docker Containers can run

inside Virtual Machines though they are positioned as two

separate technologies. Working in heterogeneous

environment, VM provides high flexibility whereas

Docker containers’ prime focus is on applications and their

dependencies [11]. Hence Containers are wrapped-up

applications and pieces of software that include all

dependencies but use a shared kernel with other containers

(applications). Essentially, containers are isolated

processes in the user-space on the host operating system.

While the Hypervisors abstract the entire device,

containers just abstract the OS kernel [12].

3. Docker and Container Monitoring

However one docker engine may run more than one

isolated containers, the increasing number of containers

consumes resources shall make the host system more

critical. VMs are normally allocated a fixed amount of

resources limiting the applications to run. Resources

utilized by containers are in sharable mode. By default,

when a container is launched, there is no memory limits.

This can lead to a single container consumes whole

memory leading to the system unstable. However the tools

like cgroups help manage the resource utilization by a

container. Hence host's capacity planning and

infrastructure load balancing is sensitive in the

infrastructure running containers over the docker. For this,

quality of service metrics like CPU utilization, Memory,

Disk, I/O and Network utilization are to be continuously

monitored as docker metrics. Measuring of the docker

metrics help to automatic scheduling of resources like i)

stop or move the containers where resource utilization

crossed the limit, ii) start new containers if the resources

are idle. Docker metrics collected at real time shall be

stored into the time series databases (like influxDB) and

visualization by graphing tools (like Graphana).

Monitoring of Docker and Container has the main

objective to optimize the resources and properly balance

the load of existing infrastructure. Figure 1 depicts the

basic concepts of collecting Dockers' metrics like CPU,

Memory, Disk I/O and Network utilization which shall be

stored into the time series database (TSDB) as well as

processed with the defined rule that provides the threshold

for every metric measured and help for automatic adaption

of resources in the cloud. The visualization of metrics in

the graphs provides the health status of docker engine and

its associated containers to take proper decision for better

SLA.

Metrics Collector Probe

TSDB

Processing Logic

Visualization

Rule Based

Reasoning

Alarm

- Start Containers

- Stop Containers

- Move Containers

Apply Decisions

Real-Time

Monitoring

Metrics

Figure 1: Docker container monitoring and decision

making approach

4. Related Work

Figure 1 provides the concept of monitoring the docker.

Paper ID: NOV164294 http://dx.doi.org/10.21275/v5i6.NOV164294 775

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

There are many monitoring systems already developed for

docker based platform and container monitoring [13-15].

Similarly, a self adaptable platform has been proposed in

[16] to make the infrastructure self configurable and

adaptable based on the decision performed by the system

after getting alarm of resource overloading in the cloud.

Docker itself provides the command line tools to its client

to extract the status of container's resource consumption.

"Docker stats" command provides the CPU utilization for

each container, the memory used, total memory available,

network input/output by the container. Additionally

Docker provides the remote API via netcat [16].

CAdvisor [17] is a free and open source web based tool

that simply visualizes the command line output generated

by Docker stats and Docker Remote API. It provides the

graphs for CPU usage, Memory usage, Network

throughput and Disk space utilization. It does not have

alerting system when resource consumption exceeds the

limit.

Scout [18] is another web based hosted monitoring tool for

docker containers. It can collect metrics from any hosts

and containers then visualize it. It has logical reasoning

engine that generate alerts based on those metrics and its

defined threshold.

DataDog [13] provides the more professional cloud

monitoring service including docker and containers. It

collects metrics about CPU usage, memory and I/O for all

containers running in the system including counts of

running and stopped containers as well as counts of docker

images. It has flexible alerting system where we can set

the metrics threshold as per the SLA.

Sensu [19] is an another open source monitoring

framework that supports the docker/container monitoring

after installing docker-Sensu-Server[20] container and

provides self hosted centralized metrics monitoring

service. It also supports many plugins for monitoring to

support different business needs.

Prometheus [21] is also a self-hosted open-source system

monitoring and alerting tool which collectively provide

metrics storage, aggregation, visualization and alerting

service that collect the metrics on the PULL basis. It

features the multi-dimensional time-series data model,

flexible query language and autonomous self-hosted and

shall be maintained by any organization.

Logentries [22] is a log analyzer provides monitoring

service based on the log file analysis. It recently added

docker container monitoring based on the log. It enables

logging for docker of all sizes, aggregate the log for

containers, hosts and applications.

Ruxit [23] is the dynamic and scalable Dockerized

applications monitoring tool able to monitor micro-

services running on docker containers. It automatically

detects the creation of new containers and monitors the

applications and services contained within them. This

helps to applications capacity planning and load balancing

of containers optimizing container orchestration and

clustering.

Sematext [24] has added docker monitoring services into

its SPM solution. It is capable to monitor container

lifecycle events (create, exec_create, destroy, export) and

runtime events (like die, exec_start, kill, pause, restart,

start, stop, unpause) with containers. It correlates with

metrics, alerts and anomalies. SPM-AGENT-DOCKER

[25] installed on every docker host captures the

appropriate events and ship this to the SPM which

visualize into web based system.

Looking into the State-of-the-Art in the Docker Container

monitoring, requirement of application migration to the

best performed platform/network help increase the

efficiency of services to customers. For infrastructure load

balancing, the possible movement of containers and its real

time monitoring during migration within or outside the

cloud network is the main purpose of this paper.

Monitoring of migration system is required to guarantee

that the new decision to move the applications form one

cloud to another cloud increase the performance and meet

associated service level agreement (SLA). Every cloud

server provider maintains the minimum quality of their

services as well as they have to meet the minimum

requirements to be fulfilled while providing the services

agreed upon with customers as SLA. There might have

different indicators that affect the quality of service. Our

proposed monitoring platform "CoMMon" is open source

docker based monitoring system shall be expandable to

have alerting system and easily integrated with other

monitoring platforms.

Table 1: Properties of container monitoring platforms

Platform
Docker

Support

Container

Status

Monitoring

Container

Migration

Monitoring

Container Log

Monitoring
Open Source Alert System

CAdvisor [17] Yes Yes No No Yes No

Scout [18] Yes Yes No - Yes Yes

DataDog [13] Yes Yes No Yes Yes Yes

Sensu [19] Yes Yes No - Yes -

Prometheus [21] Yes Yes No - Yes Yes

Logentries [22] Yes Yes No Yes Yes No

Ruxit [23] Yes No No No - No

Sematext [24] Yes Yes No Yes - No

CoMMon* Yes Yes Yes No Yes Yes*

Paper ID: NOV164294 http://dx.doi.org/10.21275/v5i6.NOV164294 776

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5. Our Contributions

The major objective of moving/migrating containers to

another cloud or another system within the same cloud is

to guarantee better performance and meet the service level

agreement. Basically system throughput, network

throughput, memory and CPU utilization are the major

indicators that may lead to take the decision required to

migrate containers form one host to another. The migration

decision shall be from service provider side or from

customer side depending upon the type of service and

agreement. Looking into the existing monitoring tools

reviewed in section 4, our concept is not only to monitor

system and application performance of containers but also

monitor the events related to container migration. Existing

open source tools shall be used for host status monitoring.

Our tool is useful for the purpose of container migration

whether the container is successfully migrated to

destination or not. Its associated metrics shall be measured

from the destination network after migration. We have

developed our own java based client server

communication system, in which the agent simply detect

the container events at the source and integrate the

destination events after successful migration to destination.

It can also performs the host system status monitoring with

associated individual container status monitoring and

Hence there is tri-angular communication occurs where

source moves the container to destination and send the

events parameter to monitoring station. After the

successful transfer, the destination sends the destination

events (import, start, re-start) to the same monitoring

station where the information shall be mapped with the

source events with the help of unique container ID.

5.1 Conceptual Framework

The CoMMon client monitoring probe, installed on the

docker host, collects the container status (CPU, Memory

utilization, Network Bandwidth) using docker stats

command and converts the parameter values into JSON

format and periodically send this information to the

monitoring station. Similarly while migration, the probe

sends another category of message (DateTime,

ContainerID, Container Description, Source IP,

Destination IP, Status, ContainerSize) to the station. The

destination docker host also has the same monitoring

probe which sends the same message with receive status to

the station once it successfully receive and run the

container. Figure 2 outlines the approach. The collected

parameters passed into the monitoring station are stored

into database and visualized in real time graphics display.

Source, destination and monitoring stations are three

separate entities shall be located independently far away

with each other, however TCP connections is to be

established over IPv6 based network while sending and

receiving the data forms a triangular communication.

Monitoring server continuously receive the data from the

migration source and destination, store the collected

monitoring data to the database and visualize those data as

graphs in the web which shall be accessible from

anywhere. For the migration monitoring of number of

containers from multiple cloud sources to multiple

destinations, then it creates a complex communication

network like in the Figure 3.

Figure 2: Tri-Angular container migration surveillance

(Monitoring) system

Figure 3: Container migration in the multi-cloud

environment

Considering the migration of containers from multiple

sources to multiple destinations, we need to measure the

capacity of monitoring server on behalf of load balancing.

We also need to calculate the status of source and

destination hosts based on the performance metrics to take

decision for migration. Considering the utilizations based

on the containers only and also considering the equal

virtual channel capacity for throughput to each container,

the following nomenclature:

Paper ID: NOV164294 http://dx.doi.org/10.21275/v5i6.NOV164294 777

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The corresponding metric values at the source and

destination docker host can be calculated as the sum of

resources consumed by the individual Container as:

Si is the source hosts from where containers are to be migrated, where 1 ≤ i ≤ M

Dj is the destination hosts where the containers are to be received, where 1 ≤ j ≤ N

Every migration requires sending two status messages to

the server from source and destination both followed by

host status messages regularly monitored. Hence for n

migrations, it requires 2n messages to be received and

processed by the monitoring server. Similarly for M hosts

each having n containers shall have maximum of 2(M x n)

messages on the network during migration. The number

of messages flowing in the channel helps to estimate the

traffic congestion within the network.

The implementation of the system shall be categorized into

two (i) service provider oriented surveillance system and

(ii) service user oriented surveillance system. To meet the

required service level agreement with the customers, if the

running containers make the docker host overloaded like

defined monitoring parameters consumed high resources,

and then service provider shall take a decision to move

those specific containers to other idle hosts within the

cloud. Customers, who require only the infrastructure

services, shall request any service provider to host their

container from the provider's network. If the service

provided is not satisfactory, then customer shall move their

container to another cloud service provider to achieve

better performance. In such case, customer shall

independently use this monitoring service.

6. Implementation and Evaluation

We implemented our approach with JAVA by installing

Docker on Ubuntu 14.04 virtual machines and container is

configured as web server over IPv6 network environment.

The software module basically is designed for CoMMon

Probe and CoMMon Server. The probe performed the

tasks of collecting monitoring metrics data. It uses the

"docker stats" [26], the command line tool to display

current status of containers installed on the docker hosts.

The status information extracted every 15 seconds period

converted into JSON format and sent to remote monitor.

The probe also collects data while moving the Containers

and sends this information to server. The pseudo codes for

CoMMon Probe and server are depicted in Figure 4 & 5.

Server module consists of monitoring manager which

receive the data into JSON format and stored into mysql

database. The analytical processing logic within the

manager incorporates Java Script Charts provided by

AMCharts [27]. However the preliminary test is

implemented with mysql as a storage engine, we planned

to implement with time series database like InfluxDB to

properly visualize the real time data. InfluxDB [28] is the

distributed scalable time series database having no any

dependencies. It has REST HTTP API which directly

receives the JSON data with SQL like query language and

store at different points.

Paper ID: NOV164294 http://dx.doi.org/10.21275/v5i6.NOV164294 778

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 4: Pseudo code for Client Probe

Figure 5: Pseudo code for Manager

Figure 6: Status view of Container migration

Figure 7: Container statistics in the source host at different time frame

Paper ID: NOV164294 http://dx.doi.org/10.21275/v5i6.NOV164294 779

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 8: Container statistics after migration in the destination host

The total CPU, Memory and Disk utilization of a host can't

be measured from the container parameters only, however

if a host only runs the containers, then the cornel libraries,

system processes shall have fix amount of utilization.

However this amount shall be of different values with

different host. The graph shows the different pattern of

utilization in the source and destination. This research is

focused on total utilization based on containers that

ultimately take decision for the migration.

7. Conclusion and Future Work

Cloud service providers have to meet the minimum quality

of their services to customers as per service level

agreement. The proposed monitoring system "CoMMon"

provides the complete solution for service providers and

customers to monitor the applications. Distance matters

between service user clients and the server towards the

variances of latency and jitter including the application's

resources utilization factors. Either clients shall take a

decision to move their containers or service providers shall

move the containers transparently within its network. For

both of the cases, our monitoring approach monitors the

container migration events with its resource utilization

status.

Several challenges like (i) Approaches for secure and

efficient container migration (ii) Scalable distributed

monitoring for load balancing with the increase of number

of containers (iii) Clustering of the containers based on

their resource utilizations for proper migration planning

are the area of further research to be considered.

References

[1] Docker Website, https://www.docker.com/

[2] Yunshui L., Yule D, Junxiao G.(2013), "Real‐Time

Dynamic Cloud Monitoring System Based On SLA",

International Journal of Automation and Power

Engineering (IJAPE) Volume 2 Issue 4.

[3] https://opensource.com/resources/what-docker/26-02-

2016

[4] Felter W., Ferreira A., Rajamony R., Rubio J., "An

Updated Performance Comparison of Virtual

Machines and Linux Containers", IBM Research

Report, RC25482 (AUS1407-001) July 21, 2014,

USA

[5] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and

Anthony Liguori (2007), "KVM: the Linux virtual

machine monitor". In the Proceedings of the Linux

Symposium, volume 1, pages 225–230, Ottawa,

Ontario, Canada.

[6] McDougall R. and Anderson J.: "Virtualization

performance: Perspectives and challenges ahead".

SIGOPS Oper. Syst. Rev. 44(4):40–56, December

2010.

[7] ENTICE, Horizon2020 Project, http://www.entice-

project.eu/

[8] K.-K. Lau, W. Lamersdorf, and E. Pimentel (ESOCC

2013), LNCS 8135, pp. 188–195, Springer-Verlag

Berlin Heidelberg.

[9] G. Aceto et al. (2013), "Cloud monitoring: A survey",

Computer Networks 57, 2093–2115

[10] https://www.openstack.org/summit/tokyo-

2015/videos/presentation/monitoring-docker-

container-and-dockerized-applications.

[11] http://devops.com/2014/11/24/docker-vs-vms/

[12] http://axibase.com/docker-monitoring/

[13] Data dog: dynamic infrastructure monitoring tool,

https://www.datadoghq.com/

[14] Zabix: The Enterprise-Class Open Source Monitoring

for Network and Applications,

http://www.zabbix.com

[15] Sysdig Cloud: Infrastructure and Application

Monitoring for Container, https://sysdig.com/

[16] Zhao, Z. et all.(2015), "Developing and operating time

critical applications in clouds: the state of the art and

the SWITCH approach", In the proceedings of

HOLACONF – Cloud Forward: From Distributed to

Complete Computing, Pisa, Italy. Elsevier, Procedia

Computer Science, Vol (68) page (17-28)

[17] Armstrong T.(2001): "Netcat - The TCP/IP Swiss

Army Knife", SANS Institute.

[18] CAdvisor, https://github.com/google/cadvisor

[19] Scout Monitoring, https://scoutapp.com/

[20] Sensu Monitoring, https://sensuapp.org/

[21] Docker-sensu-server,

https://hub.docker.com/r/hiroakis/docker-sensu-

server/

[22] https://prometheus.io/docs/introduction/overview/

[23] Logentries: Log Management & Monitoring System,

https://logentries.com/

[24] Ruxit: All-in-one monitoring for cloud natives,

https://ruxit.com

Paper ID: NOV164294 http://dx.doi.org/10.21275/v5i6.NOV164294 780

https://opensource.com/resources/what-docker
http://www.sciencedirect.com/science/article/pii/S1877050915030653
http://www.sciencedirect.com/science/article/pii/S1877050915030653
http://www.sciencedirect.com/science/article/pii/S1877050915030653
http://www.sciencedirect.com/science/article/pii/S1877050915030653
http://www.sciencedirect.com/science/article/pii/S1877050915030653
http://www.sciencedirect.com/science/article/pii/S1877050915030653
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi_3rnE1tTLAhWCSo4KHRHoBJYQFggdMAA&url=https%3A%2F%2Flogentries.com%2F&usg=AFQjCNGaFk3Sp6UbPeDffkMiXmSvKaLk4A&bvm=bv.117218890,d.c2E

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[25] Sematext,

https://sematext.com/spm/integrations/docker-

monitoring/

[26] Sensu-Docker,

https://sematext.com/blog/2015/06/24/docker-events-

and-metrics-monitoring/

[27] Docker Stats API, https://blog.logentries.com/2015/

02/what-is-the-docker-stats-api/

[28] AMCHARTS, https://www.amcharts.com/

[29] Leighton, B., Cox, S. J., Car, N. J., Stenson, M. P.,

Vleeshouwer, J., & Hodge, J. (2015). "A Best of Both

Worlds Approach to Complex, Efficient, Time Series

Data Delivery in Environmental Software Systems

Infrastructures, Services and Applications" (pp. 371-

379). Springer International Publishing

Author Profiles

Babu Ram Dawadi Received his B.Sc. in

Computer Engineering, M.Sc. in Information

and Communication Engineering and Masters

in Public Administration degree from

Tribhuvan University. He worked as a system & network

engineer and lecturer at Pulchowk Campus, TU for 5 years

and Assistant Director for 3 years at Nepal

Telecommunications Authority. Currently, he is working

as a lecturer at department of electronics and computer

engineering, IOE Pulchowk Campus. His area of interest is

Networking, Distributed Computing and Data Mining.

Rajendra Paudyal received his BE in

Electronics and Communication Engineering in

2010 from Pokhara University, Nepal

Engineering College, Nepal. He worked as an

Assistant engineer for 2 years at Ministry of Information

and Communication. Currently, he is working as a

Network Engineer at Nepal Telecom. His area of interest

is networking, network measurement & traffic analysis

and virtualization.

Paper ID: NOV164294 http://dx.doi.org/10.21275/v5i6.NOV164294 781

