
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

NoSQL in Action - A New Pathway to Database

Priya Badlani

Vivekanand Education Society’s Institute of Technology,

Hashu Advani Memorial Complex, Collector Colony, Chembur East, Mumbai, Maharashtra 400074

Abstract: With the uninterrupted growth, databases are growing very fast and becoming more complex in the Volume, Variety and

Velocity and hence management of database has been the biggest challenge. The data collection is currently managed and exploited

mostly by using conventional data management tools such Relational Database Management Systems(RDMS), profoundly has its

accurate name as SQL or conventional search engines. In the last two decades, the relational databases proved to be powerful and

superior because of its highly semantic features and usage. Soon as Big Data stepped into the IT industry, handling large volume of

data and variety in data type and structure has lead to a tedious job. To handle such Big Data, relational databases are not suitable

because of its strict data constraints, structure, relations and so on. Hence, data aggregation becomes impossible. NoSQL databases

provide an efficient and clear framework to aggregate large volumes of data, structures and relations. Now, to stipulate the problem, the

modeling and migration of data is required. Currently, there is no tool for the migration of Relational databases to NoSQL databases.

This migration requires conversion of relational (sql) database query to NoSQL database query. Relational databases (RDBMS) have

struggled to keep up with the wave of modernization, leading to the rise of NoSQL as the most viable database. The aim of this paper is

to highlight and evaluate the ways in which NoSQL can be used, Data Modeling concept in NoSQL, migration process in NoSQL

database.

Keywords: NoSQL, Roadmap to NoSQL, Data Modeling, Data Migration ETL Approach, Data Loading, Data Extraction.

1. Introduction

1.1 What is NoSQL

NoSQL, which stands for Not Only SQL, is a mechanism for

storage and retrieval of data which is modeled in means other

than the tabular relations used in relational databases. The

easiest way to think of NoSQL, is that of a database which

does not adhering to the traditional relational database

management system (RDMS) structure. It does not employ

SQL to manipulate data. It may not provide full ACID

(atomicity, consistency, isolation, durability) guarantees, but

still has a distributed and fault tolerant architecture. NoSQL

technology was originally created and used by Internet

leaders such as Facebook, Google, Amazon, and others who

required database management systems that could write and

read data anywhere in the world, while scaling and delivering

performance across massive data sets and millions of users.

Figure 1: Symbolic Representation of NoSQL

1.2 Roadmap to NoSQL

NoSQL is a database technology designed to support the

requirements of cloud applications and to overcome the

scale, performance,data model, and data distribution

limitations of relational databases(RDBMS’s).Today,almost

every company and organization has to deliver cloud

applications that personalize their customer’s experience with

their business,with NoSQL being the database technology of

choice for powering such systems.

1.2.1 NoSQL Data Management for Big Data needs

The first reason to use NoSQL is because you have big data

projects to tackle. A big data project is normally recognized

by:

 Data velocity-lots of data coming in very quickly, possibly

from different locations.

 Data variety-storage of data that is structured, semi-

structured, and unstructured.

 Data volume-data that involves many terabytes or

petabytes in size.

 Data complexity-data that is stored and managed in

different locales, data centers, or cloud geo-zones.

As with any emerging yet complex application development

framework, successful implementation relies on an ecosystem

of different components that can be combined to address the

development of the appropriate solution. For big data, that

ecosystem revolves around some key architectural artifacts,

including scalable storage, parallel computing, and data

management paradigms that are united through an application

development platform. And while it is important to review

the ways these different components are blended together,

from the perspective of application development, the

interdependence between analytic algorithms and the

underlying data management framework warrants a more in-

depth review of big data storage paradigms.

The reason is straightforward: when applications already

depend on a traditional relational database (RBDMS) model

and/or a data warehousing approach to data management, it

may be sufficient to port the RDBMS tools as a way of

scaling performance on a big data appliance. However, many

algorithms that expect to take advantage of a high-

performance, elastic, distributed data environment are not

Paper ID: NOV164282 http://dx.doi.org/10.21275/v5i6.NOV164282 872

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

suited to consume data in traditional RDBMS systems. That

means developers must consider different methods for data

management.

These analytic algorithms can employ one of an array of

alternative means for data management that are typically

bundled under the term “NoSQL databases.” The term

“NoSQL” conveys two different concepts. The first suggests

a data management framework that is not a SQL-compliant

one. The second more generally acknowledged (that is, more

frequently presented) meaning is that the term stands for

“Not only SQL,” suggesting environments that combine

traditional SQL (or SQL-like query languages) with

alternative means of querying and access.

1.2.2 NoSQL for Continuous Availability

IBM divides database availability into three sections:

1) High Availability: database and application is available in

scheduled period, when maintenance period system is

temporarily down.

2) Continuous Operation: system available all the time with

no scheduled outages.

3) Continuous Availability: combination of HA and CO,

data is always available, and maintenance is done without

shutdown the system.

This is the reason to consider a NoSQL solution is that your

applications need to be continuously available. Note that this

is different from just “high availability”, where unplanned

downtime, although not desired, is still expected. Continuous

availability describes a feature of systems that can’t go down.

In today’s marketplace, where the competition is just a click

away, downtime can be deadly to a company’s bottom line

and reputation. Average downtime costs vary considerably

across industries, from approximately $90,000 per hour in

the media sector to about $6.48 million per hour for large

online brokerages.

1.2.3 NoSQL for Data Location Independence

A third motivation to use NoSQL is that you need true

location independence with a database. The term “location

independence” practically means the ability to read and write

to a database regardless of where that I/O operation

physically occurs, and to have any write functionality

propagated out from that location, so that it’s available to

users and machines at other sites.

Such functionality is easy to articulate, but difficult to

architect for most traditional databases. Master/slave and

normally shared architectures can sometimes meet the need

for location independent read operations, but writing data

everywhere is a different matter.

The reasons for needing location independence are many and

include servicing customers in many different geographies

and needing to keep data local at those sites for fast access.

1.2.4 NoSQL for More Flexible Data Model:

One of the major reasons IT profeesionals move to a NoSQL

database from a legacy RDBMS is the more flexible data

model that’s found in most NoSQL offerings.

This is the reasons why you might use a NoSQL datastore:

While the relational model works well for a number of use

cases, a NoSQL data model can support many of those use

cases and others that don’t fit well into an RDBMS.

Moreover, a NoSQL datastore is able to accept all types of

data-structured, semi-structured, and unstructured-much more

easily than a relational database. For applications that have a

mixture of datatypes, a NoSQL database is a good option.

2. Data Manipulation in NoSQL

NoSQL data systems provide a more relaxed approach to

data modeling often referred to as schema-less modeling, in

which the semantics of the data are embedded within a

flexible connection topology and a corresponding storage

model. This provides greater flexibility for managing large

data sets while simultaneously reducing the dependence on

the more formal database structure imposed by the relational

database systems.

The flexible model enables automatic distribution of data and

elasticity with respect to the use of computing, storage, and

network bandwidth in ways that don’t force specific binding

of data to be persistently stored in particular physical

locations. NoSQL databases also provide for integrated data

caching that helps reduce data access latency and speed

performance.

The loosening of the relational structure is intended to allow

different models to be adapted to specific types of analyses.

For example, some are implemented as key-value stores,

which nicely align to big data programming models like

MapReduce. Although the “relaxed” approach to modeling

and management paves the way for performance

improvements for analytical applications, it does not enforce

adherence to strictly-defined structures, and the models

themselves do not necessarily impose any validity rules. This

potentially introduces risks associated with ungoverned data

management activities such as inadvertent inconsistent data

replication, reinterpretation of semantics, and currency and

timeliness issues. This article discusses four different NoSQL

approaches:

 Key-value stores

 Document stores

 Tabular stores

 Object stores

a) Key-value stores:

A key-value store is a schema-less NoSQL model in which

data objects are associated with distinct character strings

called keys, similar to the data structure known as a hash

table. Many of the NoSQL architectures rely on variations on

the key-value theme, in that unique keys are employed to

both identify entities and to locate attribute information about

those entities. This pervasive use of unique keys lends a

degree of credibility to this basic approach to a schema-less

model.

As an example, consider the data subset represented in Table

for example, where the key is the name of the automobile

Paper ID: NOV164282 http://dx.doi.org/10.21275/v5i6.NOV164282 873

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

make, while the value is a list of names of models associated

with that automobile make.

The key-value store does not impose any constraints about

data typing or data structure. It is the responsibility of the

consuming business applications to interpret the semantics of

the data organization.

The core operations performed on a key-value store include:

 Get(key), which returns the value associated with the

provided key.

 Put(key, value), which associates the value with the key.

 Multi-get(key1, key2, .., keyN), which returns the list of

values associated with the list of keys.

 Delete(key), which removes the entry for the key from the

data store.

When using a key-value store, ensuring that the values can be

accessed means that the key must be unique. To associate

multiple values with a single key (such as the list of car

models in the example in Table 1), the developer must

consider the representations of those values and how they are

to be linked to the key.

Key-value stores are essentially long, “thin” tables, and can

be indexed by key value to speed data queries (in that there

are not many columns associated with each row). The table’s

rows can be sorted by the key value to simplify finding the

key during a query. A query essentially comprises two steps:

the first step is to calculate the unique key, and the second is

to use that key as an index into the table. Because of the need

to calculate the key to access any information about the

entity, it is difficult to expect to execute general SQL-style

queries such as “what are the most popular models of cars

based on sales?” These kinds of questions would typically be

answered using code, as opposed to a query engine.

While key-value pairs are very useful for both storing the

results of analytical algorithms (such as the number of times

specific phrases occur within massive numbers of documents)

and for producing those results for reports, the model does

pose some potential drawbacks. One weakness is that the

model will not inherently provide any kind of traditional

database capabilities (such as atomicity of transactions, or

consistency when multiple transactions are executed

simultaneously). Those capabilities must be provided by the

application itself.

Another potential weakness: as the volume of data increases,

maintaining unique values as keys may become more

difficult; addressing this issue requires the introduction of

some complexity in generating character strings that will

remain unique among an extremely large set of keys. For

example, a global company may attempt to manage data

associated with millions of customers, many of whom sharing

the same or similar names. Duplication in the set of names

will mean that the name itself will be insufficient when used

to differentiate different entities. The upshot is that additional

data attributes will need to be added to the composed

character string to be used to generate a unique key.

b) Document Stores

A document store is similar to a key-value store in that stored

objects are associated (and therefore accessed via) character-

string keys. The difference is that the values being stored,

which are referred to as “documents,” provide some structure

and encoding of the managed data. There are different

common, standard encodings, including XML (Extensible

Markup Language), JSON (Java Script Object Notation),

BSON (which is a binary encoding of JSON objects). Aside

from these standard approaches to packaging data, other

means of linearizing the data values associated with a data

record or object for the purposes of storage may be

employed.

Figure 1 shows examples of data values collected as a

“document” representing the names of specific retail stores.

Note that while the three examples all represent locations, the

representative models are different. The document

representation embeds the structure of the model, allowing

the meanings of the document values to be inferred by the

application.

One key distinction between a key-value store and a

document store is that the latter embeds attribute metadata

associated with stored content, which essentially provides a

way to query the data based on the contents. For example,

using the example in Figure 1, one could search for all

documents in which “MallLocation” is “Wheaton Mall” that

would deliver a result set containing all documents associated

with any “Retail Store” that is in that particular shopping

mall.

c) Tabular Stores

Tabular or table-based stores are largely descended from

Google’s original BigTable design to manage structured data.

Hadoop’s HBase model is an example of a NoSQL data

management system that evolved from BigTable. (For

background on BigTable design, see this paper via Google’s

research website.)

The tabular model allows sparse data to be stored in a three-

dimensional table that is indexed by a row key (that is used in

a fashion that is similar to the key-value and document

stores), a column key that indicates the specific attribute for

which a data value is stored, and a timestamp that may refer

to the time at which the row’s column value was stored.

As an example, various attributes of a Web page can be

associated with the Web page’s URL: the HTML content of

the page, URLs of other web pages that link to this Web

page, the author of the content. Columns in a BigTable model

are grouped together as “families” and the timestamps enable

management of multiple versions of an object. The

timestamp can be used to maintain history—each time the

content changes, new column affiliations can be created with

the timestamp of the when the content was downloaded.

d) Object Data Stores

Object data stores are essentially a hybrid approach to data

storage and management; in some ways, object data stores

and object databases seem to bridge the worlds of schema-

less data management and the traditional relational models.

Paper ID: NOV164282 http://dx.doi.org/10.21275/v5i6.NOV164282 874

http://research.google.com/archive/bigtable.html

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

On the one hand, approaches to object databases can be

similar to document stores except that while the document

stores explicitly serialize the object so the data values are

stored as strings, object databases maintain the object

structures. That is because they are bound to object-oriented

programming languages such as C++, Objective-C, Java, and

Smalltalk.

As opposed to some of the other NoSQL models , object

database management systems are more likely to provide

traditional ACID compliance (that is Atomicity, Consistency,

Isolation, and Durability)—characteristics that are bound to

database reliability. Yet this is one of the few similarities to a

traditional relational database, and it is important to

remember that object databases are not relational databases

and are not queried using SQL.

3. Data Modeling in NoSQL

Techniques like logical to physical mapping and

normalization / de-normalization have been widely practiced.

However, with the recent emergence of NoSQL databases,

data modeling is facing new challenges.

Generally speaking, NoSQL practitioners focus on physical

data model design rather than the traditional conceptual /

logical data model process.

Contrary to traditional, centralized scale-up systems

(including the RDBMS tier), modern applications run in

distributed, scale-out environments. To accomplish scale-out,

application developers are driven to tackle scalability and

performance first through focused physical data model

design, thus abandoning the traditional conceptual, logical,

and physical data model design process.

With its rigidly fixed schema and limited scale-out capability,

the traditional RDBMS has long been criticized for its lack of

support for big and unstructured data. By comparison,

NoSQL databases were conceived from the beginning with

the capability to store big and unstructured data using

flexible schemas running in distributed scale-out

environments.

3.1 Data model design process:

Relational data model designs are the key to successful

medium- to large-scale software projects. As NoSQL

developers take up business / data model design ownership, a

new problem arises which is the data modeling tools.

Traditional RDBMS logical and physical data models are

made by professionals using tools, such as PowerDesigner or

ER/Studio. With NoSQL, there isn’t a professional-quality

data modeling tools available. Hence, stakeholders review

application source codes in order to uncover data model

information. These stakeholders include non-technical users

such as business owners or product managers. Other

approaches, like sampling actual data from production

databases, can be very tedious. Now here we will require

investment in automation and tooling. NoSQL projects

should use the business and data model design process shown

in the following diagram.

Figure: MongoDB’s document-centric model

4. Data Migration approach (Using ETL) in

NoSQL

Data accumulated by information systems is one of the

important assets for most of the companies. Pushed by

customer demands and pulled by changes in technologies,

companies from time to time migrate from one information

system to another. Hence, data from the legacy system has to

be migrated to the new system. Despite the significance of

this process, knowledge about migration process is limited.

F. Matthes and C. Schulz in fixed a state of the art and

provided a literature review of the data migration problem. F.

Matthes and C. Schulz define the term data migration as

follows: “Tool-supported one-time process which aims at

migrating formatted data from a source structure to a target

data structure whereas both structures differ on a conceptual

and/or physical level.”

Figure : Data Migration Approach

The overall migration approach would be as follows:

A. Data preparation as per the JSON file format.

B. Data extractions into flat files as per the JSON file format

or extraction of data from the processed data store using

custom data loaders.

Paper ID: NOV164282 http://dx.doi.org/10.21275/v5i6.NOV164282 875

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Data loading using in-built or custom loaders into NoSQL

data structure (s).The various activities for all the different

stages in migration are further discussed in detail in below

sections.

4.1 Data Preparation and Extraction

 ETL is the standard process for data extraction,

transformation and loading.

 At the end of the ETL process, reconciliation forms an

important part. This comprises validation of data with the

business processes.

 The ETL process also involves the validation and

enrichment of the data before loading into staging tables.

Figure: Data Prepration and Extration Approach

4.2 Data Preparation Activities

The following activities will be executed during data

preparation:

1) Creation of database objects

2) Necessary staging tables are to be created as per the

requirements based on which will resemble standard

open interface / base table structure.

3) Validate & Transform data before Load from the given

source (Dumps/Flat files).

4) Data Cleansing

5) Filter incorrect data as per the JSON file layout

specifications.

6) Filter redundant data as per the JSON file layout

specifications.

7) Eliminate obsolete data as per the JSON file layout

specifications.

8) Load data into staging area

9) Data Enrichment

10) Default incomplete data

11) Derive missing data based on mapping or lookups

12) Differently structured data (1 record in as-is = multiple

records in to-be).

4.3 Data Extraction Activities (into JSON files)

The following activities will be executed during data

extraction into JSON file formats:

1) Data Selection as per the JSON file layout

2) Creation of SQL programs based on as the JSON file

layout.

3) Scripts or PLSQL programs are created based on the data

mapping requirements and the ETL processes. These

programs shall serve various purposes including the

loading of data into staging tables and standard open

interface tables.

4) Data Transformation before extract as per the JSON files

layout specification and mapping documents.

5) Flat files in form of JSON format for data loading

4.4 Data Loading

NoSQL data structures can be accessed using different

programming languages like (.net, C, Java, Python, Ruby

etc.). Data can be directly loaded from the relational

databases (like Access, SQL Server, Oracle, MySQL, IBM

DB2, etc.) using these programming languages. Custom

loaders could be used to load data into NoSQL data

structure(s) based on the enactment rules, customization level

and the kind of data processing.

5. Conclusion

The aim of this paper was to focus on taxonomy of NoSQL

by explaining its modeling and migration techniques and why

we should use NoSQL for various reasons and benefits and to

show effectively how they are processed to store large

amount of data with high scalability. This work also provides

knowledge about why to select NoSQL database and use it

effectively. As a result it is expected that it would help adopt

NoSQL databases where databases are designed to scale as

they grow.

As the two databases (SQL and NoSQL) behave differently

according to the type of queries used, the choice of which

database to use lies on the type of application the system will

be using. The decision to use a NoSQL data store instead of a

relational model must be aligned with business users’

expectations. The key question: How will the performance of

a NoSQL data store compare to their experiences using

relational models?

As should be apparent, many NoSQL data management

environments are engineered for two key criteria:

 Fast accessibility, whether that means inserting data into

the model or pulling it out via some query or access

method, and

 Scalability for volume, so as to support the accumulation

and management of massive amounts of data.

Both of these criteria are addressed through distribution and

parallelization, and the NoSQL styles described above are

amenable to extensibility, scalability, and distribution.

Moreover, these characteristic features dovetail with

programming models like MapReduce that effectively

manage the creation and running of multiple parallel

execution threads. The key is leveraging data distribution.

Fortunately, distributing a tabular data store or a key-value

store allows many queries and data accesses to be performed

simultaneously, especially when the hashing of the keys maps

Paper ID: NOV164282 http://dx.doi.org/10.21275/v5i6.NOV164282 876

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

to different data storage nodes. NoSQL methods are designed

for high performance computing for reporting and analysis,

and smart data allocation strategies will enable linear

performance scalability in relation to data volume.

There are many new companies who have embraced the

different NoSQL models and are bringing their customized

versions to market. If you are interested in NoSQL, there is

little risk in trying out the different approaches, and it may

make sense to develop a simple “pilot” project model that

can be deployed in different ways to explore the similarities

and differences in terms of ease-of-use, space performance,

and execution speed.

Yet while the performance behaviors for NoSQL data

management systems are appealing, they will not completely

replace a relational database management system. Choosing

to use NoSQL is not necessarily an easy decision. One must

weigh the business requirements as well as the skills needed

to transition from a traditional approach to a NoSQL

approach before committing to the technology.

Choosing to use SQL or NoSQL technologies blindly or

based on popular demand is harboring the illusion that you

automatically made the right choice. Both (SQL and NoSQL)

have pros and cons, and the right architecture depends on the

requirements of the applications you build. That cranky old

SQL database is still tremendously powerful and can reliably

handle your transactional demands with integrity. Look for

NoSQL options when you are nearing the fringe limitations

of relational databases and the vastness of your data handling

or scale of operations simply demands a more distributed

system. With thoughtful choices, you can become the ONE-

free your data and build the next-generation of amazing

applications!

References

[1] Ilya Katsov, “NOSQL DATA MODELING

TECHNIQUES” Available:

https://highlyscalable.wordpress.com/2012/03/01/nosql-

data-modeling-techniques/. [Accessed: March 1, 2012].

(General Internet site)

[2] Donovan Hsieh, “NoSQL Data Modeling” Available:

http://www.ebaytechblog.com/2014/10/10/nosql-data-

modeling/. [Accessed: Oct. 10, 2014]. (General Internet

site)

[3] DataStax, “NoSQL Explained” Available:

http://www.datastax.com/nosql-databases. (General

Internet site)

[4] Nosql-database.org, “LIST OF NOSQL DATABASES”

Available: http://nosql-database.org/. (General Internet

site)

[5] Phani Krishna Kollapur Gandla, “Migration of

Relational Data structure to Cassandra (No SQL) Data

structure” Available:

http://www.codeproject.com/Articles/279947/Migration

-of-Relational-Data-structure-to-Cassandr. [Accessed:

Nov. 11, 2011]. (General Internet site)

[6] MongoDB, “RDBMS to MongoDB Migration Guide”

Available: https://s3.amazonaws.com/info-mongodb-

com/RDBMStoMongoDBMigration.pdf. [Accessed:

May, 2016]. (General Internet site)

[7] M.A. Mohamed, O.G Altrafi, M.O Ismail, “Relational

vs NoSQL Databases: A Survey.” in International

Journal of Computer and Information Technology

(ISSN:2279-0764) Volume 03-Issue, May 03 2014.

(Research paper)

[8] Mital Potey, Megha Digrase,Gaurav Deshmukh, Minal

Nerkar, “Database Migration from Structured Database

to non-Structured Database.” in International

Conference on Recent Trends and Advancements in

Engineering Technology ICRTAET 2015 (ISSN: 0975-

8887), 2015. (Research paper)

[9] Luke P. Issac, “SQL vs NoSQL Databases Differences

Explained” Available:

http://www.thegeekstuff.com/2014/01/sql-vs-nosql-db/

[Accessed: Jan. 14, 2014]. (General Internet site)

[10] Girts Karnitis, Guntis Arnicans, “Migration of

Relational Database to Document-Oriented Database:

Structure - Denormalization and Data Transformation.”

in 7th International Conference on Computational

Intelligence, Communication Systems and Networks

(CICSyN), 2015. (Research paper)

Author Profile

Priya Badlani is currently pursuing her Master’s degree in

Computer Application from Vivekanand Education Society’s

Institute of Technology, Chembur, Mumbai. During the year 2013

she had completed her bachelor’s degree in Computer Science from

Smt. C.H.M College of Science, Commerce, Arts and

Management,Ulhasnagar, Mumbai.

Paper ID: NOV164282 http://dx.doi.org/10.21275/v5i6.NOV164282 877

https://highlyscalable.wordpress.com/author/highlyscalable/
https://s3.amazonaws.com/info-mongodb-com/RDBMStoMongoDBMigration.pdf
https://s3.amazonaws.com/info-mongodb-com/RDBMStoMongoDBMigration.pdf

