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Abstract: Software fault prediction is the most efficient and systematic approach to improve the quality of the software 

products. It is essential to find the defect or fault as quick as possible to improve the quality of the software. In fault 

prediction model development research, combination of metrics significantly can compare the fault prediction of the 

different model. In this study, binary logistic regression technique is used for the prediction of the faults in the software. 

Binary logistic regression measures the relationship between the categorical dependent variable and one or more 

independent variables. This work takes in account the software metrics to improve the quality of the object oriented 

software. We compared different prediction models based on regression analysis for the fault free software. Through the 

results derived, it is empirically established and validated that the performance of binary logistic regression remains 

ordinarily unaffected and simultaneously provides superior performance for the prediction model. 
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1. Introduction 
 

Software metrics are vital tools to audit software quality throughout the project life cycle. Software metrics are indicators of 

many externally recognized quality factors including fault proneness, reusability, and maintenance time of the software code. 

Identifying which classes are more likely to have faults is necessary to guide software testers and reduce the costs of quality 

assurance. Development of software is a creative process where efficiency of each person is different. Software developers and 

researchers are using different techniques and are more concerned about accurately predicting the faults of the software 

product being developed. Important decisions need to be made during the development process of software products. Software 

fault prediction is the process of locating defective modules in software. To produce high quality software, the final product 

should have as few faults as possible. Early detection of software faults could lead to reduced development costs and rework 

effort and more reliable software. So, the study of the fault prediction is important to achieve software quality. 

 

2. Literature Survey 
 

Many researchers have carried out significant work in the area of fault prediction in software. A number of regression 

techniques have been developed to build the fault prediction model from the existing datasets. The purpose of regression 

analysis is to analyze relationships among variables. Lin et al. [1] proposed a hierarchical grey clustering approach in which 

the similarity measure was a globalized modified grey relational grade instead of traditional distances. Pradeep Singh et al. [6] 

present a novel fault prediction technique that reduces the probability of false alarm (pf) and increases the precision for 

detection of faulty modules. The general expectation from a predictor is to get very high probability of false alarm (pf) to get 

more reliable and quality software product. Kuk lida lee et al. [16] demonstrate that logistic regression can be a powerful 

analytical technique for use when the outcome variable is dichotomous. The effectiveness of the logistic model was shown to 

be supported by (a) significance tests of the model against the null model, (b) the significance test of each predictor, (c) 

descriptive and inferential goodness-of-fit indices, (d) and predicted probabilities. Taghi m. Khoshgoftaar et al. [14] compares 

the fault prediction accuracies of six commonly used prediction modelling techniques, CART-LS, CART-LAD, S-PLUS, 

CBR, ANN, and MLR. Walter Bouwmeester et al. [3] compared prediction models that were developed with random intercept 

or standard logistic regression analysis in clustered data. Shilpa Sharma et al. [7] depicts that a variety of software fault 

predictions techniques have been proposed, but there is very less work on the prediction of Level of severity of faults present 

in the software system. Giuseppe Scanniello et al. [8] suggest that defect prediction approaches use software metrics and fault 

data to learn which software properties associate with faults in classes. This paper proposes an intra-release fault prediction 

technique, which learns from clusters of related classes, rather than from the entire system. Yogesh Singh et al. [12] proposed 

several metrics that can be used in predicting important quality attributes such as fault proneness, maintainability, effort, 

productivity and reliability. Banu Diri et al. [11] aims at classifying studies with respect to metrics, methods, and datasets that 

have been used in these prediction papers. PROMISE repository includes a collection of public datasets to build repeatable, 

refutable and verifiable models of software engineering and it was inspired by UCI Machine Learning Repository which is 

widely used by researchers in Machine Learning area. Piotr Gawrysiak et al. [5] The paper contains description of a new 

clustering methodology that partitions data set into clusters, such that regression in determination coefficient for data from 

each cluster is minimized. Jiang et al. [20] using ISBSG data, had built linear regression models with a logarithmic 
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transformation based on function points. Regression model had been used as an activation function in a neural network for the 

calibration of weights in the function point model. 

 

3. Research Objectives 
 

Earlier studies research results of mining the faults with better mining techniques are not leading to the acceptable results for 

fault prediction in software metrics. With the focus on this idea the following objectives of the study are formulated: 

 

 To study previously designed framework developed for fault prediction. 

 To do the classification of heterogeneous data to homogeneous form with normalization of data set. 

 To do clustering of homogeneous dataset. 

 To design threshold of software metrics for the purpose of accuracy. 

 To do prominent clustering and design the fault prediction model. 

 To Improve test process by focusing on fault-prone modules. 

 

4. Proposed Methodology 
 

The methodology used for the detection of the faults in software system is based upon the regression analysis after which fault 

prediction model will be developed. We will introduce a model for fault prediction using logistic regression technique. In this 

work, first step is to normalize the datasets, K-mean clustering techniques for the reduction of heterogeneity. After that GRG is 

calculated based on grey relational analysis and logistic regression is applied on GRG dataset. At last fault prediction model is 

build using based on regression analysis. 

 

4.1. Data Collection 

 

The PROMISE Repository is a research dataset repository specializing in software engineering research datasets. In this study, 

experiments are conducted on version 1.5 of velocity that was taken for analysis. This dataset is taken from promise repository 

which helps us to collect all CK metrics values. 

 

4.2. Tools Used 

 

Weka is a collection of machine learning algorithms for data mining tasks [27]. The algorithms can either be applied directly 

to a dataset or taken from your own Java code. 

 

SPSS (Software Package used for Statistical Analysis) is a Windows based program that can be used to perform data entry and 

analysis and to create tables and graphs. SPSS is capable of handling sizably voluminous amounts of data and can perform all 

of the analyses covered in the text. 

 

4.3. Clustered regression using grey relational analysis: 

 

In this methodology, to reduce the faults that exists in the datasets, the initial focus on clustering of dataset. 

 

The four main steps involved in the algorithm are: 

 

Step 1: Finding feature weights using grey relational analysis. 

Step 2: Clustering the datasets based on feature-weights those found using grey relational algorithm. 

Step 3: Applying regression techniques on the clustered datasets. 

Step 4: After that model for fault prediction by regression techniques 

 

4.4. Grey Relational Analysis 

 

GRA is comparatively a novel technique in software fault prediction. It is used for analyzing the relationships that exists 

between two series. The magnetism of GRA to software fault prediction shoots from its flexibility to design the fault 

prediction for software reliability and better performance of the software. 

 

4.5. Grey Relational Grade:  

 

GRA is used to quantify all the influences of various factors and the relationship among data series that is a collection of 

measurements. The main steps involved in the process are: 

 

Paper ID: NOV164139 http://dx.doi.org/10.21275/v5i6.NOV164139 164



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 6, June 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Data Processing: The first step is the standardization of the various attributes. Every attribute has the same amount of 

influence as the data is made dimensionless by using various techniques like upper bound effectiveness, lower bound 

effectiveness or moderate effectiveness. Upper-bound effectiveness (i.e., larger-the-better) is given by: 

 

 
 

 

Where i=1,2,….,m and k=1,2,…n. 

 

 
 

where;  

 

∆0,i(k) = |x0(k) − xi(k)| is the difference of the absolute value between x0(k) and xi(k); 

∆min = minjmink |x0(k) − xj(k)| is the smallest value of ∆0,j∀j∈ {1, 2, . . . , n}; 

∆max = maxjmaxk |x0(k) −xj(k)| is the largest value of ∆0,j∀j∈ {1, 2, . . . , n}; and 

ζ is the distinguishing coefficient, ζ ∈ (0, 1]. 

 

The ζ value will change the magnitude of γ(x0(k), xi(k). In this study the value of ζ has been taken as 0.5. 

 

4.6. Logistic Regression: 

 

Logistic regression is used to explain the relationship between one dependent binary variable and one or more metric (interval 

or ratio scale) independent variables. Logistic regression can be binomial, ordinal or multinomial. In this work, binary logistic 

regression is used. Binomial or binary logistic regression deals with situations in which the observed outcome for a dependent 

variable can have only two possible types. 

 

The logistic regression can be understood simply as finding the  parameters that best fit: 

 

  
 

Where; x1, x2, x3 are the metric values. 

 

An explanation of logistic regression can begin with an explanation of the standard logistic function. The logistic function is 

useful because it can take an input with any value from negative to positive infinity, whereas the output always takes values 

between zero and one
 
and hence is interpretable as a probability. The logistic function  is defined as follows: 

   

 

4.7. Evaluation Parameters: 

 

After the prediction of fault-proneness data, a confusion matrix, which is useful in the process of performance evaluation, has 

been calculated.The confusion matrix is used to measure the performance of using threshold model in identifying actual fault 

classes using three measures, Recall, Precision, and F-measure. The actual labels of data items are placed along the rows while 

the predicted labels are placed along the columns. 

 

These measures are calculated as follows: 

 

   

 

   

  

   

 

Results & Discussions 
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In order to evaluate the model based upon the proposed methodology, the well established dataset from the Promise repository 

have been used for validating the model. The skewness statistics for WMC, DIT, NOC, CBO, RFC, and LCOM metrics are 

shown in the table I for the the release of velocity 1.5. Many experimental studies have developed the metrics model or used 

the metrics values to predict the faults in the software classes for the better software quality. The descriptive statistics for the 

WMC, DIT, NOC, CBO, RFC and LCOM are shown in tables for the the dataset of velocity. Study includes the discussion of 

results in comparison to previous studies done by Rosenberg [26]. Following are the results discussed for each of the metric 

separately. 

 

 WMC: WMC is an indicator of a class or interface complexity. Large values of WMC should be considered problematic. 

Table II shows the descriptive statistic for the WMC metric on the basis of which performance is evaluated for the velocity 

1.5. The mean value is 8.9 and median is 5 and mode is 5. 

 DIT: DIT is an indicator of depth of inheritance in a class. Large DIT values lead to more complex classes, which are 

difficult to understand, maintain, and reuse. DIT threshold can be used to mark classes that need more attention during both 

testing and maintenance phases. Although there have been many studies on the impact of the depth of inheritance, there is no 

consensus on the acceptable depth. Table II shows the potential descriptive statistic of velocity 1.5 for DIT. In table I, the 

skewness statistics for DIT for velocity 1.5 is -0.504. It is noticed that the mean value for the DIT metric is 1and close to 

median and mode. 

 

Table I: Skewness statistics of velocity 1.5. 
Metric Skewness 

WMC -2.781 

DIT -0.504 

NOC -8.91 

CBO -1.406 

RFC -1.407 

LCOM -9.363 

 

WMC, weighted methods complexity; DIT, depth of inheritance hierarchy; NOC, number of child classes; CBO, coupling 

between objects; RFC, response for class; LCOM, lack of cohesion of methods. 

 

 NOC: NOC is an indicator of both abstraction and inheritance in classes. Large values of NOC could be marked as 

problematic in maintenance and testing phases and could increase the effort required for both phases. NOC thresholds have 

been considered in many previous works, and corresponding threshold values were identified. Table II shows the descriptive 

statistics values of velocity 1.5 for NOC.  

 CBO: CBO is a well-known metric for measuring coupling among classes. Coupling is considering a problem maker in both 

the design and code. High coupling makes a class more complex, difficult to understand and increases testing and 

maintenance efforts. The developers can reduce coupling among classes throughout code cleaning and refactoring 

continuously. However, where high coupling that should be marked by the developers is not certain. There have been many 

threshold values reported previously for the CBO. Table II shows the descriptive statistics values of velocity 1.5 for CBO.  

 RFC: RFC is an indicator of the amount of responsibility amounted to a class. Classes that have large response set are prone 

to faults and need more maintenance. Such classes usually need more testing effort to make sure the class implementation 

meets all requirements assigned to the classes. The response set should be limited with a threshold values for all classes. 

RFC values have a large variance, and there is no one threshold found suitable for all projects. Table II shows the 

descriptive statistics values of velocity 1.5 for RFC.  

 LCOM: LCOM is one of the significant metrics that can be used to evaluate an object-oriented software system. LCOM is 

useful for estimating the amount of cohesion in the system. For example, in an object-oriented system, the LCOM can be 

used to measure the cohesion of each class of the system. A high LCOM value could indicate that the design of the class is 

poor. Table I shows the value of the skewness statistics for LCOM for velocity 1.4, velocity 1.5 and velocity 1.6. Table II 

shows the values of descriptive statistics for all the velocity release. 

 

Table V: Descriptive statistics for velocity 1.5 
Metric Minimum Maximum Median Mean Mode 

WMC 0 152 5 8.9 5 

DIT 1 5 1 1.6 1 

NOC 0 43 0 0.4 0 

CBO 0 74 8 10.6 5 

RFC 0 265 16 22.6 6 

LCOM 0 7900 4 78.8 0 

 

WMC, weighted methods complexity; DIT, depth of inheritance hierarchy; NOC, number of child classes; CBO, coupling 

between objects; RFC, response for class; LCOM, lack of cohesion of methods. 
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In this work, the F-measure of the three metrics is calculated collectively i.e. first of WMC, DIT and NOC and after that of 

CBO, RFC and LCOM in release of velocity 1.5. The value of F-measure calculated from the velocity 1.5 dataset is 

considered as the standard F-measure as its values are close to 1. The value of F-measure of dataset equal to or close to one is 

considered to be the standard F-measure and best dataset version. This standard F-measure of the velocity dataset 1.5 is 

calculated after finding the GRG and applying the binary logistic regression on that GRG and bugs. Therefore dataset of 

velocity 1.5 is considered to be as the best dataset model. 

 

 WMC, DIT and NOC metrics has value of F-measure of 0.790 in velocity 1.5 dataset shown in table V. This value of F-

measure of metrics WMC, DIT and NOC of velocity 1.5 have the value close to 1 and is considered to be the standard F-

measure values for the metrics WMC, DIT and NOC. This also means the value of F-measure close to 1 in the velocity 

release are the faults predicted in that dataset.  

 CBO, RFC and LCOM has value of F-measure to be 0.768 in velocity 1.5 as shown in table V. Low value of F-measure 

means that there are more faults in that velocity dataset. Following tables show the values of precision, recall and their 

corresponding F- measures. 

 

Table V: Values of Precision, Recall and F-measure of velocity 1.5. 
Metric Precision Recall F-measure 

WMC 0.654 1 0.790 

DIT 0.654 1 0.790 

NOC 0.654 1 0.790 

CBO 0.673 0.9 0.768 

RFC 0.673 0.9 0.768 

LCOM 0.673 0.9 0.768 

 

WMC, weighted methods complexity; DIT, depth of inheritance hierarchy; NOC, number of child classes; CBO, coupling 

between objects; RFC, response for class; LCOM, lack of cohesion of methods.  

 

The values of both the Recall and Precision are between 0 and 1. Values that are close to 1 mean better results. If the value is 

1, then the classifier is ideal and without FN or FP. The high values of Recall and Precision do not coincide. In practice, it is 

hard to achieve high Recall and Precision, that is, high Recall occurs often with low Precision. Then the F value of different 

versions of each metric are compared and the above results are concluded. The results show that the performance of most of 

the systems is evaluated by their derived thresholds and then apply it over the other datasets. Following table show the values 

of precision, recall and their corresponding F-measure. 

 

Software metrics has been used to describe the complexity of the program and, to estimate software development time. 

Software metrics elucidate quantitative measurements of the software product or its specifications. Software metrics can be 

used to evaluate software quality from various perspectives including software fault proneness and maintenance effort. A 

software fault is an error, flaw, bug, mistake, failure, or defect in a computer program or system that may generate an 

inaccurate or unexpected outcome, or precludes the software from behaving as intended. Fault prediction is extremely essential 

in the field of software quality and software reliability. Defect prediction is comparatively a novel research area of software 

quality engineering. Many software metrics are available that were proposed to measure the internal structure of object-

oriented systems. We limit our study on only one set of software metrics which is the CK metrics that were proposed and 

validated as measures of six internal attributes of the software classes including coupling, cohesion, complexity, inheritance 

depth, inheritance breadth, and class responsibilities. Many commercial and open-source tools are available to assess and 

provide quality indicators of software code using software metrics. Most of these tools collect metrics and analyze metrics 

using software threshold values that are already injected in these tools. Software metrics can be used to evaluate software 

quality from various perspectives including software fault proneness and maintenance effort. 

 

 The proposed techniques in previous works could not identify thresholds for all CK metrics. 

 The identified thresholds using data distribution (histogram analysis and distribution parameters) were based on either small 

number of projects (except the work of [8]) or no empirical work has been conducted to identify thresholds. 

 The effect of skewness in metrics has not been accounted for although data skewness has been reported frequently. 

 

5. Conclusion 
 

Software fault prediction model is extremely essential in the field of software quality and software reliability. Software fault 

prediction can be regarded as one piece of the solution for timely and cost effective software development. In this work, the 

fault prediction model for the dataset has been done for the evaluation of the best model. The model is based on software 

metrics and faults. For calculating the predicted values of every metric, logistic regression technique is applied to the datasets. 

Logistic regression measures the relationship between the categorical dependent variable and one or more independent 

variables by estimating probabilities using a logistic function, which is the cumulative logistic distribution. On the basis of the 
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f-measure calculated for the datasets using logistic regression, it is concluded that the model with the value of F-measure close 

to 1 is the best model. Value of F-measure close to 1 means that the software is fewer faults predicted and reliable and is good 

quality software model. In future, it is planned to use the linear regression technique for the fault prediction model. 
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