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Abstract: Software metrics encapsulates many software quality factors such as fault proneness, reusability, and maintenance time of 

the software code. Software metrics are important implements to audit software quality throughout the project lifecycle. Software 

metrics are numbers accumulated from software code to assess and evaluate where problems are more probable to occur. In this work it 

is proposed to use a clustering and metrics thresholds based software fault prediction approach and explore it on the dataset, 

accumulated from Promise Data Repository. Grey relational technique is taken into account as the source for normalized values. The 

results of the grey relational analysis are then used to conduct fault-proneness classification based on the accuracy (F-measure) of one 

dataset and compared against the results of another datasets. The result obtain in this work demonstrate the effectiveness of metrics 

thresholds. This work is validated when the fault labels are unavailable and there is a need to check the accuracy of the software. 
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1. Introduction 
 

Software Development is a creative process which is initially 

difficult to plan and estimate exactly. As most software 

projects have some risks, deficient information and the 

required effort. . Software metrics are surrogates of many 

software quality factors such as fault proneness, reusability, 

and maintenance effort. Software metrics are numbers 

collected from software code to assess and evaluate where 

problems are more probable to happen. These numbers are 

used to flag warnings of the problematic parts of software 

code using threshold values. This study focuses on how the 

combination of clustering and threshold techniques can 

reduce the potential problems in effectiveness of predictive 

efficiency due to heterogeneity of the data. This methodology 

is exploring it on three datasets, collected from Promise data 

repository. The major focus is on a practical problem that 

occurs when the fault labels for modules are unavailable. The 

results of this study demonstrate that the metrics thresholds 

and clustering is effective than the standalone threshold 

technique. 

 

2. Literature Survey 

 

Many researchers have carried out consequential work in the 

area of fault prediction. The literature survey is carried out 

from the designing of CK metrics to expand different 

techniques utilized for the modeling of fault prediction. CK 

metric suit is most commonly used metrics for the object- 

oriented (OO) software. Chidamber et al. [1] developed and 

implemented a set of CK metrics for Object Oriented designs. 

These metrics were mainly focus on quantification theory and 

reflect the views of trained OO software developers. Basili et 

al. [2] investigated the suite of object-oriented (OO) design 

metrics introduced by Chidamber. They define various 

measures for all metric that represented the expected 

connection between the metrics and the fault-proneness of the 

software. Then the hypotheses are tested and prove that some 

of the metrics were very good predictors, while others were 

not. Basili also investigated on the results of using the CK 

metrics suite to predict the quality (fault proneness) of student 

C++ programs. . Large metric values were found correlated 

with large number of defects (Cartwright and Shepperd [3]; 

Subramanyam and Krishnan [9]. In other studies, large values 

were found correlated with bad design and faults. Erni and 

Lewerentz [4] have proposed to use the mean and standard 

deviation of a metric without accounting for the skewness of 

metric data. Rosenberg has suggested analyzing the effect of 

the CK metrics on software quality by using histograms and 

has suggested a set of threshold values for the CK metrics, 

these values can be used to select classes for inspection or 

redesign [5]. Shatnawi et al. [6] have used parameters of the 

logistic regression to identify thresholds for CK metrics based 

on particular levels of risk. 

 

Nagpal et al.[9] have proposed more efficient estimation sub 

models. A feature weighted grey relational based clustering 

method has been integrated with regression techniques. The 

feature weighted grey relational clustering algorithm uses 

grey relational analysis for weighting features and also for 

clustering. The results obtained in their paper showed that 

clustering could decrease the effect of irrelevant projects on 

accuracy of estimations. The widely used approach used by 

the companies is LOC which is old fashioned but easier for 

assessments [7]. Ammar [10] presents the performance of K-

Mean clustering algorithm, depending upon various mean 

values input methods. The mean values are calculated from 

the centroid of the particular number of cluster groups. The 

clustering algorithm consists to two stages with first stage 

forming the clusters-calculating centroid and the second stage 

determining the outliers. They investigated the following 

methods for assigning the mean values in K-Mean clustering 

algorithm. a) Taking the first k‟ values as centroid. b) 

Random centroid generation. c) User specified centroid. 

 

R.R. Rathod [11] compares the results obtained with 

preprocessing by normalization and without preprocessing by 

normalization of the data set. The basic algorithm detects 

outer properties in two steps. In first step clusters of original 

data are formed by utilizing k-mean clustering method. In the 

second step, it obtain the data elements from each cluster 
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those are distant from their centers. Then the data elements 

that are extracted are processed to determine their outlierness 

with the help of statistical measures. The experiments on 

dissimilar datasets confirm that preprocessing the data set 

refines the result. Mamta Mittal, R.K.Sharma and V.P.Singh 

[12] proposed that Clustering is one of the data mining 

techniques that divides the database into clusters such that 

data objects in same clusters are kindred and data objects that 

associating to different cluster are dissimilar. Analyzers have 

developed many algorithms for clustering but this paper focus 

on well defined partitioning technique i.e k-means with 

threshold based clustering technique. k-means algorithm 

partition the database into k clusters where k is the parameter 

defined by user, beside this it is sensitive to outliers and intial 

seed selection. S. Singh and K.S kahlon [13] derived a 

threshold metrics value against the bad smell using risk 

analysis at five different levels. They had taken three versions 

of Mozilla Firefox as a dataset to validate the study. Their 

results show that some metrics have threshold values at 

various risk levels that are of practical use in predicting faulty 

classes. Finally they designated one threshold value from the 

various risk levels by determining the largest area under 

receiver operating character curve for faulty classes at 

corresponding risk levels. 

 

3. Research Objectives 
 

Research results of earlier studies of mining the faults with 

better mining techniques are not leading to the acceptable 

results for fault prediction in software metrics. With the focus 

on this idea the following objectives of the study are 

formulated: 

 

 To study existing framework developed for fault prediction. 

 To classify the heterogeneous data to homogeneous form 

with normalization of data set. 

 To perform clustering of homogeneous dataset. 

 To designate threshold of software metrics for each 

clustered set of values. 

 To analyse the accuracy of designated threshold values by 

applying it over the other data sets. 

 

4. Proposed Methodology 
 

The methodology used for the prediction of faults in software 

system is based on the clustering and metrics threshold 

approach and explore it on datasets collected from Promise 

data repository. In this work, first step is to normalize the 

datasets, K-mean clustering techniques namely, centroids (ck) 

and Euclidean distance for the reduction of heterogeneity. 

Normalization technique is used to transform all metrics. 

Clustering methods can be used to group the modules having 

similar metrics by using similarity measures or dissimilarity 

measures (distances). 

 

4.1. Data Collection 

 

The PROMISE Repository is a research dataset repository 

specializing in software engineering research datasets. In this 

study, experiments are conducted on three versions (1.4, 1.5, 

and 1.6) of velocity were taken for analysis. These datasets 

are taken from promise repository which helps us to collect 

all CK metrics values. 

 

4.2. Tools Used 

 

Weka is a collection of machine learning algorithms for data 

mining tasks [14]. The algorithms can either be applied 

directly to a dataset or taken from your own Java code. 

 

SPSS (Software Package used for Statistical Analysis) is a 

Windows based program that can be used to perform data 

entry and analysis and to create tables and graphs. SPSS is 

capable of handling sizably voluminous amounts of data and 

can perform all of the analyses covered in the text. 

 

4.3. Clustering of Dataset: 

 

In this methodology, to reduce the heterogeneity that exists in 

the datasets, the initial focus is on clustering of dataset. 

Clustering is performing with the weka tool. The four main 

steps involved are: 

 

 Step 1: Normalization: Each data series is normalized 

according to formula of data processing, so that they have 

same degree of influence on the dependent variable. 

 Step 2: Clustering the datasets based on the normalized 

data those found using grey relational analysis. 

 Step 3: Threshold analysis of the clustered datasets. 

 Step 4: After that accuracy is checked by calculating 

precision and recall.  

 

Grey Relational Grade: 

 

GRA is used to quantify all the influences of various factors 

and the relationship among data series that is a collection of 

measurements. The main steps involved in the process are: 

 

Data Processing: The first step is the standardization of the 

various attributes. Every attribute has the same amount of 

influence as the data is made dimensionless by using various 

techniques like upper bound effectiveness, lower bound 

effectiveness or moderate effectiveness. Upper-bound 

effectiveness (i.e., larger-the-better) is given by: 

 

 
 

Where i=1,2,….,m and k=1,2,…n. 

 
 

where;  

 

∆0,i(k) = |x0(k) − xi(k)| is the difference of the absolute value 

between x0(k) and xi(k); 

∆min = minjmink |x0(k) − xj(k)| is the smallest value of ∆0,j∀j∈ 

{1, 2, . . . , n}; 

∆max = maxjmaxk |x0(k) −xj(k)| is the largest value of ∆0,j∀j∈ 

{1, 2, . . . , n}; and 

ζ is the distinguishing coefficient, ζ ∈ (0, 1]. 
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The ζ value will change the magnitude of γ(x0(k), xi(k). In this 

study the value of ζ has been taken as 0.5. 

 

4.4 Threshold Derivation: 

 

In this work, it is propose to use grey relational values to find 

threshold using the mean and standard deviation. All metrics 

data are converted to GRG values and then the parameters, 

the mean, and the standard deviation are calculated. To find a 

threshold value for a metric using the distribution parameters, 

the following calculations is used: 

 

 
  
 Where μ is the mean and Ω is the standard deviation 

 

   

  

   

 

These threshold values can be used to detect where more 

faults could be introduced. The values of T are produced for 

the system under investigation for all six metrics. The derived 

metrics are then evaluated to identify the faulty classes, and to 

analyze the accuracy of the designed threshold, it is applied 

over the other datasets. On the basis of the threshold value, 

we classify the classes into two groups: faulty classes, if a 

metric value >= T and not faulty classes, if a metric value <T. 

Classes in the first group are considered more fault prone than 

the second group. The classes that exceed a threshold value 

can be selected for more testing to improve their internal 

quality. 

 

4.5 Evaluation Parameters: 

 

After the prediction of fault-proneness data, a confusion 

matrix, which is useful in the process of performance 

evaluation, has been calculated.The confusion matrix is used 

to measure the performance of using threshold model in 

identifying actual fault classes using three measures, Recall, 

Precision, and F-measure. The actual labels of data items are 

placed along the rows while the predicted labels are placed 

along the columns. 

 

Table 4.5.1: Confusion Matrix 
Predicted labels 

Actual labels 
False 

(Non Faulty) 

True 

(Fault) 

False 

(Non Faulty) 
True Negative False Positive 

True 

(Fault) 
False negative True Positive 

  

These measures are calculated as follows: 

 

  (vi) 

 

  (vii) 

  

  (viii)  

 

5. Results and Discussions 
 

Threshold values provide a meaningful interpretation for 

metrics and provide a surrogate to identify classes at risk. The 

threshold values derived in this study will help to predict the 

faulty classes. The result shows the practical threshold values 

only for WMC, DIT, NOC, CBO, RFC, and CBO metrics for 

predicting the accuracy in the three releases of velocity. Many 

experimental studies have developed the metrics model or 

used the metrics values to predict the quality of the software 

both for design deviance and for error proneness. Study 

includes the discussion of results in comparison to previous 

studies done by Rosenberg [26]. In the following, the results 

are discussed for each metric separately. 

 

 WMC thresholds: WMC is an indicator of a class or 

interface complexity. Large values of WMC should be 

considered problematic. There are many threshold values 

reported previously for WMC, there is still no consensus on 

a particular value. Table II shows the calculated thresholds 

values after GRG and actual threshold values on the basis 

of which performance is evaluated for the velocity 1.4. The 

mean value is 8.8 and median is 5 and mode is 5. 

 DIT thresholds: DIT is an indicator of depth of inheritance 

in a class. Large DIT values lead to more complex classes, 

which are difficult to understand, maintain, and reuse. DIT 

threshold can be used to mark classes that need more 

attention during both testing and maintenance phases. 

Although there have been many studies on the impact of the 

depth of inheritance, there is no consensus on the 

acceptable depth. Table II shows the potential threshold 

values of velocity 1.4 for DIT. Table III summarizes the 

descriptive statistics for DIT threshold values. It is noticed 

that the mean value for the DIT metric is 2 and close to 

median and mode. 

 

Table I: Skewness statistics of velocity 1.4. 
Metric Skewness 

WMC -2.41 

DIT -1.41 

NOC -8.28 

CBO -1.28 

RFC -1.34 

LCOM -3.45 

 

WMC, weighted methods complexity; DIT, depth of 

inheritance hierarchy; NOC, number of child classes; CBO, 

coupling between objects; RFC, response for class; LCOM, 

lack of cohesion of methods. 

 

Table II: Threshold values for all metrics of velocity 1.4. 

Metric 
Threshold value 

after GRG 

Actual Threshold 

values 

WMC 1.006 2 

DIT 0.99 2 

NOC 1.050 17 

CBO 0.934 8 

RFC 0.968 15 

LCOM 1.069 33 
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WMC, weighted methods complexity; DIT, depth of 

inheritance hierarchy; NOC, number of child classes; CBO, 

coupling between objects; RFC, response for class; LCOM, 

lack of cohesion of methods. 

 

  NOC thresholds: NOC is an indicator of both abstraction 

and inheritance in classes. Large values of NOC could be 

marked as problematic in maintenance and testing phases 

and could increase the effort required for both phases. NOC 

thresholds have been considered in many previous works, 

and corresponding threshold values were identified. Table 

II shows the potential threshold values of velocity 1.4 for 

NOC. Table III summarizes the descriptive statistics for 

NOC threshold values found. 

  CBO thresholds: CBO is a well-known metric for 

measuring coupling among classes. Coupling is considering 

a problem maker in both the design and code. High 

coupling makes a class more complex, difficult to 

understand and increases testing and maintenance efforts. 

The developers can reduce coupling among classes 

throughout code cleaning and refactoring continuously. 

However, where high coupling that should be marked by 

the developers is not certain. There have been many 

threshold values reported previously for the CBO. Table II 

shows the calculated thresholds values after GRG and 

actual threshold values on the basis of which performance 

is evaluated for the velocity 1.4 

  RFC threshold: RFC is an indicator of the amount of 

responsibility amounted to a class. Classes that have large 

response set are prone to faults and need more 

maintenance. Such classes usually need more testing effort 

to make sure the class implementation meets all 

requirements assigned to the classes. The response set 

should be limited with a threshold values for all classes. 

RFC values have a large variance, and there is no one 

threshold found suitable for all projects. Table II shows the 

actual threshold values after GRG. Table III summarizes 

the descriptive statistics for RFC threshold values found for 

the various versions of velocity. 

 

Table III; Descriptive statistics for threshold values in 

velocity 1.4. 
Metric Minimum Maximum Median Mean Mode 

WMC 0 148 5 8.8 5 

DIT 1 4 2 1.8 1 

NOC 0 1 0 0.42 0 

CBO 0 65 7 10.6 10 

RFC 0 236 18 23.6 22 

LCOM 0 1188 4 46.1 0 

 

WMC, weighted methods complexity; DIT, depth of 

inheritance hierarchy; NOC, number of child classes; CBO, 

coupling between objects; RFC, response for class; LCOM, 

lack of cohesion of methods. 

 

On the basis of the threshold value, the classes are classified 

into two groups: faulty classes, if a metric value >= T and not 

faulty classes, if a metric value <T. Classes in the first group 

are considered more fault prone than the second group. The 

classes that exceed a threshold value can be selected for more 

testing to improve their internal quality. Then the bugs of the 

metrics are collected from promise repositories of the project. 

Promise repositories analyze the history of the classes by 

studying the code repositories. Then compare the faulty or 

non faulty results with the bugs. From this, confusion matrix 

is created. The confusion matrix is used to measure the 

performance of using thresholds model in identifying actual 

fault classes using three measures, Recall, Precision, and F-

measure. According to many researchers the higher value or 

value close to 1 of F-measure is considered as the best case 

and the value close to 0 is considered as the worse case. So 

the higher values of F-measure for each metric is more 

preferable. Then these values are evaluated according to their 

True Positive rate and False Negative rate. 

 

After comparing the TP and FN rate, results are concluded. If 

the count of True Positive is more, then it is concluded that 

the bugs are truly detected and if the false negative count is 

more, then it is proved that there are no bugs in those classes 

and this study also gives the results without bugs. The values 

of both the Recall and Precision are between 0 and 1. Values 

that are close to 1 mean better results. If the value is 1, then 

the classifier is ideal and without FN or FP. The high values 

of Recall and Precision do not coincide. In practice, it is hard 

to achieve high Recall and Precision, that is, high Recall 

occurs often with low Precision. Then the F value of different 

versions of each metric are compared and the above results 

are concluded. The results show that the performance of most 

of the systems is evaluated by their derived thresholds and 

then apply it over the other datasets. Following table show the 

values of precision, recall and their corresponding F-measure. 

 

Table IV: Values of Precision, Recall and F-measure of 

velocity 1.4. 
Metric Precision Recall F-measure 

WMC 0.66 0.92 0.76 

DIT 0.63 0.44 0.51 

NOC 1 0.007 0.013 

CBO 0.78 0.59 0.67 

RFC 0.84 0.65 0.73 

LCOM 0.19 0.72 0.29 

 

WMC, weighted methods complexity; DIT, depth of 

inheritance hierarchy; NOC, number of child classes; CBO, 

coupling between objects; RFC, response for class; LCOM, 

lack of cohesion of methods. 

 

Software quality is a vital part of the software engineering, 

and tools are important to audit and assess the software 

quality. Software quality is assessed indirectly by measuring 

the internal structure of software using validated metrics. 

There are many software metrics that were proposed to 

measure the internal structure of object-oriented systems. 

This work is limited to only one set of software metrics, the 

CK metrics, which were proposed and validated as measures 

of six internal attributes of the software classes including 

coupling, cohesion, complexity, inheritance depth, inheritance 

breadth, and class responsibilities. Many commercial and 

open-source tools are available to assess and provide quality 

indicators of software code using software metrics. Most of 

these tools collect metrics and analyze metrics using software 

threshold values that are already injected in these tools. 

Software metrics can be used to evaluate software quality 
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from various perspectives including software fault proneness 

and maintenance effort.  

 

The results obtained in previous work do not report the same 

threshold for a metric. It is noticed that previously reported 

thresholds are not similar and different from findings in this 

work. However, this work is distinguished from the previous 

work in the following points: 

 

 The proposed techniques in previous works could not 

identify thresholds for all CK metrics. 

 The identified thresholds using data distribution (histogram 

analysis and distribution parameters) were based on either 

small number of projects or no empirical work has been 

conducted to identify thresholds. 

 The effect of scenes in metrics has not been accounted for 

although data skewness has been reported frequently. 

 

Following values of threshold are chosen as the best 

performance threshold values. The below table describe the 

values of proposed threshold of every metric: 

 

Table V: Proposed threshold values 

Metric 
Proposed Threshold 

values. 

WMC 2 

DIT 2 

NOC 17 

CBO 8 

RFC 15 

LCOM 33 

 

WMC, weighted methods complexity; DIT, depth of 

inheritance hierarchy; NOC, number of child classes; CBO, 

coupling between objects; RFC, response for class; LCOM, 

lack of cohesion of methods. 

 

6. Conclusion and Future scope 
 

Finding where quality can be improved is a vital issue in 

software quality. Appropriate metric tools are needed to 

identify the classes that are more fault prone during both 

development and testing phases. This work resolves the 

heterogeneity problems that exist in the datasets. In order to 

confirm the effectiveness of proposed work, three different 

data sets have been used for fault prediction. The statistical 

results showed better fault classification using clustering 

based threshold values. It is suggested to use clustering 

technique on software metrics before assessing software 

quality. The results confirm that the proposed feature 

weighted grey relational clustering algorithm performed 

appreciably for software effort estimation. 

 

In the future, it is plan to apply hierarchical clustering 

methods such as agglomerative clustering and fuzzy 

clustering methods on these datasets. Future work will 

consider comparing K-means clustering and thresholds based 

approach to different clustering based approaches. 
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