
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Metrics Threshold Analysis On the Basis of

Clustering Technique for Fault Prediction

Harlivleen Kaur
1
, Prof. Jatinder Singh

2
, Prof. Birinder Singh

3

1,2,3Department of Computer Science and Engineering, Baba Banda Singh Bahadur Engineering College

Fatehgarh Sahib,(Punjab) India

Abstract: Software metrics encapsulates many software quality factors such as fault proneness, reusability, and maintenance time of

the software code. Software metrics are important implements to audit software quality throughout the project lifecycle. Software

metrics are numbers accumulated from software code to assess and evaluate where problems are more probable to occur. In this work it

is proposed to use a clustering and metrics thresholds based software fault prediction approach and explore it on the dataset,

accumulated from Promise Data Repository. Grey relational technique is taken into account as the source for normalized values. The

results of the grey relational analysis are then used to conduct fault-proneness classification based on the accuracy (F-measure) of one

dataset and compared against the results of another datasets. The result obtain in this work demonstrate the effectiveness of metrics

thresholds. This work is validated when the fault labels are unavailable and there is a need to check the accuracy of the software.

Keywords: Software metrics, CK metrics, Threshold, Software quality

1. Introduction

Software Development is a creative process which is initially

difficult to plan and estimate exactly. As most software

projects have some risks, deficient information and the

required effort. . Software metrics are surrogates of many

software quality factors such as fault proneness, reusability,

and maintenance effort. Software metrics are numbers

collected from software code to assess and evaluate where

problems are more probable to happen. These numbers are

used to flag warnings of the problematic parts of software

code using threshold values. This study focuses on how the

combination of clustering and threshold techniques can

reduce the potential problems in effectiveness of predictive

efficiency due to heterogeneity of the data. This methodology

is exploring it on three datasets, collected from Promise data

repository. The major focus is on a practical problem that

occurs when the fault labels for modules are unavailable. The

results of this study demonstrate that the metrics thresholds

and clustering is effective than the standalone threshold

technique.

2. Literature Survey

Many researchers have carried out consequential work in the

area of fault prediction. The literature survey is carried out

from the designing of CK metrics to expand different

techniques utilized for the modeling of fault prediction. CK

metric suit is most commonly used metrics for the object-

oriented (OO) software. Chidamber et al. [1] developed and

implemented a set of CK metrics for Object Oriented designs.

These metrics were mainly focus on quantification theory and

reflect the views of trained OO software developers. Basili et

al. [2] investigated the suite of object-oriented (OO) design

metrics introduced by Chidamber. They define various

measures for all metric that represented the expected

connection between the metrics and the fault-proneness of the

software. Then the hypotheses are tested and prove that some

of the metrics were very good predictors, while others were

not. Basili also investigated on the results of using the CK

metrics suite to predict the quality (fault proneness) of student

C++ programs. . Large metric values were found correlated

with large number of defects (Cartwright and Shepperd [3];

Subramanyam and Krishnan [9]. In other studies, large values

were found correlated with bad design and faults. Erni and

Lewerentz [4] have proposed to use the mean and standard

deviation of a metric without accounting for the skewness of

metric data. Rosenberg has suggested analyzing the effect of

the CK metrics on software quality by using histograms and

has suggested a set of threshold values for the CK metrics,

these values can be used to select classes for inspection or

redesign [5]. Shatnawi et al. [6] have used parameters of the

logistic regression to identify thresholds for CK metrics based

on particular levels of risk.

Nagpal et al.[9] have proposed more efficient estimation sub

models. A feature weighted grey relational based clustering

method has been integrated with regression techniques. The

feature weighted grey relational clustering algorithm uses

grey relational analysis for weighting features and also for

clustering. The results obtained in their paper showed that

clustering could decrease the effect of irrelevant projects on

accuracy of estimations. The widely used approach used by

the companies is LOC which is old fashioned but easier for

assessments [7]. Ammar [10] presents the performance of K-

Mean clustering algorithm, depending upon various mean

values input methods. The mean values are calculated from

the centroid of the particular number of cluster groups. The

clustering algorithm consists to two stages with first stage

forming the clusters-calculating centroid and the second stage

determining the outliers. They investigated the following

methods for assigning the mean values in K-Mean clustering

algorithm. a) Taking the first k‟ values as centroid. b)

Random centroid generation. c) User specified centroid.

R.R. Rathod [11] compares the results obtained with

preprocessing by normalization and without preprocessing by

normalization of the data set. The basic algorithm detects

outer properties in two steps. In first step clusters of original

data are formed by utilizing k-mean clustering method. In the

second step, it obtain the data elements from each cluster

Paper ID: NOV164130 http://dx.doi.org/10.21275/v5i6.NOV164130 158

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

those are distant from their centers. Then the data elements

that are extracted are processed to determine their outlierness

with the help of statistical measures. The experiments on

dissimilar datasets confirm that preprocessing the data set

refines the result. Mamta Mittal, R.K.Sharma and V.P.Singh

[12] proposed that Clustering is one of the data mining

techniques that divides the database into clusters such that

data objects in same clusters are kindred and data objects that

associating to different cluster are dissimilar. Analyzers have

developed many algorithms for clustering but this paper focus

on well defined partitioning technique i.e k-means with

threshold based clustering technique. k-means algorithm

partition the database into k clusters where k is the parameter

defined by user, beside this it is sensitive to outliers and intial

seed selection. S. Singh and K.S kahlon [13] derived a

threshold metrics value against the bad smell using risk

analysis at five different levels. They had taken three versions

of Mozilla Firefox as a dataset to validate the study. Their

results show that some metrics have threshold values at

various risk levels that are of practical use in predicting faulty

classes. Finally they designated one threshold value from the

various risk levels by determining the largest area under

receiver operating character curve for faulty classes at

corresponding risk levels.

3. Research Objectives

Research results of earlier studies of mining the faults with

better mining techniques are not leading to the acceptable

results for fault prediction in software metrics. With the focus

on this idea the following objectives of the study are

formulated:

 To study existing framework developed for fault prediction.

 To classify the heterogeneous data to homogeneous form

with normalization of data set.

 To perform clustering of homogeneous dataset.

 To designate threshold of software metrics for each

clustered set of values.

 To analyse the accuracy of designated threshold values by

applying it over the other data sets.

4. Proposed Methodology

The methodology used for the prediction of faults in software

system is based on the clustering and metrics threshold

approach and explore it on datasets collected from Promise

data repository. In this work, first step is to normalize the

datasets, K-mean clustering techniques namely, centroids (ck)

and Euclidean distance for the reduction of heterogeneity.

Normalization technique is used to transform all metrics.

Clustering methods can be used to group the modules having

similar metrics by using similarity measures or dissimilarity

measures (distances).

4.1. Data Collection

The PROMISE Repository is a research dataset repository

specializing in software engineering research datasets. In this

study, experiments are conducted on three versions (1.4, 1.5,

and 1.6) of velocity were taken for analysis. These datasets

are taken from promise repository which helps us to collect

all CK metrics values.

4.2. Tools Used

Weka is a collection of machine learning algorithms for data

mining tasks [14]. The algorithms can either be applied

directly to a dataset or taken from your own Java code.

SPSS (Software Package used for Statistical Analysis) is a

Windows based program that can be used to perform data

entry and analysis and to create tables and graphs. SPSS is

capable of handling sizably voluminous amounts of data and

can perform all of the analyses covered in the text.

4.3. Clustering of Dataset:

In this methodology, to reduce the heterogeneity that exists in

the datasets, the initial focus is on clustering of dataset.

Clustering is performing with the weka tool. The four main

steps involved are:

 Step 1: Normalization: Each data series is normalized

according to formula of data processing, so that they have

same degree of influence on the dependent variable.

 Step 2: Clustering the datasets based on the normalized

data those found using grey relational analysis.

 Step 3: Threshold analysis of the clustered datasets.

 Step 4: After that accuracy is checked by calculating

precision and recall.

Grey Relational Grade:

GRA is used to quantify all the influences of various factors

and the relationship among data series that is a collection of

measurements. The main steps involved in the process are:

Data Processing: The first step is the standardization of the

various attributes. Every attribute has the same amount of

influence as the data is made dimensionless by using various

techniques like upper bound effectiveness, lower bound

effectiveness or moderate effectiveness. Upper-bound

effectiveness (i.e., larger-the-better) is given by:

Where i=1,2,….,m and k=1,2,…n.

where;

∆0,i(k) = |x0(k) − xi(k)| is the difference of the absolute value

between x0(k) and xi(k);

∆min = minjmink |x0(k) − xj(k)| is the smallest value of ∆0,j∀j∈

{1, 2, . . . , n};

∆max = maxjmaxk |x0(k) −xj(k)| is the largest value of ∆0,j∀j∈

{1, 2, . . . , n}; and

ζ is the distinguishing coefficient, ζ ∈ (0, 1].

Paper ID: NOV164130 http://dx.doi.org/10.21275/v5i6.NOV164130 159

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The ζ value will change the magnitude of γ(x0(k), xi(k). In this

study the value of ζ has been taken as 0.5.

4.4 Threshold Derivation:

In this work, it is propose to use grey relational values to find

threshold using the mean and standard deviation. All metrics

data are converted to GRG values and then the parameters,

the mean, and the standard deviation are calculated. To find a

threshold value for a metric using the distribution parameters,

the following calculations is used:

 Where μ is the mean and Ω is the standard deviation

These threshold values can be used to detect where more

faults could be introduced. The values of T are produced for

the system under investigation for all six metrics. The derived

metrics are then evaluated to identify the faulty classes, and to

analyze the accuracy of the designed threshold, it is applied

over the other datasets. On the basis of the threshold value,

we classify the classes into two groups: faulty classes, if a

metric value >= T and not faulty classes, if a metric value <T.

Classes in the first group are considered more fault prone than

the second group. The classes that exceed a threshold value

can be selected for more testing to improve their internal

quality.

4.5 Evaluation Parameters:

After the prediction of fault-proneness data, a confusion

matrix, which is useful in the process of performance

evaluation, has been calculated.The confusion matrix is used

to measure the performance of using threshold model in

identifying actual fault classes using three measures, Recall,

Precision, and F-measure. The actual labels of data items are

placed along the rows while the predicted labels are placed

along the columns.

Table 4.5.1: Confusion Matrix
Predicted labels

Actual labels
False

(Non Faulty)

True

(Fault)

False

(Non Faulty)
True Negative False Positive

True

(Fault)
False negative True Positive

These measures are calculated as follows:

 (vi)

 (vii)

 (viii)

5. Results and Discussions

Threshold values provide a meaningful interpretation for

metrics and provide a surrogate to identify classes at risk. The

threshold values derived in this study will help to predict the

faulty classes. The result shows the practical threshold values

only for WMC, DIT, NOC, CBO, RFC, and CBO metrics for

predicting the accuracy in the three releases of velocity. Many

experimental studies have developed the metrics model or

used the metrics values to predict the quality of the software

both for design deviance and for error proneness. Study

includes the discussion of results in comparison to previous

studies done by Rosenberg [26]. In the following, the results

are discussed for each metric separately.

 WMC thresholds: WMC is an indicator of a class or

interface complexity. Large values of WMC should be

considered problematic. There are many threshold values

reported previously for WMC, there is still no consensus on

a particular value. Table II shows the calculated thresholds

values after GRG and actual threshold values on the basis

of which performance is evaluated for the velocity 1.4. The

mean value is 8.8 and median is 5 and mode is 5.

 DIT thresholds: DIT is an indicator of depth of inheritance

in a class. Large DIT values lead to more complex classes,

which are difficult to understand, maintain, and reuse. DIT

threshold can be used to mark classes that need more

attention during both testing and maintenance phases.

Although there have been many studies on the impact of the

depth of inheritance, there is no consensus on the

acceptable depth. Table II shows the potential threshold

values of velocity 1.4 for DIT. Table III summarizes the

descriptive statistics for DIT threshold values. It is noticed

that the mean value for the DIT metric is 2 and close to

median and mode.

Table I: Skewness statistics of velocity 1.4.
Metric Skewness

WMC -2.41

DIT -1.41

NOC -8.28

CBO -1.28

RFC -1.34

LCOM -3.45

WMC, weighted methods complexity; DIT, depth of

inheritance hierarchy; NOC, number of child classes; CBO,

coupling between objects; RFC, response for class; LCOM,

lack of cohesion of methods.

Table II: Threshold values for all metrics of velocity 1.4.

Metric
Threshold value

after GRG

Actual Threshold

values

WMC 1.006 2

DIT 0.99 2

NOC 1.050 17

CBO 0.934 8

RFC 0.968 15

LCOM 1.069 33

Paper ID: NOV164130 http://dx.doi.org/10.21275/v5i6.NOV164130 160

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

WMC, weighted methods complexity; DIT, depth of

inheritance hierarchy; NOC, number of child classes; CBO,

coupling between objects; RFC, response for class; LCOM,

lack of cohesion of methods.

 NOC thresholds: NOC is an indicator of both abstraction

and inheritance in classes. Large values of NOC could be

marked as problematic in maintenance and testing phases

and could increase the effort required for both phases. NOC

thresholds have been considered in many previous works,

and corresponding threshold values were identified. Table

II shows the potential threshold values of velocity 1.4 for

NOC. Table III summarizes the descriptive statistics for

NOC threshold values found.

 CBO thresholds: CBO is a well-known metric for

measuring coupling among classes. Coupling is considering

a problem maker in both the design and code. High

coupling makes a class more complex, difficult to

understand and increases testing and maintenance efforts.

The developers can reduce coupling among classes

throughout code cleaning and refactoring continuously.

However, where high coupling that should be marked by

the developers is not certain. There have been many

threshold values reported previously for the CBO. Table II

shows the calculated thresholds values after GRG and

actual threshold values on the basis of which performance

is evaluated for the velocity 1.4

 RFC threshold: RFC is an indicator of the amount of

responsibility amounted to a class. Classes that have large

response set are prone to faults and need more

maintenance. Such classes usually need more testing effort

to make sure the class implementation meets all

requirements assigned to the classes. The response set

should be limited with a threshold values for all classes.

RFC values have a large variance, and there is no one

threshold found suitable for all projects. Table II shows the

actual threshold values after GRG. Table III summarizes

the descriptive statistics for RFC threshold values found for

the various versions of velocity.

Table III; Descriptive statistics for threshold values in

velocity 1.4.
Metric Minimum Maximum Median Mean Mode

WMC 0 148 5 8.8 5

DIT 1 4 2 1.8 1

NOC 0 1 0 0.42 0

CBO 0 65 7 10.6 10

RFC 0 236 18 23.6 22

LCOM 0 1188 4 46.1 0

WMC, weighted methods complexity; DIT, depth of

inheritance hierarchy; NOC, number of child classes; CBO,

coupling between objects; RFC, response for class; LCOM,

lack of cohesion of methods.

On the basis of the threshold value, the classes are classified

into two groups: faulty classes, if a metric value >= T and not

faulty classes, if a metric value <T. Classes in the first group

are considered more fault prone than the second group. The

classes that exceed a threshold value can be selected for more

testing to improve their internal quality. Then the bugs of the

metrics are collected from promise repositories of the project.

Promise repositories analyze the history of the classes by

studying the code repositories. Then compare the faulty or

non faulty results with the bugs. From this, confusion matrix

is created. The confusion matrix is used to measure the

performance of using thresholds model in identifying actual

fault classes using three measures, Recall, Precision, and F-

measure. According to many researchers the higher value or

value close to 1 of F-measure is considered as the best case

and the value close to 0 is considered as the worse case. So

the higher values of F-measure for each metric is more

preferable. Then these values are evaluated according to their

True Positive rate and False Negative rate.

After comparing the TP and FN rate, results are concluded. If

the count of True Positive is more, then it is concluded that

the bugs are truly detected and if the false negative count is

more, then it is proved that there are no bugs in those classes

and this study also gives the results without bugs. The values

of both the Recall and Precision are between 0 and 1. Values

that are close to 1 mean better results. If the value is 1, then

the classifier is ideal and without FN or FP. The high values

of Recall and Precision do not coincide. In practice, it is hard

to achieve high Recall and Precision, that is, high Recall

occurs often with low Precision. Then the F value of different

versions of each metric are compared and the above results

are concluded. The results show that the performance of most

of the systems is evaluated by their derived thresholds and

then apply it over the other datasets. Following table show the

values of precision, recall and their corresponding F-measure.

Table IV: Values of Precision, Recall and F-measure of

velocity 1.4.
Metric Precision Recall F-measure

WMC 0.66 0.92 0.76

DIT 0.63 0.44 0.51

NOC 1 0.007 0.013

CBO 0.78 0.59 0.67

RFC 0.84 0.65 0.73

LCOM 0.19 0.72 0.29

WMC, weighted methods complexity; DIT, depth of

inheritance hierarchy; NOC, number of child classes; CBO,

coupling between objects; RFC, response for class; LCOM,

lack of cohesion of methods.

Software quality is a vital part of the software engineering,

and tools are important to audit and assess the software

quality. Software quality is assessed indirectly by measuring

the internal structure of software using validated metrics.

There are many software metrics that were proposed to

measure the internal structure of object-oriented systems.

This work is limited to only one set of software metrics, the

CK metrics, which were proposed and validated as measures

of six internal attributes of the software classes including

coupling, cohesion, complexity, inheritance depth, inheritance

breadth, and class responsibilities. Many commercial and

open-source tools are available to assess and provide quality

indicators of software code using software metrics. Most of

these tools collect metrics and analyze metrics using software

threshold values that are already injected in these tools.

Software metrics can be used to evaluate software quality

Paper ID: NOV164130 http://dx.doi.org/10.21275/v5i6.NOV164130 161

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

from various perspectives including software fault proneness

and maintenance effort.

The results obtained in previous work do not report the same

threshold for a metric. It is noticed that previously reported

thresholds are not similar and different from findings in this

work. However, this work is distinguished from the previous

work in the following points:

 The proposed techniques in previous works could not

identify thresholds for all CK metrics.

 The identified thresholds using data distribution (histogram

analysis and distribution parameters) were based on either

small number of projects or no empirical work has been

conducted to identify thresholds.

 The effect of scenes in metrics has not been accounted for

although data skewness has been reported frequently.

Following values of threshold are chosen as the best

performance threshold values. The below table describe the

values of proposed threshold of every metric:

Table V: Proposed threshold values

Metric
Proposed Threshold

values.

WMC 2

DIT 2

NOC 17

CBO 8

RFC 15

LCOM 33

WMC, weighted methods complexity; DIT, depth of

inheritance hierarchy; NOC, number of child classes; CBO,

coupling between objects; RFC, response for class; LCOM,

lack of cohesion of methods.

6. Conclusion and Future scope

Finding where quality can be improved is a vital issue in

software quality. Appropriate metric tools are needed to

identify the classes that are more fault prone during both

development and testing phases. This work resolves the

heterogeneity problems that exist in the datasets. In order to

confirm the effectiveness of proposed work, three different

data sets have been used for fault prediction. The statistical

results showed better fault classification using clustering

based threshold values. It is suggested to use clustering

technique on software metrics before assessing software

quality. The results confirm that the proposed feature

weighted grey relational clustering algorithm performed

appreciably for software effort estimation.

In the future, it is plan to apply hierarchical clustering

methods such as agglomerative clustering and fuzzy

clustering methods on these datasets. Future work will

consider comparing K-means clustering and thresholds based

approach to different clustering based approaches.

References

[1] Shyam R. Chidamber and Chris F. Kemerer (1994), “A

Metrics Suite for Object Oriented Design,” IEEE

transactions on software engineering, Vol. 20, No. 6.

[2] V.R. Basili, L.C. Briand, and W.L. Melo, “A Validation

of Object- Oriented Design Metrics as Quality

Indicators,” IEEE Trans.Software Eng., vol. 22, no. 10,

Oct. 1996.

[3] Cartwright M, Shepperd M (2000), “An empirical

investigation of an object-oriented software system”.

IEEE Transactions on Software Engineering.

[4] Erni K, Lewerentz C. (1996), “Applying design–metrics

to object–oriented frameworks”. Proc. of the Third

International Software Metrics Symposium; pp. 25–26.

[5] Rosenberg L. (1996), “Metrics for object oriented

environment.” Proc., EFAITP/AIE 3rd Annual Software

Metrics Conference.

[6] Shatnawi R. (2010), “Quantitative investigation of the

acceptable risk levels of object–oriented metrics in open–

source systems”. IEEE Transactions on Software

Engineering, Vol. 27, No. 4, pp. 216–225.

[7] Duda, R.O., & Hart, P.E. (1973), “Pattern classification

and scene analysis”, John Wiley &Sons, Inc.,New York.

[8] Subramanyam R, Krishnan M. (2003) “Empirical

analysis of CK metrics for object-oriented design

complexity: implications for software defects”. IEEE

Transactions on Software Engineering, pp. 142-150.

[9] Geeta Nagpal, Moin uddin and Arvinder kaur (2013),

“Estimating Project Development Effort Using Clustered

Regression Approach”. CCSIT, SIPP, AISC, PDCTA -

2013 pp. 493–507.

[10] Ammar. W. Mohemmed (2010),” Particle Swarm

Optimization for Outlier Detection”, Vol. 07, pp. 220-

231.

[11] R. R. Rathod and Dr. B. F. Momin (2013),” Performance

evaluation of Outlier Detection with Normalized Data

Set”, Department of Information Technology Walchand

College of Enginee- ing Sangli, Maharashtra State, India,

pp. 134-144.

[12] Mamta Mittal, R.K.Sharma and V.P.Singh(2014),”

Validation of k-means and Threshold based Clustering

Method” International Journal of Advancements in

Technology. Vol. 5, No. 2, pp. 153-160.

[13] Satwinder Singh , K.S Kahlon (2014) , ” Object oriented

software metrics threshold values at quantitative

acceptable risk level “ Springer, Vol. 2, No. 3, pp. 191–

205.

[14] http://www.cs.waikato.ac.nz/ml/weka/

Paper ID: NOV164130 http://dx.doi.org/10.21275/v5i6.NOV164130 162

