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Abstract:  In this paper, we consider the optimal dividend and financing control problem in the risk model with non-cheap proportional 

reinsurance and two kinds of transaction costs. The company control its reserves by paying dividends, issuing equity and taking 

reinsurance. In our model, the objective is to find the strategy which maximizes the expected present value of the dividends payout minus 

the equity issuance until the time of ruin. We solve the optimal control problem and identify the optimal strategy by constructing two 

categories of suboptimal control problems, one is the classical model without equity issuance,the other never goes bankrupt by equity 

issuance. 
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1. Introduction 
 

Optimal dividend strategy, as one major public concern to 

assess the stability of companies that take on risks, has become 

an increasingly popular topic in actuarial research. Its origin 

can be traced as early as the work of De Finetti [1], which 

introduced a discrete-time model for optimal dividend. De 

Finetti showed that the optimal strategy is a barrier strategy 

and determined the optimal level of the barrier by maximizing 

the expected discounted dividends paid to shareholders. Since 

then the optimal dividend strategy has been studied 

extensively. Some recent works include Højgaard and Taksar 

[2], Gerber and Shiu [3], Cadenillas et al.[4], Avanzi et 

al.[5]and so on. 

 

Meanwhile, in the real financial market, equity issuance is an 

important approach for the insurance company to earn profit 

and reduce risk. Both equity issuance and dividend are 

important issues in modeling insurance risk. Sethi and Taksar 

[6] recently considered the model for the company that 

controls its risk exposure by issuing new equity and paying 

dividends to shareholders and discussed the problem using 

singular and impulse controls. Løkka and Zervos [7] studied 

the combined optimal dividend and equity issuance problem 

by taking into account the possibility of bankruptcy. The 

aforementioned authors mainly focused on developing optimal 

dividend and equity issuance strategies. They did not consider 

reinsurance. 

 

Reinsurance plays a significant role in both theory and practice 

of insurance risk modeling. It is a means by which a direct 

insurance company can transfer the risks from their liabilities 

to a second insurance carrier. The three popular types of 

reinsurance strategies are stop-loss reinsurance, proportional 

reinsurance and excess-of-loss reinsurance.  The academia and 

practitioners have paid more attention to the proportional 

reinsurance and excess-of-loss reinsurance. Some works on 

the excess-of-loss reinsurance are  Asmussen et al.[8], Choulli 

et al.[9], Centeno [10] and so on. Some literature on the 

proportional reinsurance includes He and Liang [11], [12] and 

so on. He and Liang [11], [12]incorporated the proportional 

reinsurance strategy in the combined dividend and equity 

issuance problem using both singular and mixed 

singular-impulse controls. 

 

Motivated by these works, we consider the optimal dividend 

and financing control problem of an insurance company. We 

assume that the company can control its reserves by paying 

dividends, issuing equity and taking non-cheap proportional 

reinsurance. Moreover, there exists a minimal reserve 

requirement. And some costs will be incurred: reinsurance 

company will need more premium for the risk ceded by the 

insurer; fixed cost is generated by advisory and consulting fees 

when payingdividends; proportional transaction costs are 

generated by the tax. In this paper, we consider the dividends 

payout and the equity issuance as the reflecting and absorbing 

boundaries of the reserve process, respectively. Firstly, we 

study the solutions of two models: one is diffusion control 

model without equity issuance, the other stands for the model 

with equity issuance to meet the minimal reserve requirement, 

so it never goes bankrupt. Our objective is to maximize the 

expected present value of the dividends payout minus the 

equity issuance until the time of ruin. Then we prove that the 

value functions and the optimal strategies are the solutions of 

the two control problems. We provide a rigorous and detailed 

mathematical analysis for the combined effect of the optimal 

dividend, equity issuance and non-cheap proportional 

reinsurance strategies. 

 

The rest of the paper is organized as follows. In Section 2, we 

introduce the control model of an insurance company with 

non-cheap proportional reinsurance. In Section 3, we present 

two lemmas for proving the main results of this paper. In 

Section 4, we construct solutions of two categories of 

suboptimal models. In Section 5, we verify the value function 

and the optimal strategy with the corresponding solution in 
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either category of suboptimal models, tightly connecting with 

the relationships among the parameters. 

 

The Model 
 

Let 0( , ,{ } , )t t P F F  be a filtered probability space and 

tB  is a standard Brownian motion on this probability space, 

where 
tF represents the information available at time t  and 

any decision made up to time t  is based on this information. 

To pay dividends to the share holders, the insurance company 

has to determine the times and amounts of dividend payments. 

A dividend stream is defined by 

  ……,21,｜iξ,τ ii ：L  ,where 
ii ξ,τ  are the time and 

amount of the i th dividend payment, respectively. We 

assume that  ……,21,｜i,τi   is a sequence of increasing 

stopping times and  ……,21,｜i,ξi   is a sequence of 

non-negative,i.i.d random variables.Let tL  denote the total 

amount of dividends paid until time t . Then we can define 

 





1i

tt IL iτ ξ:
i

, where 
EI is the indicator function of the event 

E . We suppose the liquid reserves of the insurance company 

must satisfy some minimal reserve requirement. In this case, 

we assume that the company needs to keep its reserves above 

m , 0m is the minimal reserve requirement. The company 

is considered bankrupt as soon as the reserves fall below m . 

However, to avoid bankruptcy, the company should issue 

some equity. We denote 
tG  as the total amount raised by 

issuing equity from time 0 to t . We assume that the process 

 0tGt ,  is  
0t t

adapted

F , increasing, right-continuous 

with left limits and 0)(0 G . By the reinsurance strategy 

 10，ta (the proportional retention level), the amount of 

dividend 
tL  and equity issuance

tG , the liquid reserve of the 

insurance company evolves according to the stochastic 

equation,  

     iτ0 0
1

λ- λ-μ ξ ,
i

t t

t s s s s tt
n

R x a d a dB I G





         (2.1)  

where x is the initial reserve, 0 is the relative  safety 

loading of the insurer and  is the relative safety loading of the 

reinsurer. 

 

The proportional reinsurance is cheap when   . We 

consider the case of   which is called non-cheap 

proportional reinsurance. 

 

We will define an admissible strategy as follows. 

 

A strategy  G;……,ξ,ξ;……,τ,τ;, 21210 tat  is said to 

be admissible if 

(i) }{ ta is an  
0t t

adapted

F process and １０  ])1,[( taP  for 

any 0t . 

(ii)For each ,……1,2,i 
tFt  }{τi
and 

ii τξ F . 

(iii) }{ tL is  
0

progressivet t
ly


F measurable, increasing and 

cádlág,  0tGt ,  is  
0t t

adapted

F , increasing, cádlág 

and mR
i

 τiξ . 

(iv) 0.,)τlimP( i 


tt
i

０  

(v) 
t tL G   ０, here ,t t t tt t

L L L G G G      . 

 

We write  x for the space of these admissible policies. For 

each  x , we write }0｜t{  
tRR ：  for the surplus 

progress of the company associated with  . The surplus 

progress is written as follows, 

  i{τ }0 0
1

λ- λ-μ ξ .
i

t t

t s s s s tt
n

R x a d a dB I G

    





        
            (2.2) 

 

The ruin time correspond to  is defined as: 

}:0{inf:τ mRt t    and τ is an 
t F stopping time. For 

each dividend payment, we have to pay a fixed set-up cost 

),(0 K , which is independent of the amount of the payment. 

Let １１  be a positive number. Then 
１１   is the tax rate if 

the dividend is taxed. Consequently, the amount of the money 

that the shareholder receives is ξiK   １
 if the amount ξ i

 of 

the liquid assets is distribute. In the meanwhile, the 

shareholders must pay out  １２２  g to meet the amount of 

g as new equity of the company. 
２ is the proportional 

transaction cost generated by the issuance of equity. 

 

So our optimal control problem is to maximize the expected 

present value of the dividends payout minus the equity 

issuance before bankruptcy, i.e. we need to find   

maximizing the following performance function as 

  τ - s

2{τ τ } 0
, ( ξ ) e .i

i
i s

i

V x E e K I dG




 


     







 
    

 
 １
１

(2.3) 

 

The optimal value function is defined as 

  ).,(sup)( 


xVxV


                                                    (2.4) 

 

In addition, the minimal reserve requirement asks for 0)( xV , 

for mx  . To solve the optimization problem, our must 

determine the value function )(xV and the optimal strategy   

satisfies ),()(  xVxV . 

 

Next, we will divide   into two parts:  2  and 

 2 . 

 

(I) We discuss the case of  2 . It includes two 

situations: (i) 
01 xdx   and (ii) 

00 xd  , where 

  ，，， 0

-)y
2

(

-y

2

-2

0
2

20 













  udyuGGx

u











  

d  is a nonnegative constant.  

First, we consider the situation (i): 
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((i) will be discussed in Section 3 and Theorem 4.1 and 

Theorem 4.2. (ii) and (II):  2  will be discussed after 

that.) 

 

3. Two Primary Lemmas 
 

In this section we give two main lemmas before proving the 

Theorems in Section 4. 

 

 Lemma 3.1.   

There exists a unique   mKxx 


,,,, 111  satisfying the 

following equation in 
1x , 

 
 

 
  ，01211

212

11

121

21 





 xmbxmb
e

bbb

b
e

bbb

b                          (3.1)     

where 
2

22

22

22

1

2
,

2







 



 bb . 

Proof. Denote the left-hand side of (3.1)by )( 1xk . 

Differentiating )( 1xk with respect t 1x ,we have  

     
0' 1211

12

11

12

21
1 









 xmbxmb
e

bb

b
e

bb

b
xk

 . 

Then )( 1xk  is a strictly decreasing function of 
1x . )( 1xk  

reaches its maximum at m on  ,m .We deduce  

,)( 1 xk as 1x and 

 
   

0)(
212

11

121

21 






bbb

b

bbb

b
mk

 , 

thus (3.1) has a unique solution 
1x  and mx 

1
. 

 

Lemma 3.2 

There exists a unique   mxx 
 2111 ,,,,  satisfying 

the following equation in 
1x , 

    ，2
21

11

12

21 1211 








 xmbxmb
e

bb

b
e

bb

b                   (3.2) 

where 
21, bb  are the same as in Lemma 3.1. 

 

Proof. Denote the left-hand side of (3.2) by )( 1xh . 

 Differentiating )( 1xh with respect to 
1x , we have  

   
0)(' 1211

21

211

12

121
1 









 xmbxmb
e

bb

bb
e

bb

bb
xh

 . 

Then )( 1xh is a strictly increasing function of 
1x . )( 1xh    

reaches its minimum at m  on  ,m . We deduce 

  )( 1xh , as  1x , and   

21

21

11

12

21)( 









bb

b

bb

b
mh

, thus (3.2) has a unique solution 

1x  and mx 
1

. 

 

4. Two categories of suboptimal solutions 
 

In this section, we consider two categories of suboptimal 

control problems. 

 

Let    0,, AAA La be the control process for the company 

in which equity issuance is not permitted.We define the 

associated optimal value function as 

),(sup)( AA xVxV
A


 

 , for mx  .  

 

Let    BG,, BBB La  be the control process for the 

company with equity issuance procedures. In this case, the 

insurance company will never go bankrupt. The associated 

optimal value function is  ),(sup)( BB xVxV
B


 

 , mx  .   

According to (2.4), it follows that  )(,)(max)( xVxVxV BA  

for mx  . 

 

The two suboptimal solutions will play a key role in 

constructing the optimal policy  . Thus we will first study 

the solutions to the two suboptimal control problems. 

 

4.1 The solution to the problem without equity issuance 

  

In this subsection, our objective is to maximize the expected 

discounted dividends payout. 

 

Theorem 4.1.   We assume 


 11 xx , where 

1
x and 

1
x are defined in Lemmas 3.1. and 3.2. Then the 

function f defined by 

































,

),()()(

,

,)()()(

)(

1

11112

1

)(

2

)(

11

xx

xfxxxf

xxm

exCexCxf

xf

xdxbxdxb



0201

11

 (4.1.1) 

satisfies the following HJB equation and the boundary 

conditions for  mx  , 

 
 

 )(4.1.2                                                  

),(',)()(')-()(''
2

1
maxmax

       0,)()(

1

22

10,



















xfxf

xfxfxfaxfa
a



0.)( mf                                                                                     (4.1.3) 

Moreover, for mx  , 

,)(' 2xf                                 (4.1.4) 

 where
21, bb are the same as in Lemma 3.1, )(,)( 1211 

xCxC  are 

defined by 

;
)(e

)(,
)(e

)(
212

)(

11
12

121

)(

21
11

012011 bbb

b
xC

bbb

b
xC

dxxbdxxb












 .)()(sup)( 1 yfyxKxf
xym




  

 

Proof.   By the standard theory of optimal control, we use the 

same method as in Wendell and Fleming [13] and Højgaard 

and Taksar  [2] to get a function f  satisfying the following 

HJB equations, 

 
 

)(4.1.5

.0,)(''

,,)('

,

0,)()(')-()(''
2

1
max

1

11

1

22

10,
































xxxf

xxxf

xxm

xfxfaxfa
a





Then differentiating w.r.t a  for the first equation of (4.1.5), 

we can find 
)(''

)('
)(

2 xf

xf
xa






. 

 Since )(xa  belongs to  10， , putting the expression )(xa  
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into the first equation of (4.1.5), we get  

0)-(
)('

)(

)(''2

)('
2

2

 




xf

xf
c

xf

xf . 

Denoting 
)('

)(
)(

xf

xf
xp 

, we get that  

.,
)(

)()
2

(c

)('
2

2

mx
xcp

xp

xp 












 

By a simple calculation, we find that there exists a nonnegative 

constant d such that  

 1( )
( ) ( ), ,

'( )

f x
p x G x d x m

f x

     

where )(1G  denote the inverse function of G . 

 

We have  


  )(
2

)( dxcGxa 1 . 

Since ][0,1)( xa , we have 







 


2c

2
0


Gxdx . The above 

expression requires 
0xd  and  2 .Therefore, we need to 

consider two cases:  2  and  2 . 

 

First we suppose 
01 xdx   under the case of  2 . 

Since )(xa  is an increasing function, we know 1)( xa  on 

 1, xm , which implies that the first equation of (4.1.5) 

becomes 

    )(4.1.7,0,)()(')-()(''
2

1
1

22 xmxxfxfaxfa    

Therefore 

 ;,)()()( 1

)(

2

)(

11 xmxexCexCxf
xdxbxdxb


 ，0201

11

111112 ),()()( xxxfxxxf   . 

Due to the continuity of the function )(' xf  and )('' xf  at point 

1x , we can derive that 

0,)()()(''

,)()()('

)(2

22

)(2

111

1

)(

22

)(

111









0201

0201

11

11

xdxbxdxb

xdxbxdxb

ebxCebxCxf

ebxCebxCxf 
i.e.

)(e
)(,

)(e
)(

212

)(

11
12

121

)(

21
11

012011 bbb

b
xC

bbb

b
xC

dxxbdxxb








 . 

From  0)( mf , we have  

0)()()(
)(

2

)(

11 
 0201

11

xdmbxdmb
exCexCmf , 

which implies that 
1x  is a solution of (3.1). Using Lemma 3.1, 

we have 


 11 xx . Similarly, if 


 11 xx , then 0)( mf . So 


 110)( xxmf . 

We will prove that  f satisfies (4.1.2)-(4.1.4). Noticing that 

11, 21   , it suffices to prove the following: 

 
 

 
 

)(4.1.8

.

0,)()(')-()(''
2

1
max

;,)(',)('

0,)()(')-()(''
2

1
max

1

22

10,

121

22

10,















































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The proof is as follows: for 


 1xx , 
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Using the same way as in Højgaard and Taksar [2], it is easy to 

prove that  
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holds for 

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then )(' xf is a decreasing function on ],[ 1
xm . Moreover, 

11 )(' 

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1)(' xf  are obvious. 

The problem remaining is to prove that the solution f  satisfies 

 )()()()()( 1 xfKyxyfxfxf ：  
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xhxhmf by Lemma 3.2. 

 

4.2. The solution to the problem with equity issuance 

 

In this subsection, our aim is to maximize the expected 

discounted dividends payout minus the expected discounted 

equity issuance over all reinsurance, dividends payout and 

equity issuance strategies. This kind of insurance companies 

will never go bankrupt. 

 

Theorem 4.2. Assume that  


 11 xx , where 
1x  and 

1x are 

defined in Lemmas 3.1 and 3.2. Then the function g  defined 
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satisfies the following HJB equation and the boundary 

conditions: 
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0)(' mg                             (4.2.3) 

where 
21, bb are the same as in Lemma 3.1, )(),( 1111 

xCxC  are 

defined as same as in Theorem 4.1 by replacing 
1x  with 

1x . 

 

Proof. Considering the time value of money leads us to the 

conclusion that it is optimal to postpone the new equity 

issuance as long as possible. If we issue equity at the reserve 

n  prior to m , 
2)(' ng  and )(' xg  is a decreasing function, 

so )('' ng  must be 0 to meet the requirement
2)(' xg .But it 

is not compatible with  10,a . Thus we know that it is 

optimal to issue equity only when the reserves become m . 
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By the same argument as in Theorem 4.1, we know the 

function g should be characterized by 
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Doing the same procedures as in proof of Theorem 4.1, we can 

prove the function )(xg of (4.2.4) and (4.2.5) has the same 

form as )(xf , and 
1x satisfies the following equation 
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By Lemma 3.2, we have 
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We will prove that the solution g satisfies the conditions 

mentioned in Theorem 4.2. It suffices to prove the following: 
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  and )()( xgxg  . 

Using the similar procedures as in Section 4.1, we can prove 

the above affirms. 

We will verify 0)( mg , i.e. 
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(ii) 
00 xd  .  

 By the same argument as in (i), we can get the  Lemmas and 

Theorems that are similar to Lemma 3.1, Lemma 3.2 and 

Theorem 4.1,Theorem 4.2, where )(xf  and )(xg are defined 

as follow. The corresponding value functions are defined by 
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, respectively. 
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(II)  2 . 

 

In this case, the company does not need to reinsure, i.e. 

1)( xa  for all mx  . By the same argument as in (i), we can 

get the Lemmas and Theorems that are similar to Lemma 3.1, 

Lemma 3.2 and Theorem 4.1, Theorem 4.2, where )(
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5. The Solution to the General Problem 

 
We now study the optimal control problem without any 

restriction on the issuance of equity. 

Theorem 5.1. Let concave function 2)( Cx   satisfy the 

following HJB equation and boundary condition : for mx  , 
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Then ),()( xVx   for any admissible policy  . 

 Proof. Since )(x  is a concave, increasing and continuous 

function on  ,m . From )()( xx  , we know 
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By substituting this inequality into the above equation and  

taking expectation on both sides, we obtain 
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 By the definition of   and 
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easy to prove that 
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The main results of this paper are the following. 

 

Theorem 5.2.   (I)  2 . 
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defined by (2.4), (4.1.1) and (4.2.1) respectively. )(xVA
and 
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 are defined in Section 4. 
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  where )(
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If 
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 11 xx , then )()()( xVxfxV B . The optimal 

policy ),,(
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where )(
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According to Lions and Sznitman [14] we know that the 

processes ),,(


  GLa and ),,(


  GLa  

are uniquely determined by (5.4) and (5.5). 

 (ii) 
00 xd  . 

   All the results are similar to 
01 xdx  . 

  (II)  2 .  

All the results are same to the case 
01 xdx  . In this case, 

the insurance company doesn't need to reinsure. 

 

Proof. (I) If


 11 xx , the function )(xf satisfies the HJB 

equation and boundary conditions. And )(xf  also satisfies 
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So )(xf  is the value function corresponding to  , and 

)()( xVxf A . Using the results )()()( xVxVxf A , we have 

)()()( xVxVxf A . 
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and boundary conditions. Thus )(xg satisfies conditions (5.1) 

and (5.2) in Theorem 5.1. So )()()( xVxVxg B by Theorem 
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So )(xg is the value function corresponding to  ,and 

)()( xVxg B . Using the results )()()( xVxVxg B , we have 

)()()( xVxVxg B . The proof of (ii) and (II) is similar to (i), 

so we omit it here. 

 

6. Conclusion 
 

In this paper, we consider the optimal dividend and financing 

control problem in the risk model with non-cheap proportional 

reinsurance. The management of the company controls the 

reinsurance rate, dividends payout and the equity issuance to 

maximize the expected present value of the dividends payout 

minus the equity issuance until the ruin time. To be more 
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realistic, we assume the minimal reserve restrictions and 

consider the fixed and proportional transaction costs. The 

former cost is generated by the advisory and consulting as well 

as the latter is generated by the tax. It is the first time to study  

non-cheap proportional reinsurance in an insurance model 

with this method to solve the optimal control problem, which 

construct two categories of suboptimal control problems, one 

is the classical model without equity issuance, the other never 

goes bankrupt by equity issuance. We verify the optimal 

strategy and the value function with the corresponding 

solution in either category of suboptimal models, tightly 

connecting with the relationships among the parameters. 
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