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Abstract: Let X be a locally compact Hausdorff space and let Fn(X) = limit of the function spaces of maps of X into certain spaces of 

type K(π, n)  

 each of the spaces of sequences  

SP∞∑n, SP∞∑n+1, SP∞∑n+2,...,SP∞ ∑n+m,... is a space of type K(π, n), 

 SP∞∑n → SP∞∑n+1 → 2SP∞∑n+2 →...→ m SP∞ ∑n+m → m+1SP∞∑n+m+1 →... . 

For any space X ,we define the space Fn, m(X) = (m SP∞∑n+m)X topologized by the compact-open topology.  

The aim of this paper is i) to investigate the properties of Fn, m(X); ii) to study of the object Fn, m . 
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1. Introduction 
 

Throughout this paper we assume that all spaces are locally 

compact Hausdorff space, also all spaces are of type K(π, n). 

 

Now we recall the following the following definitions and 

statements:- 

 

Definition 1.1:  
Let π be a discrete group. A based topological space X is 

called an Eilenberg-MacLane space of type K(π; n), where 

n  1; if all the homotopy groups πk(X) are trivial except 

for πn(X); which is isomorphic to π.  

 

A pointed CW complex X is a K(π, n)  

(Eilenberg-MacLane space) if 

πk(X) =   

 

Definition 1.2:  

Let f : X Y be a continuous map, define f: XY by 

f(x,t) = (f(x),t), then  is a covariant functor. This implies 

that  induces homotopic maps into homotopic maps i.e.  

induces a map 

  :[X,Y]  [X, Y]. 

  

Define 
n+1

 (X)= (
n
X)  

[X,Y]  [X, Y]  ...[ 
n
X, 

n
Y ] ... 

  = {X,Y}. 

  

In [5] define that S-category same as -category is the 

category whose objects are topological spaces with base 

points and whose maps are from X to Y are the elements of 

{X,Y} 

 

For any space X we define the space  

Fn, m(X) = (m
SP

∞
∑

n+m
)

X
 topologized by the compact-open 

topology, then we have the following: 

 

Lemma1.3: Let X be a polyhedron, the map Fn,m(X)  

Fn,m+1(X) is a weak homotopy equivalence for each m  0. 

 

Proof:  

Since  and 

,  

it follows that the map Fn,m(X)  Fn,m+1(X) is a weak 

homotopy equivalence for each m  0. 

 

Lemma1.4: Each inclusion map  

Fn, m(X)  Fn(X) is a weak homotopy equivalence. 

 

Proof:-  

Since Fn(X) has the weak topology relative to the subsets 

Fn,m(X), it follows that every subset of Fn(X) is contained in 

Fn, m(X) for some m0 (all the function spaces are easily 

seen to be Hausdorff). Therefore the inclusion maps 

 Fn, m(X)  Fn(X) induce the isomorphism 

, it follows from 

Lemma1.3 that for any m  0 , 

 
 

Lemma 1.5: Let  :Fn+1(X)  Fn(X) be defined by () 

(x) (t1, t2,...,tm) = (x, tm)( (t1, t2,...,tm-1), for  Fn+1,m-1(X), 

then  is an isomorphism and if f: X X
/
, commutativity 

holds in the diagram 

 

 )  

  Fn (X)  

 

Proof:  

Since  :Fn+1(X)  Fn(X) is induced by the natural 

isomorphism  


/
 :Fn+1,m-1(X)  Fn,m(X) , for every m 1 and so  is an 

isomorphism. 

 Again since the diagram 

 )  

  Fn,m(X)  

is commutative and so  is commutativity. 

 

Let : [Fn+1(X
/
),Fn+1(X)]  [Fn(X

/
),Fn(X)]H be the 

isomorphism defined by 

 [f]H = [f
-1

]H.  

Using the above Lemma1.3, it follows that 

Fn+1() = Fn: {X,X
/
}  [Fn(X

/
),Fn(X)]H . 
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Therefore we can extend the functor Fn to a functor  

 : {X,X
/
}  [Fn(X

/
),Fn(X)]H such that the following 

diagram  

 
  X

/
} 

 
m 

Fn+m  

[Fn(X
/
),Fn(X)]H is commutative. 

 

Lemma 1.6:  is a homomorphism 

 

Proof: We prove that  

Fn+m :   H is a 

homomorphism for m2.  

Let f,g :  such that x0  AB, 
m
X =AB, f

/
|B 

= g
/
|A =  and f f

/
 , g  g

/
.  

Then f
/
+g

/
 :  is defined by  

f
/
 + g

/
|A = f

/
| A and f

/
 + g

/
|B = g

/
| B and 

[f] + [g] = [f
/
+ g

/
].  

If 
/
 Fn+p,m(

p
 X

/
) and x

p
X

/
 then  

((Fn+p,m(f
/
+g

/
))

/
)x=

/
(f

/
+g

/
)(x) 

=  

 

Since ( Fn+p,mf
/
)

/
)x is the constant map if x B and ((Fn+p,m 

g
/
)

/
)x is the constant map for xA, we see that 

(Fn+p,m(f
/ 
+ g

/
))

/
 = ((Fn+p,mf

/ 
)

/
).((Fn+p,m g

/
)

/
,  

so Fn+p,m(f
/ 
+ g

/
) = Fn+p,m(f

/
)

 
. Fn+p,m (g

/
) , 

 

Lemma1.7: Let Y be a space of type K(π, n) and let X be a 

polyhedron such that H
q
(X) = 0 ,  

for q  n . 

Let ( )H
n-q
(X;π) be defined by  

 = E
*
( )/h, then  is an homomorphism  

 : πq(Y
X
)  H

n-q
(X;H) 

 

Let X be a polyhedron such that H
q
(X) = 0 for  

q n, then we have isomorphisms 

: πq(Fn,m(X)) H
n-q

(X) defined by  

  = ( ) / h, where  

 :  
m
 SP

∞
∑

n+m 
is a evaluation map.  

 

From the commutativity of the diagram 

 
and the fact that (

m
)

*
n,m+1 = n,m,  

we get the commutative diagram  

 
 : πq(Fn(X))  H

n-q
(X) is an isomorphism and 

commutativity holds in the diagram  

 
Lemma 1.8:  

 

Let f: XX
/
, then the diagram  

 
is commutative 

 

Proof: To prove the Lemma it suffices to prove the 

following diagram is commutative 

 
 

Let i: Fn,m(X
/
)  Fn,m(X

/
), j : X  X. By definition of Fn,m(f) 

we have the commutative diagram  

 
E, E

/
 are the respective evaluation maps. 

Lemma1.9 Let fi :XY and gi: YZ, for i = 1,2 be 

continuous. If f1  f2 and g1  g2, then  ; that 

is . 

 

In [1] , it follows. 

 

In section 2 we construct and investigate functor Fn, m 

  

Theorem 2.1 If f: XX
/
,  

then Fn, m(f): Fn, m(X
/
)  Fn, m(X) is a continuous 

homomorphism. 

Proof: We define Fn, m(f): Fn, m(X
/
):  Fn, m(X) by 

 (Fn, m(f(
/
))(x) = 

/
(f(x)), for 

/
 Fn, m(X

/
), m  0. 

Since for every m , Fn(f): Fn(X
/
):  Fn(X) is a continuous 

homomorphism and  

  Fn ,m(X
/
) = Fn, m(f) is continuous. 

 

Theorem 2.2 Let {X,X
/
} is the set of -homotopy classes 

from X to X
/
 and [Fn(X

/
),Fn(X)]H denote the monoid of 

homotopy classes of homomorphisms, homotopic through 

homomorphisms, of one abelian monoid Fn(X
/
) into another 

Fn(X) , then we have a homomorphism 

 Fn : {X,X
/
}  [Fn(X

/
),Fn(X)]H such that Fn[f] = [Fn(f)]H .  

 

Proof: Let h:X×IX
/
 be a homotopy from f0 to f1. Then for 

each m we have a continuous homomorphism 

Fn,m(h):  (
m
 SP

∞
∑

n+m
)

X×I
 , which 

corresponds to a continuous map  

hm : ×I (
m
 SP

∞
∑

n+m
)

X
 which is a 

continuous homomorphism for every tI.  
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Since commutativity holds in the diagram  

 
 the maps hm define a continuous map 

: )  

 h
/ 
defines a continuous map h

//
: Fn(X

/
) × I  Fn(X) 

 Fn(f0)  Fn(f1) 

 

Theorem 2.3 Let {X,X
/
} is the set of -homotopy classes 

from X to X
/
 . The set of all -homotopy classes and their 

homomorphisms forms a category , it is denoted by  

 

Proof: We take all the Hausdorff spaces are the set of object 

and the set of -homotopy classes are set of morphisms and 

the composition is the usual composition of mappings. 

 

Theorem2.4 [Fn(X
/
),Fn(X)]H denote the monoid of 

homotopy classes of homomorphisms, homotopic through 

homomorphisms, of one abelian monoid Fn(X
/
) into another 

Fn(X). The set of all monoid of homotopy classes of 

homomorphisms, homotopic through homomorphisms forms 

a category , it is denoted by  

 

Proof: We take all the abelian monoid are the set of object 

and the set of all monoid of homotopy classes of 

homomorphisms, homotopic through homomorphisms are 

set of morphisms and the composition is the usual 

composition of mappings. 

 

Theorem2.5 Let  be the category of homotopy classes 

of homomorphism and  be the monoid of 

homotopy classes of homomorphisms, there exists a 

contravariant n- homotopy functor :   

 

Proof: 

Let {X,X
/
} be the set of -homotopy classes from X to X

/
 in 

 then [Fn(X
/
),Fn(X)]H denote the monoid of homotopy 

classes of homomorphisms, homotopic through 

homomorphisms, of one abelian monoid Fn(X
/
) into another 

Fn(X) in  

 

Let {X1, X2}be the set of -homotopy classes from f : X1  

X2 and {X2,X3}be the set of -homotopy classes from g: X2 

 X3 , then by Definition1.2 and Lemma1.9, {X1,X3}be 

the set of -homotopy classes from gf: X1  X3 in  and 

also for {X1,X3}be the set of -homotopy classes from gf 

:X1  X3 in , then [Fn(X3),Fn(X1)]H denote the monoid 

of homotopy classes of homomorphisms, homotopic through 

homomorphisms, of one abelian monoid Fn(X3) into another 

Fn(X1) in . 

 

Fn : { X1 ,X3}  [Fn(X3),Fn(X1)]H such that Fn[g f] = [Fn(g 

f)]H . Using the Lemma 1.9, we have if f  g  Fn(f) 

Fn(g)  [Fn(f)] = [Fn(g)]. Using Theorem2.2, 

 

Fn[g o f] = [Fn(g o f)]H = [Fn(f) oFn(g)]H =[Fn(f)]H o [Fn(g)]H. 

If {X,X} be the set of -homotopy classes from X to X in 

 then [Fn(X),Fn(X)]H denote the monoid of homotopy 

classes of homomorphisms, homotopic through 

homomorphisms, of one abelian monoid Fn(X) into another 

Fn(X) in  that is  

Fn[I{X,X}] =  

 

Theorem 2.6 The set of all monoid of homotopy classes of 

continuous homomorphism forms a category , it is denoted 

by . 

 

Proof: We take all the abelian monoid are the set of object 

and the set of all monoid of homotopy classes of continuous 

homomorphisms, homotopic through continuous 

homomorphisms are set of morphisms and the composition 

is the usual composition of continuous mappings. 

 

Theorem 2.7 Let  be the category of homotopy classes 

of homomorphism and  be the category of 

homotopy classes of continuous homomorphisms, then there 

exists a contravariant (n,m) functor :  

 

 

Proof: Using the Theorem2.1, Theorem 2.2 and Theorem 

2.5, it follows 

 

2. Acknowledgement 
 

This paper was written while the author was got a grant 

under Minor Research Project of University Grant 

Commission, reference No. F. PSW-092/13-14 (ERO) dt 

18.3.2014. 

 

References 
 

[1] S.Eilenberg and J.A.Zilber, Semi-simplicial complexes 

and singular homology, Ann. of Math., 51(1950), 499-

513.  

[2] R.H.Fox, On topologies for function spaces, Bull. 

Amer. Math.Soc.,51(1945), 429-432 

[3] N. Steenrod, Homology groups of symmetric groups 

and reduced power operations, Proc. Nat. Acad. Sci. 

U.S.A.,39(1953), 213-217. 

[4] S.Eilenberg and N. Steenrod, Foundations of Algebraic 

Topology, Princeton University Press, 1952. 

[5] E.Spanier and J.H.C.Whitehead, Carriers and S-theory, 

in Algebraic Geometry and Topology.  

[6] Spanier H. Algebraic topology, Tata Mc-Graw-Hill 

Pub. Co. Ltd,1966.  

[7] Adhikary M.R. Groups, Rings and Modules with 

Applications Universities Press, India,1999.  

[8] Avishek Adhikari and P.K.Rana, A Study of Functors 

Associated with Topological Groups, Studia Univ, 

Babes-Balyai, Mathematica, Vol.XlVI, Number 4, 

December 2001. 

[9] P.K.Rana, A study of functors associated with rings on 

continuous functions, JIAM,2011, Vol.33(1),73- 78.  

[10] P.K.Rana, A study of some functors and their 

Relations", The Journal of Indian Academy of 

Mathematics(JIAM) Vol.34,no-1,2012,73-81. 

[11] P.K.Rana. A Space Having the Homotopy Type with 

Fuzzy Modules, IJSR,Volume 3 Issue 10, October 

2014 

 

Paper ID: NOV164078 http://dx.doi.org/10.21275/v5i6.NOV164078 576



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 6, June 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Author Profile  
 
Prof. Pravanjan Kumar Rana obtained his MSc in Pure 

Mathematics and his PhD in Algebraic Topology. He has 

published, since 2005, more than 23 papers in peer reviewed 

journals. Formerly, he was the first HOD of Mathematics 

Department in Berhampore Girls’ College, Berhampore, 

Murshidabad and latterly he is HOD of Mathematics Department in 

Ramakrishna Mission Vivekananda Centenary College, Rahara, 

Kol. 700118,and performs his research at Algebraic Topology and 

Category Theory. 

Paper ID: NOV164078 http://dx.doi.org/10.21275/v5i6.NOV164078 577




