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Abstract: In this paper, we consider the stationary density function of the doubly skew Ornstein-Uhlenbeck process. We present the 

explicit formula for the stationary density function and show that this process is positive Harris recurrent and geometrically ergodic. We 

expand our method to the more general cases in which the multiple parameters are present and we try to consider the stability of the skew 

Ornstein-Uhlenbeck process whose parameters depend on a finite-state and irreducible continuous-time Markov chain. Then we offer the 

stationary distribution equation of this bivariate process through their infinitesimal generator and the explicit stationary distributions are 

list as a special case. 
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1. Introduction 
 

Skew diffusions have drawn attention in fields of financial 

engineering, physics, mathematical biology, etc. because of 

their potential applications, for example, [10], [13], [12], and 

[8]. The skew Brownian motion(abbr. skew BM) was first 

introduced by K. Ito and H. P. Mckean in[6], which is a simple 

but interesting diffusion process. The doubly skewed OU 

process is an extension of the skew Brownian motion. A 

general class of stochastic differential equations involving the 

local times of unknown process was first proved by Le Gall 

[5], and then developed by Barlow[11], Engelbert and 

Schmidt [4], Lejay [2], Bass and Chen [14] and many others. 

 

We denote by  ( , , )P F  a complete probability space and 

the filtration  , 0tF t   is assumed to satisfy the usual 

conditions. For a process { , 0}tX X t  , the notation ( , )t tX F  

signifies that X  is adapted to the filtration  tF . For 

parameters , 0, ,| 1 , 2 | 1,b a       we define the doubly 

skewed Ornstein-Uhlenbeck (abbr. skew OU) process 

 ,t tX F  as a weak solution to 

 
1 2    (2 -1) ( )  (2 -1) ( ),

X X

t tt t tdX X dt dB p d L a p d L b      

（1）  
 

where 
tB  is a standard Brownian motion on some probability 

space ( , , )P F and  ( )
X

tL a  (resp.  ( )
X

tL b is the symmetric local 

time at a (resp. b ). It is well-known that for 
1 0p   or 

2 0p  , 

the equation (1) is the skew OU process whose weak existence 

and pathwise uniqueness have been proved by S.Wang [16]. 

The aim of this paper is to elaborate the stationary of this kind 

of process. 

 

When computing the stationary distribution, Karlin and  

Taylor [15] offered a classical method which is not suitable for 

our process. We use the infinitesimal generator of doubly 

skewed OU process to derive the stationary density function. 

Then we expand our method to more general doubly skew OU 

process and the Markov-modulated skew OU process(abbr. 

MMSOU). There are a large amount of papers concentrating 

on Markov modulated process, because such a process can 

capture the switching of the market conditions. Many scholars 

investigate their applications in finance. For example, [3] and 

[7] studied how to price options. 

 

The paper is organized as follows. Section2 is concentrated on 

the explicit stationary density of doubly skew OU process, 

under the drift coefficient has only one parameter. Section 3 

expands to the multiple-parameter case. Section 4 discusses 

the stability of the MMSOU, here we mainly consider the 

stability in distribution. 

 

2. Stationary distribution for the doubly 

skewed process 
 

A doubly skewed OU process which starts from any initial 

point in its state space behaves like the ordinary OU process 

until it reaches the skew point a (resp. b ), causing upwards 

with probability 1 p (resp. 2 p ) and downwards with 

probability 
11 p (resp. 

21 p ). In this section, we will derive 

the stationary density function of the doubly skewed OU 

process  tX  defined in (1). Before giving the theorem about 

the stationary density of process  tX , we first introduce some 

basic definitions.  

Definition 2.1. The Markov process   is called ergodic if an 

invariant probability   exists and 

lim || ( , ) || 0, ,t

t
P y y Y


     

and is called geometrically ergodic if  for some  ,  1,B     
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|| ( , ) || (x) , , 0,t t

fP y B f y Y t       

with 2( ) | | 1.f      

Theorem 2.2.  The doubly skew OU process  tX defined  in 

(1) is positive Harris recurrent and V-uniform ergodic. 

 

Proof. Let C be the set of functions ( ),bf C R  

' '', ( ) \{ , }bf f C R a b and
'f satisfies ' '

1 1( ) (1 ) ( ),p f a p f a     

' '

2 2( ) (1 ) ( ),p f b p f b    at points  a and b . Recall 

that   (0, ).I    For f C , applying the generalized Ito 

formula  to    ,tf X we have  









 

' ' '

1

' '' 2

2

' ' ' '

1 1' '' ' '( ) ( ) ( ) [ ( ) ( )] ( )
2 2

1 ' '[ ( ) ( )] ( )
2

( ) ( ) ( ) ( )

1
( ) ( ) ( )

2

1 1
[ ( ) ( )] ( ) [ ( ) ( )] ( )

2 2

X

Ss s s s s

X

S

X

Ss s s s s

X

Ss s

X X

s S

df X f X dX f X d X f a f a d L a

f b f b d L b

X f X ds f X dB f X d L a

f X d L b f X ds

f a f a d L a f b f b d L b

  

 

     

   

   

 

       

 ' ' '' 21
( ) ( ) ( ) ,

2
s s s s sX f X ds f X dB f X ds    

 

where the last equity holds because of the fact 

 

 

 

 

' '
(2 -1) ( ) (2 -1) ( ) ( )

1 2

1 1' ' ' '
[ ( ) - ( -)] ( ) [ ( ) - ( -)] ( )

2 2

2 -1 2 -1
' ' ' '1 2[ ( ) - ( -)] ( ) [ ( ) - ( -)] ( )

2 2

1 1' ' ' '
[ ( ) - ( -)] ( ) [ ( ) - ( -)] ( )

2 2

( )
X X

S Ss s

X X

S S

X X

S S

X X

S S

p f X d p f X d L b

f a f a d L a f b f b d L b

p p
f a f a d L a f b f b d L b

f a f a d L a f b f b d L b

L a 

   

   

   

 0.

 

Then 

' '' 2 '

0
0 0

1
( ) ( ) [ ( ) ( ) ] ( ) .

2

t t

t s s s s sf X f X X f X ds f X ds f X dB        Fo

r any f C , the infinitesimal generator of  , 0Xt t   is 

defined by 

0

2 '' '

( ) ( )
( ) lim

1
( ) ( ), .

2

x t x

t

E f X E f X
f x

t

f x xf x f C 






  

A
 

Define 

1 2

1 2

1 2

( ), ,

( ) (1 ) ( ), ,

(1 )(1 )( ), .

p p x a x a

V x p p x a a x b

p p x b x b

 


    
    

 

It is easy to check  V x C  is norm-like, i. e.  V x   as 

x  . Thus, by operating the generator 
nA on V , we get 

1 2

1 2

1 2

, ,

( ) (1 ) , ,

(1 )(1 ) , .

n

p p x x a

V x p p x a x b

p p x x b










   
   

A  

 

After a simple algebraic calculation shows that 

1 2 1 2

1 2 1 2

1 2 1 2

2 , ,

( ) 2 ( ) (1 ) 2 (1 ) , ,

(1 )(1 ) 2 (1 )(1 ) , ,

n

p p x p p a x a

V x V x p p x p p a a x b

p p x p p b x b

 

  

 

 


      
      

A

and let 
1  to be the maximum of ( ) 2 ( ),  nV x V xA ,x R  

then  

1( ) 2 ( ) .nV x V x   A                                             (2)     

Now, the following is obvious  

2( ) ( 1) ,nV x c x    A                                             (3)  

where
1 2 1 2 1 2min{2 ,2 (1 ) ,2 (1 )(1 )}c p p p p p p      and 

2 is the maximum of ( ) 2 ( )nV x V xA . Next, comparing the 

equation(2) and (3), we derive that 
*

1 2max{ , }   . 

 

It proves that the process  , 0tX t  is positive Harris 

recurrent from the formula (3) and the Theorem 4.4 in [9], and 

an V-uniformly ergodic from formula (2), Corollary 4.9 and 

Theorem 4.12 in [1]. 

 

Theorem 2.3. The doubly skewed OU process 
tX defined in 

(1) is positive Harris recurrent and geometrically ergodic, 

and the density of the unique stationary distribution for 
tX is 

as follows: 
2

2

2

2

2

2

1 2

1 2

1 2

(1 )(1 )
, ,

(1 )
( ) , ,

, ,

x

x

x

p p
e x a

p p
q x e a x b

p p
e x b



















  
  





  







         (4)  

where 
2

2

2

2

2

2

1 2

1 2

1 2

(1 )(1 )

(1 )

.

x
a

x
a

x
a

p p e dx

p p e dx

p p e dx

























   

 









 

 

Proof. If  q x  is the stationary density of the doubly skew OU 

process, then the following equation is satisfied 
2

'' '

2 2
' ' ' '

2 2
' '

2 2
' '

( )[ ( ) ( ) ( )]
2

[ ( ) ( ) ( ) ( )] [ ( ) ( ) ( ) ( )]
2 2

( )[( ) ( ) ( ) ( ) ( )]
2 2

( )[( ) ( ) ( ) ( ) ( )].
2 2

f x q x q x xq x dx

q a f a q a f a q b f b q b f b

f a aq a aq a q a q a

f b bq b bq b q b q b


 

 

 
 

 
 




 

           

        

        



For the arbitrary of f C , it can be deduced that 

2
'' '

' '

' '

( ) ( ) ( ) 0,
2

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ).

q x q x xq x

q a f a q a f a

q b f b q b f b


 


  


    


    




 

Finally, considering the condition ( ) 1q x dx



 , we get the 
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unique stationary density  q x  given by (4). 

 

3. Extension to multiple-parameter case 
 

The method can be extended to the more general cases in 

which the multiple parameters are presented. We consider the 

following general doubly skew OU process: 

 
1 2( ) (2 1) ( ) (2 1) ( ),

X X

t tt t tdX X dt dB p d L a p d L b          

                                                                                         (5) 

where  ( )
X

tL a and  ( )
X

tL b are the local time at a and b , 

respectively. In the above model, our goal is to derive the 

stationary density of joint parameters and  . 

 

Theorem 3.1. The doubly skewed OU process 
tX defined in 

(5) is positive Harris recurrent and geometrically ergodic, 

and the density of the unique stationary distribution for 
tX  is 

as follows: 
2

2

2

2

2

2

21 2

21 2

21 2

(1 )(1 )
( ) , ,

(1 )
( ) ( ) , , (6)

( ) , ,

x

x

x

p p
e x x a

p p
q x e x a x b

p p
e x x b































  
   





   



  
 


     

where 
2

2

2

2

2

2

2

1 2

2

1 2

2

1 2

(1 )(1 ) ( )

(1 ) ( )

( ) .

x
a

x
a

x
a

p p e x dx

p p e x dx

p p e x dx





































    

  

 







 

 

Proof. Let C be the set of functions ( ),bf C R  

' '', ( ) \{ , }bf f C R a b and
'f satisfies ' '

1 1( ) (1 ) ( ),p f a p f a     

' '

2 2( ) (1 ) ( ),p f b p f b    at points  a and b . Recall 

that   (0, ).I   For f C , applying the generalized Ito 

formula  to    ,tf X we have  









 

' ' '

1

' '' 2

2

' ' ' '

1 1' '' ' '( ) ( ) ( ) [ ( ) ( )] ( )
2 2

1 ' '[ ( ) ( )] ( )
2

( ) ( ) ( ) ( ) ( )

1
( ) ( ) ( )

2

1 1
[ ( ) ( )] ( ) [ ( ) ( )] (

2 2

X

Ss s s s s

X

S

X

Ss s s s s

X

ss s

X X

s S

df X f X dX f X d X f a f a d L a

f b f b d L b

X f X ds f X dB f X d L a

f X d L b f X ds

f a f a d L a f b f b d L

   

 

     

   

   

 

       

' ' '' 2

)

1
( ) ( ) ( ) ( ) ,

2
s s s s s

b

X f X ds f X dB f X ds      

 

then 

' '' 2 '

0
0 0

1
( ) ( ) [( ) ( ) ( ) ] ( ) .

2

t t

t s s s s sf X f X X f X ds f X ds ds f X dB        

For any f C , the infinitesimal generator of  , 0Xt t   is 

defined by 

0

2 '' '

( ) ( )
( ) lim

1
( ) ( ) ( ), .

2

x t x

t

E f X E f X
f x

t

f x x f x f C  






   

A
 

Then by employing the methods of integration by parts twice, 

the above equation becomes 
2

'' '

2 2
' ' ' '

2 2
' '

2 2
' '

( )[ ( ) ( ) ( ) ( )]
2

[ ( ) ( ) ( ) ( )] [ ( ) ( ) ( ) ( )]
2 2

( )[( ) ( ) ( ) ( ) ( ) ( )]
2 2

( )[( ) ( ) ( ) ( ) ( ) ( )].
2 2

f x q x q x x q x dx

q a f a q a f a q b f b q b f b

f a a q a a q a q a q a

f b b q b b q b q b q b


  

 

 
   

 
   




  

           

         

         



 

Now it follows that 
2

'' '

' '

' '

( ) ( ) ( ) ( ) 0,
2

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ).

q x q x x q x

q a f a q a f a

q b f b q b f b


  


   


    


    




 

Therefore,  the equation (6) can be obtained. 

 

4. Extension to the Markov-modulated skew 

OU process case 
 

In this section, we consider the stability of a skew OU process 

 , 0  tX t  ,whose parameters depend on a finite-state and 

irreducible continuous time Markov chain  , 0  tJ t  . We 

first define the MMSOU  , , 0t tX J t   on the state space 

R E , where    1,2,...,E N  for some finite 

integer  N .Suppose that ( , , )P F is a filtered probability 

space with the filtration { : 0}tF t  satisfying the usual 

condition. The first component is also called observable 

process, Xt , which satisfies the following stochastic 

differential equations (abbr. SDE) with local time 

( ) (2 1) ( ), 0, (0,1),
X

tt J t t J t tdX X dt dB p d L a a           

where 
tB is a standard Brownian motion and   ( )

X

tL a  is the 

symmetric local time at  a . The second component of the 

bivariate process, 
tJ , is an irreducible right-continuous 

Markov chain taking values in {1, 2,..., }E N  defined on the 

same probability space. In addition, assume that  Jt and Bt are 

independent. For , , , 0i iJt i i E     are some constants 

and  ( )
X

tL a  is the symmetric local time. The Markov chain Jt is 

characterized by its generator ( )i j N NV v  satisfying 

( ), ,
{ | }

1 ( ), ,

i j

t t

i j

v o if i j
W J j J i

v o if i j


  
    

    

 

Where    0    and 0i jv   is the transition rate from  i  to j if i j ， 

0.ii i j

j i

v v


    

Let 
1 2( , ,..., )N    be the stationary distribution of Jt  . 

Because we have assumed that Jt is an irreducible 
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continuous-time Markov chain, it is well known that   is the 

unique solution to 

                   

1

0, 1.
N

i

i

V 


                                      (7) 

Next, we will introduce the infinitesimal generator of the 

MMSOU   ,  , 0t tX J t  .Let C  be the set of functions    ,f x i  on 

R E  that are bounded and continuous in x  for which the first 

and second derivatives are bounded and continuous for all 

x except at the skew point a with 
' '( , ) (1 ) ( , )pf a i p f a i    and

'' ''( , ) ( , )f a i f a i   for i E  

where  
2

' ''

2
( , ) ( , ), ( , ) ( , )

f f
f x i x i f x i f x i

x x

 
 
 

 

' ' '1
( , ) [ ( , ) ( , )].

2
f a i f a i f a i     

Define 

( , ) ( , ) , ( , ) 0 0
0

1
lim [ ( ) ( , )].x i x i t t x i
t

E E f X J E f X J
t

   

The infinitesimal generator of the Markov process   ,t tX J      

0t  is defined as follows 

, 0 0
0

1
( )( , ) lim [ ( , ) ( , )].x i t t x

t
f x i E f X J E f X J

t
 A  

For any f C , using the Ito Tanaka formula, we obtain 

( , ) ( , ) 0 0

( , ) ( , ) 0 ( , ) 0 ( , ) 0 0

( , ) ( , ) , ( , ) ,

' '' 2

( , ) 0 0
0 0

( , ) ( , )

( , ) ( , ) ( , ) ( , )

(1 ) ( , ) ( ) ( )

1
[ ( , )( ) ( , ) ]

2s s

x i t t x i

x i t t x i t x i t x i

ii x i t i j x i t x i t

j i

t t

x i s J s s J

E f X J E f X J

E f X J E f X J E f X J E f X J

v t E f X i v E f X j E f X i

E f X J X ds f X J ds 





   

   

  





 

 ' ' '

0 0 0
0

' '' 2

( , ) 0 0
0 0

( , ) ,

1
( , )(2 1) ( ) [ ( , ) ( , )] ( )

2

1
[ ( , )( ) ( , ) ]

2

( ).

s s

X Xt

s ts

t t

x i s J s s J

i j x i t

j E

f X J p d L a f a J f a J L a

E f X J X ds f X J ds

v E f X j

 



    

  





 



 

Then it is easy to see that the infinitesimal generator of the 

process  , , 0t tX J t   satisfies 

' 2 ''

,

1
( )( , ) ( ) ( , ) ( , ),

2
i j t i i

j E

f x i v f X j xf x i f x i 


  A  

where '( , )f x i  and '' ( , )f x i are the first and second order partial 

derivatives at x  and the domain of A  includes the set C . 

Proposition 4.1. Let ( , )X J 
be the stationary distribution of 

process ( , )t tX J  .Then the stationary densities  iq x  are the 

solutions of the following equation 

'' '( ) ( ) ( ) ( ) ( ) ( ) 0,TA x q x B x q x Cq x V q x            （8）  

satisfying the following conditions 

' '

( ) (1 ) ( ) (9)

( ) , (10)

( )( ( ) ( )) ( ( ) ( )) 0, (11)

T

pq a p a a

q x dx

B a q a q a A q a q a






   



       


 

where TV is the transpose of V  and 

2 2

1

1

1

1

1
( ,..., ),
2

( ) ( ,..., ),

( ,..., ),

( ) [ ( ),..., ( )] ,

N

N

N

T

N

A diag

B X diag x x

C diag

q x q x q x

 

 

 









 

with the definition diag 

1

2

1 2

0 0 0

0 0 0
( , ,..., ) .

0 0 ... 0

0 0 0

n

n

a

a
a a a

a

 
 
 
 
 
 

 

Generally speaking, it is difficult to calculate the closed form 

of (8) and (9).While in some special cases, the closed solutio- 

ns of stationary densities can be figured out. 

 

Proof: From exercise 57, P.394 in [15], we know that a 

probability density  iq x is a stationary density for Xt if and 

only if the following equation is satisfied 

( )( , ) ( )i

x E

f x i q x dx





 A  

2 '' '1
[ ( , ) ( , ) ( , )] ( ) ,
2

i i i j i

i E j E

f x i xf x i q f x j q x dx 



 

   
 

and ' '( ) (1 ) ( ),pf a p f a     we obtain that 

2 '' '

2 ' '

2 ' 2 '

( )( , ) ( )

1
( , )[ ( , ) ( , ) ( ) ( )]

2

1
[ ( ) ( , ) ( ) ( , )]

2

1 1
( , )[ ( ) ( ) ( ) ( )].

2 2

i

i E

i i i i i j j

i E j E

i i i

i E

i i i i i i i i

i E

f x i q x dx

f x i q x i xq x i q x q q x dx

q a f a i q a f a i

f a i aq a aq a q a q a

  



   









 





   

     

       



 





A

 

Since for any ,f C  (8), (9), (10) and (11) are obtained. 

 

5. Special Cases 
 

example. Set 2, 0N a   and the generator of the Markov 

chain Jt  to be 

,
w w

Q
v v

 
  

 

 

where , 0.w v  From (7), we obtain 
1 2w v   and 

1 ,
v

w v
 


  We also assume ,i i   for   1, 2;i   with these 

assumptions, the closed form of stationary densities for 

 ,Xt Jt  can be obtained: 

2

1

1

2

1

2(1 )
, 0,

( )
2

, 0,

x

x

p
e x

q x
p

e x















 
 


                                    （12）  

2

2

2

2

2

2(1 )
, 0,

( )
2

, 0,

x

x

p
e x

q x
p

e x















 
 


                                   （13）  

 

Proof. We have done above, from Proposition 4.1, the 
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stationary densities  1 q x  and  2q x  should satisfy the 

following equation group 

'' ''

1 1 1 1 1 2

'' ''

1 1 1 1 1 2

1
( ) ( ) ( ) ( ) ( ) 0,

2

1
( ) ( ) ( ) ( ) ( ) 0,

2

q x xq x q x wq x vq x

q x xq x q x wq x vq x

  

  


    


     


       （14）  

and the following conditions should be satisfied 

(0) (0) 0,
1 2

( ) (1 ) ( ), ( ) (1 ) ( ),
1 1 2 2

( ) , ( ) ,
1 1 2 2

1 ' '( ( ) ( )) ( ( ) ( )) 0,
1 1 1 1 1 12

1 ' '
( ( ) ( )) ( ( ) ( )) 0,

2 2 2 2 2 22

q q

wq a w q a wq a w q a

q x dx q x dx

a q a q a q a q a

a q a q a q a q a

 

 

 

 

       

    

       

       













 

Adding the two equations in (14), we obtain 

 

'' '' ' '

1 1 2 2 1 1 2 2 1 1 2 2

1
( ( ) ( )) ( ( )) ( ) ( ) 0.

2
q x q x x q q x q x q x            

Assume that      1 1 2 2 h x q x q x   , then  h x  should 

satisfy the following equation 

'' '1
( ) ( ) ( ) 0.

2
h x xh x h x    

Through simple calculation, the general solution of above 

equation should be   2xh x ce with c is a constant. Because 

of the conditions for  1q x  and  2q x ,  h x  must satisfy the 

following conditions 

1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

(0) (0) (0) 0,

1 1
( ) ( ) ( ) [ ( ) ( )] ( ),

( ) [ ( ) ( )] .

h q q

h a q a q a q a q a h a

h x dx q x q x dx

 

 
   

 

     
 

 


  

  
          


    
 
Combining the above conditions and the general solution of 

  ,h x  we get 

1 1 2 2

2

1 1 2 2

2

1 1 2 2

( ) ( ) ( ),

2(1 )
[ ] , 0,

2
[ ] , 0,

x

x

h x q x q x

p
e x

p
e x

 

   


   






 


 


 
  


 

and the solutions of  1q x and  2q x  are exhibited in (12) and 

(13). 
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