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Abstract: Already we studied the issues of key establishment for secure many-to-many communications. The main problem is inspired 

by the proliferation of large-scale distributed file systems supporting parallel access to multiple storage devices. The system work 

focuses on the current Internet standard for such file systems, i.e., parallel Network File System (pNFS), which makes use of Kerberos 

to establish parallel session keys between clients and storage devices. Our review of the existing Kerberos-based protocol shows that it 

has a number of limitations: (i) a metadata server facilitating key exchange between the clients and the storage devices has heavy 

workload that restricts the scalability of the protocol; (ii) the protocol does not provide forward secrecy; (iii) the metadata server 

generates itself all the session keys that are used between the clients and storage devices, and this inherently leads to key escrow. . In 

this paper, we propose a variety of authenticated key exchange protocols that are designed to address the above issues. We show that 

our protocols are capable of reducing up to approximately 90% of the workload of the metadata server and concurrently supporting 

forward secrecy and escrow-freeness. All this requires only a small fraction of increased computation overhead at the client. 
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1. Introduction 
 

In a parallel file system, file data is distributed across 

multiple storage devices or nodes to allow concurrent access 

by multiple tasks of a parallel application. This is typically 

used in large-scale cluster computing that focuses on high 

performance and reliable access to large datasets. That is, 

higher I/O bandwidth is achieved through concurrent access 

to multiple storage devices within large compute clusters; 

while data loss is protected through data mirroring using 

fault-tolerant striping algorithms. Some examples of high 

performance parallel file systems that are in production use 

are the IBM General Parallel File System (GPFS) [48], 

Google File System (GoogleFS) [21], Lustre [35], Parallel 

Virtual File System (PVFS) [43], and Panasas File System 

[53]; while there also exist research projects on distributed 

object storage systems such as Usra Minor [1], Ceph [52], 

XtreemFS [25], and Gfarm [50]. These are usually required 

for advanced scientific or data-intensive applications such as, 

seismic data processing, digital animation studios, 

computational fluid dynamics, and semiconductor 

manufacturing. In these environments, hundreds or thousands 

of file system clients share data and generate very high 

aggregate I/O load on the file system supporting petabyte- or 

terabyte-scale storage capacities.   

 

Independent of the development of cluster and high 

performance computing, the emergence of clouds [5], [37] 

and the MapReduce programming model [13] has resulted in 

file systems such as the Hadoop Distributed File System 

(HDFS) [26], Amazon S3 File System [6], and Cloud-Store 

[11]. This, in turn, has accelerated the wide-spread use of 

distributed and parallel computation on large datasets in 

many organizations. Some notable users of the HDFS include 

AOL, Apple, eBay, Facebook, Hewlett-Packard, IBM, 

LinkedIn, Twitter, and Yahoo! [23]. 

In this work, we investigate the problem of secure many to 

many communications in large-scale network file systems 

that support parallel access to multiple storage devices. That 

is, we consider a communication model where there are a 

large number of clients (potentially hundreds or thousands) 

accessing multiple remote and distributed storage devices 

(which also may scale up to hundreds or thousands) in 

parallel. Particularly, we focus on how to exchange key 

materials and establish parallel secure sessions between the 

clients and the storage devices in the parallel Network File 

System (pNFS) [46]—the current Internet standard—in an 

efficient and scalable manner. The development of pNFS is 

driven by Panasas, Netapp, Sun, EMC, IBM, and 

UMich/CITI, and thus it shares many common features and is 

compatible with many existing commercial/proprietary 

network file systems. 

 Scalability – the metadata server facilitating access 

requests from a client to multiple storage devices should 

bear as little workload as possible such that the server will 

not become a performance bottleneck, but is capable of 

supporting a very large number of clients; 

 Forward secrecy – the protocol should guarantee the 

security of past session keys when the long-term secret key 

of a client or a storage device is compromised [39]; and 

 Escrow-free – the metadata server should not learn any 

information about any session key used by the client and 

the storage device, provided there is no collusion among 

them. 

 

The main results of this paper are three new provably secure 

authenticated key exchange protocols. Our protocols, 

progressively designed to achieve each of the above 

properties, demonstrate the trade-offs between efficiency and 

security. We show that our protocols can reduce the 

workload of the metadata server by approximately half 

compared to the current Kerberos-based protocol, while 

achieving the desired security properties and keeping the 
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computational overhead at the clients and the storage devices 

at a reasonably low level. We define an appropriate security 

model and prove that our protocols are secure in the model. 

In the next section, we provide some background on pNFS 

and describe its existing security mechanisms associated with 

secure communications between clients and distributed 

storage devices. Moreover, we identify the limitations of the 

current Kerberos-based protocol in pNFS for establishing 

secure channels in parallel. In Section III, we describe the 

threat model for pNFS and the existing Kerberos-based 

protocol. In Section IV, we present our protocols that aim to 

address the current limitations. We then provide formal 

security analyses of our protocols under an appropriate 

security model, as well as performance evaluation in Sections 

VI and VII, respectively. In Section VIII, we describe related 

work, and finally in Section IX, we conclude and discuss 

some future work. 

 

2. Internet Standard-NFS 

 
Network File System (NFS) [46] is currently the sole file 

system standard supported by the Internet Engineering Task 

Force (IETF). The NFS protocol is a distributed file system 

protocol originally developed by Sun Microsystems that 

allows a user on a client computer, which may be diskless, to 

access files over networks in a manner similar to how local 

storage is accessed [47]. It is designed to be portable across 

different machines, operating systems, network architectures, 

and transport protocols. Such portability is achieved through 

the use of Remote Procedure Call (RPC) [51] primitives built 

on top of an eXternal Data Representation (XDR) [15]; with 

the former providing a procedure-oriented interface to remote 

services, while the latter providing a common way of 

representing a set of data types over a network. The NFS 

protocol has since then evolved into an open standard 

defined by the IETF Network Working Group [49], [9], [45]. 

Among the current key features are file system migration and 

replication, file locking, data caching, delegation (from 

server to client), and crash recovery. 

 

pNFS separates the file system protocol processing into two 

parts: metadata processing and data processing. Metadata is 

information about a file system object, such as its name, 

location within the namespace, owner, permissions and other 

attributes. The entity that manages metadata is called a 

metadata server. On the other hand, regular files’ data is 

striped and stored across storage devices or servers. Data 

striping occurs in at least two ways: on a file-by-file basis 

and, within sufficiently large files, on a block-by-block basis. 

Unlike NFS, a read or write of data managed with pNFS is a 

direct operation between a client node and the storage system 

itself. Figure 1 illustrates the conceptual model of pNFS. 

 
Figure 1: The conceptual model of pNFS. 

 

More specifically, pNFS comprises a collection of three 

protocols: (i) the pNFS protocol that transfers file metadata, 

also known as a layout,1 between the metadata server and a 

client node; (ii) the storage access protocol that specifies 

how a client accesses data from the associated storage 

devices according to the corresponding metadata; and (iii) 

the control protocol that synchronizes state between the 

metadata server and the storage devices. 

 

2.1 Security Consideration 

 

Earlier versions of NFS focused on simplicity and efficiency, 

and were designed to work well on intranets and local 

networks. Subsequently, the later versions aim to improve 

access and performance within the Internet environment. 

However, security has then become a greater concern. 

Among many other security issues, user and server 

authentication within an open, distributed, and cross-domain 

environment are a complicated matter. Key management can 

be tedious and expensive, but an important aspect in ensuring 

security of the system. Moreover, data privacy may be 

critical in high performance and parallel applications, for 

example, those associated with biomedical information 

sharing [28], [44], financial data processing & analysis [20], 

[34], and drug simulation & discovery [42]. Hence, 

distributed storage devices pose greater risks to various 

security threats, such as illegal modification or stealing of 

data residing on the storage devices, as well as interception 

of data in transit between different nodes within the system. 

NFS (since version 4), therefore, has been mandating that 

implementations support end-to-end authentication, where a 

user (through a client) mutually authenticates to an NFS 

server.  

 

2.2 Kerberos & LIPKEY 

 

In NFSv4, the Kerberos version 5 [32], [18] and the Low 

Infrastructure Public Key (LIPKEY) [14] GSS-API 

mechanisms are recommended, although other mechanisms 

may also be specified and used. Kerberos is used particularly 

for user authentication and single sign-on, while LIPKEY 

provides an TLS/SSL-like model through the GSS-API, 

particularly for server authentication in the Internet 

environment.  

Paper ID: NOV163973 2315



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 5, May 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

User and Server Authentication. Kerberos, a widely deployed 

network authentication protocol supported by all major 

operating systems, allows nodes communicating over a no 

secure network to perform mutual authentication. It works in 

a client-server model, in which each domain (also known as 

realm) is governed by a Key Distribution Center (KDC), 

acting as a server that authenticates and provides ticket-

granting services to its users (through their respective clients) 

within the domain. Each user shares a password with its KDC 

and a user is authenticated through a password-derived 

symmetric key known only between the user and the KDC. 

However, one security weakness of such an authentication 

method is that it may be susceptible to an off-line password 

guessing attack, particularly when a weak password is used to 

derive a key that encrypts a protocol message transmitted 

between the client and the KDC. Furthermore, Kerberos has 

strict time requirements, implying that the clocks of the 

involved hosts must be synchronized with that of the KDC 

within configured limits. 

 

3. Overview of Our Protocols 
 

We describe our design goals and give some intuition of a 

variety of pNFS authenticated key exchange6 (pNFS-AKE) 

protocols that we consider in this work. In these protocols, 

we focus on parallel session key establishment between a 

client and n different storage devices through a metadata 

server. Nevertheless, they can be extended straightforwardly 

to the multi-user setting, i.e., many-to-many communications 

between clients and storage devices. 

 

3.1 Design Goals 

 

In our solutions, we focus on efficiency and scalability with 

respect to the metadata server. That is, our goal is to reduce 

the workload of the metadata server. On the other hand, the 

computational and communication overhead for both the 

client and the storage device should remain reasonably low. 

More importantly, we would like to meet all these goals 

while ensuring at least roughly similar security as that of the 

Kerberos-based protocol shown in Section III-C. In fact, we 

consider a stronger security model with forward secrecy for 

three of our protocols such that compromise of a long-term 

secret key of a client C or a storage device Si will not expose 

the associated past session keys shared between C and Si. 

Further, we would like an escrow-free solution, that is, the 

metadata server does not learn the session key shared 

between a client and a storage device, unless the server 

colludes with either one of them. 

 

3.2 Main Idea 

 

Major goals of texture analysis in computer vision area unit 

to know, model and process texture. To extract the features 

from image use transforms and textures. In transform mainly 

used wavelet transform and in texture analysis DCT and 

GLCM  methods are used. In additions to this used area and 

orientation. Feature extraction involves reducing the number 

of resources needed to explain an oversized set of 

knowledge. By using Gray Level Co-occurrence 

Matrix(GLCM) examining the texture and consider the 

spatial relationship of pixels and form a matrix [10]. The 

Discrete Wavelet Transform (DWT) provides necessary 

information for scrutinity and amalgamation of original 

signal with a relevant reduction in the computation time. 

 

Recall that in Kerberos-based pNFS, the metadata server is 

required to generate all service tickets E(KMSi ; IDC; t; ski) 

and session keys ski between C and Si for all 1<  i<  n, and 

thus placing heavy workload on the server. In our solutions, 

intuitively, C first pre-computes some key materials and 

forward them to M, which in return, issues the corresponding 

―authentication tokens‖ (or service tickets). C can then, when 

accessing Si (for all i), derive session keys from the 

precomputed key materials and present the corresponding 

authentication tokens. Note here, C is not required to 

compute the key materials before each access request to a 

storage device, but instead this is done at the beginning of a 

pre defined validity period v, which may be, for example, a 

day or week or month. For each request to access one or 

more storage devices at a specific time t, C then computes a 

session key from the pre-computed material. This way, the 

workload of generating  session keys is amortized over v for 

all the clients within the file system. Our three variants of 

pNFS-AKE protocols can be summarized as follows: 

 

pNFS-AKE-I: Our first protocol can be regarded as a 

modified version of Kerberos that allows the client to 

generate its own session keys. That is, the key material used 

to derive a session key is pre-computed by the client for each 

v and forwarded to the corresponding storage device in the 

form of an authentication token at time t (within v). 

symmetric key encryption is used to protect the 

confidentiality of secret information used in the protocol. 

However, the protocol does not provide any forward secrecy. 

Further, the key escrow issue persists here since the 

authentication tokens containing key materials for computing 

session keys are generated by the server. 

 

 
Figure 2: Protocol 1, pNFS-AKE I 

 

pNFS-AKE-II: To address key escrow while achieving 

forward secrecy simultaneously, we incorporate a Diffie-

Hellman key agreement technique into Kerberos-like pNFS-

AKE-I. Particularly, the client C and the storage device Si 

each now chooses a secret value (that is known only to itself) 

and pre-computes a Diffie-Hellman key component. A 

session key is then generated from both the Diffie-Hellman 

components. Upon expiry of a time period v, the secret 

values and Diffie-Hellman key components are permanently 

erased, such that in the event when either C or Si is 

compromised, the attacker will no longer have access to the 
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key values required to compute past session keys. However, 

note that we achieve only partial forward secrecy (with 

respect to v), by trading efficiency over security. This implies 

that compromise of a long-term key can expose session keys 

generated within the current v. However, past session keys in 

previous (expired) time periods v′ (for v′ < v) will not be 

affected. 

 
Figure 3: Specification of pNFS-AKE-II (with partial 

forward secrecy and escrow-free). 

 

pNFS-AKE-III: Our third protocol aims to achieve full 

forward secrecy, that is, exposure of a long-term key affects 

only a current session key (with respect to t), but not all the 

other past session keys. We would also like to prevent key 

escrow. In a nutshell, we enhance pNFSAKE- II with a key 

update technique based on any efficient one-way function, 

such as a keyed hash function. In Phase I, we require C and 

each Si to share some initial key material in the form of a 

Diffie-Hellman key. In Phase II, the initial shared key is then 

used to derive session keys in the form of a keyed hash chain. 

Since a hash value in the chain does not reveal information 

about its pre-image, the associated session key is forward 

secure. 

 

 
Figure 4: Specification of pNFS-AKE-III (with full forward 

secrecy and escrowfree). 

 

4. Performance Evaluation 
 

4.1 Computational Overhead 

 

We consider the computational overhead for w access 

requests over time period v for a metadata server M, a client 

C, and storage devices Si for i 2 [1;N]. We assume that a 

layout is of the form of a MAC, and the computational cost 

for authenticated symmetric encryption E is similar to that for 

the non-authenticated version E.10 Table I gives a 

comparison between Kerberos-based pNFS and our protocols 

in terms of the number of cryptographic operations required 

for executing the protocols over time period v. To give a 

more concrete view, Table II provides some estimation of the 

total computation times in seconds (s) for each protocol by 

using the Crypto++ benchmarks obtained on an Intel Core 2 

1.83 GHz processor under Windows Vista in 32-bit mode 

[12]. We choose AES/CBC (128-bit key) for encryption, 

AES/GCM (128-bit, 64K tables) for authenticated 

encryption, HMAC(SHA-1) for MAC, and SHA-1 for key 

derivation. Also, Diffie-Hellman exponentiations are based 

on DH 1024 bit key pair generation. 

 

4.2 Key Storage 

 

We note that the key storage requirements for KerberospNFS 

and all our described protocols are roughly similar from the 

client’s perspective. For each access request, the client needs 

to store N or N + 1 key materials (either in the form of 

symmetric keys or Diffie-Hellman components) in their 

internal states.  

 

However, the key storage requirements for each storage 

device is higher in pNFS-AKE-III since the storage device 

has to store some key material for each client in their internal 

state. This is in contrast to Kerberos-pNFS, pNFS-AKE-I and 

pNFS-AKE-II that are not required to maintain any client key 

information. 

 

5. Conclusion 
 

We proposed three advanced authenticated key exchange 

protocols for cloud and parallel network file system (pNFS). 

Our protocols offer three appealing advantages over the 

existing Kerberos-based pNFS protocol. First, the metadata 

server executing our protocols has much lower workload than 

that of the Kerberos-based approach. Second, two our 

protocols provide forward secrecy: one is partially forward 

secure (with respect to multiple sessions within a time 

period), while the other is fully forward secure (with respect 

to a session). Third, we have designed a protocol which not 

only provides forward secrecy, but is also escrow-free. 
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