
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Cloud And Parallel Network File System Using

Authenticated Key Exchange Protocols

Anupama T
1
, Refeeda K

2

1M Tech in Dept. of Computer Science & Engineering, M.Dasan Institute of Technology, Calicut University, Kerala, India

2Assistant Professor in Dept. of Computer Science & Engineering, M.Dasan Institute of Technology, Calicut University, Kerala, India

Abstract: Already we studied the issues of key establishment for secure many-to-many communications. The main problem is inspired

by the proliferation of large-scale distributed file systems supporting parallel access to multiple storage devices. The system work

focuses on the current Internet standard for such file systems, i.e., parallel Network File System (pNFS), which makes use of Kerberos

to establish parallel session keys between clients and storage devices. Our review of the existing Kerberos-based protocol shows that it

has a number of limitations: (i) a metadata server facilitating key exchange between the clients and the storage devices has heavy

workload that restricts the scalability of the protocol; (ii) the protocol does not provide forward secrecy; (iii) the metadata server

generates itself all the session keys that are used between the clients and storage devices, and this inherently leads to key escrow. . In

this paper, we propose a variety of authenticated key exchange protocols that are designed to address the above issues. We show that

our protocols are capable of reducing up to approximately 90% of the workload of the metadata server and concurrently supporting

forward secrecy and escrow-freeness. All this requires only a small fraction of increased computation overhead at the client.

Keywords: Parallel sessions; authenticated key exchange; network file systems; forward secrecy; key escrow.

1. Introduction

In a parallel file system, file data is distributed across

multiple storage devices or nodes to allow concurrent access

by multiple tasks of a parallel application. This is typically

used in large-scale cluster computing that focuses on high

performance and reliable access to large datasets. That is,

higher I/O bandwidth is achieved through concurrent access

to multiple storage devices within large compute clusters;

while data loss is protected through data mirroring using

fault-tolerant striping algorithms. Some examples of high

performance parallel file systems that are in production use

are the IBM General Parallel File System (GPFS) [48],

Google File System (GoogleFS) [21], Lustre [35], Parallel

Virtual File System (PVFS) [43], and Panasas File System

[53]; while there also exist research projects on distributed

object storage systems such as Usra Minor [1], Ceph [52],

XtreemFS [25], and Gfarm [50]. These are usually required

for advanced scientific or data-intensive applications such as,

seismic data processing, digital animation studios,

computational fluid dynamics, and semiconductor

manufacturing. In these environments, hundreds or thousands

of file system clients share data and generate very high

aggregate I/O load on the file system supporting petabyte- or

terabyte-scale storage capacities.

Independent of the development of cluster and high

performance computing, the emergence of clouds [5], [37]

and the MapReduce programming model [13] has resulted in

file systems such as the Hadoop Distributed File System

(HDFS) [26], Amazon S3 File System [6], and Cloud-Store

[11]. This, in turn, has accelerated the wide-spread use of

distributed and parallel computation on large datasets in

many organizations. Some notable users of the HDFS include

AOL, Apple, eBay, Facebook, Hewlett-Packard, IBM,

LinkedIn, Twitter, and Yahoo! [23].

In this work, we investigate the problem of secure many to

many communications in large-scale network file systems

that support parallel access to multiple storage devices. That

is, we consider a communication model where there are a

large number of clients (potentially hundreds or thousands)

accessing multiple remote and distributed storage devices

(which also may scale up to hundreds or thousands) in

parallel. Particularly, we focus on how to exchange key

materials and establish parallel secure sessions between the

clients and the storage devices in the parallel Network File

System (pNFS) [46]—the current Internet standard—in an

efficient and scalable manner. The development of pNFS is

driven by Panasas, Netapp, Sun, EMC, IBM, and

UMich/CITI, and thus it shares many common features and is

compatible with many existing commercial/proprietary

network file systems.

 Scalability – the metadata server facilitating access

requests from a client to multiple storage devices should

bear as little workload as possible such that the server will

not become a performance bottleneck, but is capable of

supporting a very large number of clients;

 Forward secrecy – the protocol should guarantee the

security of past session keys when the long-term secret key

of a client or a storage device is compromised [39]; and

 Escrow-free – the metadata server should not learn any

information about any session key used by the client and

the storage device, provided there is no collusion among

them.

The main results of this paper are three new provably secure

authenticated key exchange protocols. Our protocols,

progressively designed to achieve each of the above

properties, demonstrate the trade-offs between efficiency and

security. We show that our protocols can reduce the

workload of the metadata server by approximately half

compared to the current Kerberos-based protocol, while

achieving the desired security properties and keeping the

Paper ID: NOV163973 2314

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

computational overhead at the clients and the storage devices

at a reasonably low level. We define an appropriate security

model and prove that our protocols are secure in the model.

In the next section, we provide some background on pNFS

and describe its existing security mechanisms associated with

secure communications between clients and distributed

storage devices. Moreover, we identify the limitations of the

current Kerberos-based protocol in pNFS for establishing

secure channels in parallel. In Section III, we describe the

threat model for pNFS and the existing Kerberos-based

protocol. In Section IV, we present our protocols that aim to

address the current limitations. We then provide formal

security analyses of our protocols under an appropriate

security model, as well as performance evaluation in Sections

VI and VII, respectively. In Section VIII, we describe related

work, and finally in Section IX, we conclude and discuss

some future work.

2. Internet Standard-NFS

Network File System (NFS) [46] is currently the sole file

system standard supported by the Internet Engineering Task

Force (IETF). The NFS protocol is a distributed file system

protocol originally developed by Sun Microsystems that

allows a user on a client computer, which may be diskless, to

access files over networks in a manner similar to how local

storage is accessed [47]. It is designed to be portable across

different machines, operating systems, network architectures,

and transport protocols. Such portability is achieved through

the use of Remote Procedure Call (RPC) [51] primitives built

on top of an eXternal Data Representation (XDR) [15]; with

the former providing a procedure-oriented interface to remote

services, while the latter providing a common way of

representing a set of data types over a network. The NFS

protocol has since then evolved into an open standard

defined by the IETF Network Working Group [49], [9], [45].

Among the current key features are file system migration and

replication, file locking, data caching, delegation (from

server to client), and crash recovery.

pNFS separates the file system protocol processing into two

parts: metadata processing and data processing. Metadata is

information about a file system object, such as its name,

location within the namespace, owner, permissions and other

attributes. The entity that manages metadata is called a

metadata server. On the other hand, regular files’ data is

striped and stored across storage devices or servers. Data

striping occurs in at least two ways: on a file-by-file basis

and, within sufficiently large files, on a block-by-block basis.

Unlike NFS, a read or write of data managed with pNFS is a

direct operation between a client node and the storage system

itself. Figure 1 illustrates the conceptual model of pNFS.

Figure 1: The conceptual model of pNFS.

More specifically, pNFS comprises a collection of three

protocols: (i) the pNFS protocol that transfers file metadata,

also known as a layout,1 between the metadata server and a

client node; (ii) the storage access protocol that specifies

how a client accesses data from the associated storage

devices according to the corresponding metadata; and (iii)

the control protocol that synchronizes state between the

metadata server and the storage devices.

2.1 Security Consideration

Earlier versions of NFS focused on simplicity and efficiency,

and were designed to work well on intranets and local

networks. Subsequently, the later versions aim to improve

access and performance within the Internet environment.

However, security has then become a greater concern.

Among many other security issues, user and server

authentication within an open, distributed, and cross-domain

environment are a complicated matter. Key management can

be tedious and expensive, but an important aspect in ensuring

security of the system. Moreover, data privacy may be

critical in high performance and parallel applications, for

example, those associated with biomedical information

sharing [28], [44], financial data processing & analysis [20],

[34], and drug simulation & discovery [42]. Hence,

distributed storage devices pose greater risks to various

security threats, such as illegal modification or stealing of

data residing on the storage devices, as well as interception

of data in transit between different nodes within the system.

NFS (since version 4), therefore, has been mandating that

implementations support end-to-end authentication, where a

user (through a client) mutually authenticates to an NFS

server.

2.2 Kerberos & LIPKEY

In NFSv4, the Kerberos version 5 [32], [18] and the Low

Infrastructure Public Key (LIPKEY) [14] GSS-API

mechanisms are recommended, although other mechanisms

may also be specified and used. Kerberos is used particularly

for user authentication and single sign-on, while LIPKEY

provides an TLS/SSL-like model through the GSS-API,

particularly for server authentication in the Internet

environment.

Paper ID: NOV163973 2315

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

User and Server Authentication. Kerberos, a widely deployed

network authentication protocol supported by all major

operating systems, allows nodes communicating over a no

secure network to perform mutual authentication. It works in

a client-server model, in which each domain (also known as

realm) is governed by a Key Distribution Center (KDC),

acting as a server that authenticates and provides ticket-

granting services to its users (through their respective clients)

within the domain. Each user shares a password with its KDC

and a user is authenticated through a password-derived

symmetric key known only between the user and the KDC.

However, one security weakness of such an authentication

method is that it may be susceptible to an off-line password

guessing attack, particularly when a weak password is used to

derive a key that encrypts a protocol message transmitted

between the client and the KDC. Furthermore, Kerberos has

strict time requirements, implying that the clocks of the

involved hosts must be synchronized with that of the KDC

within configured limits.

3. Overview of Our Protocols

We describe our design goals and give some intuition of a

variety of pNFS authenticated key exchange6 (pNFS-AKE)

protocols that we consider in this work. In these protocols,

we focus on parallel session key establishment between a

client and n different storage devices through a metadata

server. Nevertheless, they can be extended straightforwardly

to the multi-user setting, i.e., many-to-many communications

between clients and storage devices.

3.1 Design Goals

In our solutions, we focus on efficiency and scalability with

respect to the metadata server. That is, our goal is to reduce

the workload of the metadata server. On the other hand, the

computational and communication overhead for both the

client and the storage device should remain reasonably low.

More importantly, we would like to meet all these goals

while ensuring at least roughly similar security as that of the

Kerberos-based protocol shown in Section III-C. In fact, we

consider a stronger security model with forward secrecy for

three of our protocols such that compromise of a long-term

secret key of a client C or a storage device Si will not expose

the associated past session keys shared between C and Si.

Further, we would like an escrow-free solution, that is, the

metadata server does not learn the session key shared

between a client and a storage device, unless the server

colludes with either one of them.

3.2 Main Idea

Major goals of texture analysis in computer vision area unit

to know, model and process texture. To extract the features

from image use transforms and textures. In transform mainly

used wavelet transform and in texture analysis DCT and

GLCM methods are used. In additions to this used area and

orientation. Feature extraction involves reducing the number

of resources needed to explain an oversized set of

knowledge. By using Gray Level Co-occurrence

Matrix(GLCM) examining the texture and consider the

spatial relationship of pixels and form a matrix [10]. The

Discrete Wavelet Transform (DWT) provides necessary

information for scrutinity and amalgamation of original

signal with a relevant reduction in the computation time.

Recall that in Kerberos-based pNFS, the metadata server is

required to generate all service tickets E(KMSi ; IDC; t; ski)

and session keys ski between C and Si for all 1< i< n, and

thus placing heavy workload on the server. In our solutions,

intuitively, C first pre-computes some key materials and

forward them to M, which in return, issues the corresponding

―authentication tokens‖ (or service tickets). C can then, when

accessing Si (for all i), derive session keys from the

precomputed key materials and present the corresponding

authentication tokens. Note here, C is not required to

compute the key materials before each access request to a

storage device, but instead this is done at the beginning of a

pre defined validity period v, which may be, for example, a

day or week or month. For each request to access one or

more storage devices at a specific time t, C then computes a

session key from the pre-computed material. This way, the

workload of generating session keys is amortized over v for

all the clients within the file system. Our three variants of

pNFS-AKE protocols can be summarized as follows:

pNFS-AKE-I: Our first protocol can be regarded as a

modified version of Kerberos that allows the client to

generate its own session keys. That is, the key material used

to derive a session key is pre-computed by the client for each

v and forwarded to the corresponding storage device in the

form of an authentication token at time t (within v).

symmetric key encryption is used to protect the

confidentiality of secret information used in the protocol.

However, the protocol does not provide any forward secrecy.

Further, the key escrow issue persists here since the

authentication tokens containing key materials for computing

session keys are generated by the server.

Figure 2: Protocol 1, pNFS-AKE I

pNFS-AKE-II: To address key escrow while achieving

forward secrecy simultaneously, we incorporate a Diffie-

Hellman key agreement technique into Kerberos-like pNFS-

AKE-I. Particularly, the client C and the storage device Si

each now chooses a secret value (that is known only to itself)

and pre-computes a Diffie-Hellman key component. A

session key is then generated from both the Diffie-Hellman

components. Upon expiry of a time period v, the secret

values and Diffie-Hellman key components are permanently

erased, such that in the event when either C or Si is

compromised, the attacker will no longer have access to the

Paper ID: NOV163973 2316

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

key values required to compute past session keys. However,

note that we achieve only partial forward secrecy (with

respect to v), by trading efficiency over security. This implies

that compromise of a long-term key can expose session keys

generated within the current v. However, past session keys in

previous (expired) time periods v′ (for v′ < v) will not be

affected.

Figure 3: Specification of pNFS-AKE-II (with partial

forward secrecy and escrow-free).

pNFS-AKE-III: Our third protocol aims to achieve full

forward secrecy, that is, exposure of a long-term key affects

only a current session key (with respect to t), but not all the

other past session keys. We would also like to prevent key

escrow. In a nutshell, we enhance pNFSAKE- II with a key

update technique based on any efficient one-way function,

such as a keyed hash function. In Phase I, we require C and

each Si to share some initial key material in the form of a

Diffie-Hellman key. In Phase II, the initial shared key is then

used to derive session keys in the form of a keyed hash chain.

Since a hash value in the chain does not reveal information

about its pre-image, the associated session key is forward

secure.

Figure 4: Specification of pNFS-AKE-III (with full forward

secrecy and escrowfree).

4. Performance Evaluation

4.1 Computational Overhead

We consider the computational overhead for w access

requests over time period v for a metadata server M, a client

C, and storage devices Si for i 2 [1;N]. We assume that a

layout is of the form of a MAC, and the computational cost

for authenticated symmetric encryption E is similar to that for

the non-authenticated version E.10 Table I gives a

comparison between Kerberos-based pNFS and our protocols

in terms of the number of cryptographic operations required

for executing the protocols over time period v. To give a

more concrete view, Table II provides some estimation of the

total computation times in seconds (s) for each protocol by

using the Crypto++ benchmarks obtained on an Intel Core 2

1.83 GHz processor under Windows Vista in 32-bit mode

[12]. We choose AES/CBC (128-bit key) for encryption,

AES/GCM (128-bit, 64K tables) for authenticated

encryption, HMAC(SHA-1) for MAC, and SHA-1 for key

derivation. Also, Diffie-Hellman exponentiations are based

on DH 1024 bit key pair generation.

4.2 Key Storage

We note that the key storage requirements for KerberospNFS

and all our described protocols are roughly similar from the

client’s perspective. For each access request, the client needs

to store N or N + 1 key materials (either in the form of

symmetric keys or Diffie-Hellman components) in their

internal states.

However, the key storage requirements for each storage

device is higher in pNFS-AKE-III since the storage device

has to store some key material for each client in their internal

state. This is in contrast to Kerberos-pNFS, pNFS-AKE-I and

pNFS-AKE-II that are not required to maintain any client key

information.

5. Conclusion

We proposed three advanced authenticated key exchange

protocols for cloud and parallel network file system (pNFS).

Our protocols offer three appealing advantages over the

existing Kerberos-based pNFS protocol. First, the metadata

server executing our protocols has much lower workload than

that of the Kerberos-based approach. Second, two our

protocols provide forward secrecy: one is partially forward

secure (with respect to multiple sessions within a time

period), while the other is fully forward secure (with respect

to a session). Third, we have designed a protocol which not

only provides forward secrecy, but is also escrow-free.

References

[1] M. Abd-El-Malek, W.V. Courtright II, C. Cranor, G.R.

Ganger, J. Hendricks, A.J. Klosterman, M.P. Mesnier,

M. Prasad, B. Salmon, R.R. Sambasivan, S.

Sinnamohideen, J.D. Strunk, E. Thereska, M. Wachs,

and J.J. Wylie. Ursa Minor: Versatile cluster-based

storage. In Proceedings of the 4th USENIX Conference

on File and Storage Technologies (FAST), pages 59–72.

USENIX Association, Dec 2005.

[2] C. Adams. The simple public-key GSS-API mechanism

(SPKM). The Internet Engineering Task Force (IETF),

RFC 2025, Oct 1996.

[3] A. Adya, W.J. Bolosky, M. Castro, G. Cermak, R.

Chaiken, J.R. Douceur, J. Howell, J.R. Lorch, M.

Theimer, and R. Wattenhofer. FARSITE: Federated,

available, and reliable storage for an incompletely\

Paper ID: NOV163973 2317

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

trusted environment. In Proceedings of the 5th

Symposium on Operating System Design and

Implementation (OSDI). USENIX Association, Dec

2002.

[4] M.K. Aguilera, M. Ji, M. Lillibridge, J. MacCormick, E.

Oertli, D.G. Andersen, M. Burrows, T. Mann, and C.A.

Thekkath. Blocklevel security for network-attached

disks. In Proceedings of the 2
nd

 International Conference

on File and Storage Technologies (FAST). USENIX

Association, Mar 2003.

[5] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H.

Katz, A. Konwinski, G. Lee, D.A. Patterson, A. Rabkin,

I. Stoica, and M. Zaharia. A view of cloud computing.

Communications of the ACM, 53(4):50–58. ACM Press,

Apr 2010.

[6] Amazon simple storage service (Amazon S3).

http://aws.amazon.com/ s3/.

[7] M. Bellare, D. Pointcheval, and P. Rogaway.

Authenticated key exchange secure against dictionary

attacks. In Advances in Cryptology – Proceedings of

EUROCRYPT, pages 139–155. Springer LNCS 1807,

May 2000.

[8] D. Boneh, C. Gentry, and B. Waters. Collusion resistant

broadcast encryption with short cipher texts and private

keys. In Advances in Cryptology – Proceedings of

CRYPTO, pages 258–275. Springer LNCS 3621, Aug

2005.

[9] B. Callaghan, B. Pawlowski, and P. Staubach. NFS

version 3 protocol specification. The Internet

Engineering Task Force (IETF), RFC 1813, Jun 1995.

Author Profile

Anupama T is pursuing her M.Tech degree in

Computer Science and Engineering from M.Dasan

Institute of Technology, Calicut University, Kerala.

She obtained her B.Tech Degree in Computer Science

and Engineering from Paavai College of Engineering,

Anna University Chennai, in 2014.

Paper ID: NOV163973 2318

