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1. Introduction 
 

Quantum mechanical anhormonic oscillators (AHO) have 

been studied over the years due to their occurance in 

various fields of physics such as Field theories, Molecular 

Physics, Solid state physics etc. They have been studied by 

several methods both from analytical and the numerical 

points of view. For instance, they have been studied using 

WKB approximation [1, 2], Hill determinant method [3], 

action-angle technique [4], Continued fraction method [5], 

the variational method [6, 7], Re-normalised frequency 

method [8] Chebyshev polynomial method [9], the 

residue-squaring method [10], Pade approximants method 

[11], the kinetic potential method [12], the fixed point 

method [13], the hypervirial method [14] and so on. In this 

paper we make use of one of the simplest methods 

proposed by Ginsberg and Montroll [15]. Using their new 

method Ginsberg and Montroll have determined the eigen 

energy values of a pure quartic oscillator. More recently the 

method has been applied by Shivalingaswamy and Kagali 

[16] for a pure sextic oscillator. However, on physical 

grounds we expect a quartic anharmonic term along with a 

sextic term for every anharmonic osillator. Thus we study 

an anharmonic oscillator having both quartic and sextic 

anharmonic terms. 

 

2. Ginsberg-Montroll Method 
 

In this method a wave function with proper asymptotic 

behavior is chosen. The wave function is then constructed 

with other interpolative terms. The coeficients of the 

interpolative powers are determined by solving the 

Schrodinger equation near the origin. The coeficients lead 

to a polynomial equation for the energy eigenvalues that 

results from the requirements of self consistency [15]. 

 

3. The Sextic oscillator with quartic 

anharmonic term 
 

The time-dependent Schrödinger equation for a one 

dimensional oscillator with both sextic and quartic 

anharmonic potentials can be written as 
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and changing the variable to 
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we get the dimensionless equation: 
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For large y , 
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For small y ,  

    2exp yy  ;                    (4) 

 

where   is a numerical parameter. 

 

Following Ginsberg and Montroll [15], we postulate the 

following interpolative wave function for the ground state 
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We attempt to solve equation (2) near the origin of y . 

 

Paper ID: NOV163945 2395



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 5, May 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Hence expanding the exponent of the wave function 0  in 

the powers of y  we get 
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Therefore, near the origin we get 
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Substituting equation (7) into equation (2) and equating the 

coefficients of 
420 ,, yyy  to zero, we get the following 

equations: 
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1a  and 2a  can be solved in terms of 3a , where 

.
8

=3


a  Hence we get the following characteristic 

equation for :  

 

0=152702883121008 24      (9) 

  

4. The Energy eigenvalues 
 

Equation (9) can be solved using Mathematica [17] for 

different chosen values of the anharmonic coefficients   

and  . The results are tabulated in Table 1. 

 

The ground state Energy eigenvalues 













E
 of a sextic anharmonic oscillator including quartic anharmonicity

    

  0=  0.1=  0.5=  1.0=  10=  100=  1000=  

0 0.500000 0.559512 0.695777 0.801717 1.49006 3.09068 6.60199 

0.01 0.512985 0.567431 0.699199 0.803799 1.49035 3.09072 6.60199 

0.1 0.586616 0.621538 0.727012 0.8215461 1.49288 3.09099 6.60202 

1.0 0.82528 0.835627 0.88996 0.945755 1.51736 3.09374 6.6023 

10 1.33946 1.34381 1.36104 1.3822 1.704 3.12067 6.60509 

100 2.30892 2.3103 2.31581 2.32268 2.44259 3.35012 6.6328 

1000 4.06465 4.06509 4.0683 4.06901 4.10805 4.47766 6.88755 

10000 7.20484 7.20498 7.20553 7.20622 7.21863 7.34153 8.45782 

20000 8.56431 8.5644 8.56479 8.56528 8.57406 8.66134 9.48539 

 

5. Results and Discussions 
 

For   and   both vanishing we clearly get the 

harmonic oscillator eigenvalue for  , namely, 0.5, as we 

should. As   and   increase the ground state energies 

increase slowly. The method of evaluating the ground state 

energies is rather simple compared to other methods cited in 

the introduction and is very much valid for small values of 

  and  . By including more number of parameters in the 

interpolative wave function it may be possible to improve 

the numerical accuracy of the energy eigenvalues. Further, 

one can use this method to estimate the excited state 

energies of anharmonic oscillators by using a wave function 

that is a product of a suitable polynomial with the ground 

state wave function used in this article. 
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