
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Project (HIDA)-High Speed Communication Interface for

Distributed Avionics Design of Switching Software for

the Implementation AFDX Protocol

J. Victor Paul

School of Electronics and Communication, Veltech Dr RR & Dr SR Technical University, Avadi-600062, Chennai, Tamil Nadu, India

Abstract: With the rapid development of advanced data transmission technologies in avionics AFDX (Avionics Full Duplex Switched

Ethernet) shows great potential in on-board avionics system because of its high bandwidth and real-time property. In this paper, we

present a feasible software framework to implement AFDX protocol on VxWorks Operating System. With the rapid development of

advanced data transmission technologies in avionics fields, AFDX (Avionics Full Duplex Switched Ethernet) shows great potential in

on-board avionics system because of its high bandwidth and real-time property. In this paper we design switching software using the linux

kernel on the freescale power architecture processor for the implementation of filtering and policing logics on the AFDX protocols. The

simulative result proves that the framework works effectively with appropriate performance and meets the real-time requirements of

avionics data transmission.

Keywords: AFDX, End systems, VL scheduling, BAG, jitter

1. Introduction

As one of the most advanced data transmission technologies in

avionics field, AFDX (Avionics Full Duplex Switched.

Ethernet) features high bandwidth, low cost, extensive system

integration, real-time property, reliability and shows great

potential in on-board avionics system. The performance of

AFDX protocol has been thoroughly studied and

implemented.

In this paper, we first makes a brief overview of AFDX

protocol stack and its determinism, then further Concentrate

on the design of switching software for the T1040 Reference

design board for the end system using the configured linux

kernel and using the freescale open source standard

development kit to the implementation of filtering and

policing logics on the AFDX protocols and testing them with

different parameters.

2. AFDX Protocol

2.1 Introduction

Aircraft Data Networks (ADN) primarily utilizes the ARINC

429 standard. This standard, developed over thirty years ago

and still widely used today, has proven to be highly reliable in

safety critical applications. ARINC 429 networks, which can

be found on a variety of aircraft from both Boeing and Airbus,

utilize a unidirectional bus with a single transmitter and up to

twenty receivers. A data word consists of 32 bits

communicated over a twisted pair cable. There are two speeds

of transmission: high speed operates at 100 Kbit/s and low

speed operates at 12.5 Kbit/s.

Another standard, ARINC 629, introduced by Boeing for the

777 aircraft provides increased data speeds of up to 2 Mbit/s

and allowing a maximum of 120 data terminals. ARINC 629

network operates without the use of a bus controller, thereby

increasing the reliability of the network architecture. One of

the primary draw-backs of this network type is that it is very

specific to civil aircraft applications, requiring custom

hardware which can add significant cost and development

time to the aircraft.

ARINC 664 Part 7 [1] is defined as the next generation

aircraft data network (AFDX). It is based on IEEE 802.3

Ethernet, enabling greater potential use of Commercial

Off-The-Shelf (COTS) hardware, thereby reducing aircraft

cost and development time. AFDX was developed by Airbus

Industries for the A380, has since been accepted by Boeing

and used on the Boeing 787 Dreamliner, and is being used or

considered today for other applications.

2.2 AFDX Overview

Typically, an AFDX network is a star topology of end systems

that are connected through a centralized AFDX switch. By

utilizing this form of network structure, AFDX is able to

significantly reduce wire runs on the aircraft when compared

to ARINC 429 or 629 as examples, thus reducing overall

aircraft weight. Additionally, AFDX provides dual link

redundancy and Quality of Service (QoS).To support more

end systems, AFDX switches can be cascaded to form a larger

network with a more complicated network topology. AFDX

protocol comprises five layers, as shown in Figure 1.

Figure 1: OSI model of AFDX

Paper ID: NOV163883 2198

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

End System

An AFDX end system [1] provides services to achieve

deterministic communication with other end systems. It

guarantees a secure and reliable data exchange on the AFDX

network. A guaranteed service provides a deterministic

(mathematically provable) worst case on end system to end

system frame transit delay over the AFDX network. In order

to guarantee a fixed transit delay, bandwidth is managed at the

link level through logical communication channels called

Virtual Links (VL). Each VL is responsible of guaranteeing its

Ethernet frame flow based on its allocated bandwidth.

In order for a network application to use the end system, it

transmits its data to communication ports residing on the end

system. These ports constitute the entry and exit points of data

to or from the end system. In transmission, the end system uses

a traffic shaping function to manage configured VLs based on

at least one VL parameter: the Bandwidth Allocation Gap

(BAG); The BAG configures the frequency at which

transmission can occur.

An AFDX compliant end system manages outgoing traffic

before sending data over the Ethernet network. This is to

guarantee a deterministic behavior on each transmit VL. An

end system is equipped with two Ethernet adapters, referred to

as “Network Adapter A” and “Network Adapter B”, which are

respectively connected to AFDX Network A and AFDX

Network B. Communication on the physical network is

dependent on the VL’s configuration. When using both

adapters, the VL uses redundancy, meaning it transmits the

same frame over both networks simultaneously. Each end

system is identified by a unique identifier composed of the

Equipment Domain, Side and Location. This identifier is used

for Ethernet and IP addressing to connect to different end

systems during the virtual link transmission for the successful

communication

Virtual Links

A virtual link (VL) describes a logical unidirectional “point to

multipoint” communication channel between end systems

over an AFDX Network, see Figure 3. Each VL is configured

with a fixed bandwidth. The Bandwidth Allocation Gap

(BAG) and the Lmax are the AFDX parameters responsible of

allocating the bandwidth for a given VL. Virtual links

describe network communication at the Ethernet level.

More precisely, each VL has a unique identifier that is used in

the destination MAC address of an Ethernet frame. This

address uses the Ethernet multicast format. As for the MAC

source address field, it contains the Ethernet adapters

configured address.

Traffic Shaping

Each VL is allocated some bandwidth that is managed by the

scheduler according to the Bandwidth Allocation Gap (BAG),

which specifies the frequency at which a VL can transmit on

the network(s). The traffic shaping function (scheduler) is the

core AFDX entity, providing regulated and deterministic

traffic flow to the AFDX network.

When a contention occurs between two or more VLs, this

induces scheduling latency, referred to as jitter. According to

the standard, jitter must not exceed 500 microseconds at any

time. A jitter management mechanism can be used to

minimize or eliminate jitter effects Traffic shaping is only

performed in transmission. In a transmitting end system with

multiple VLs, the scheduler multiplexes the different flows

coming from the regulators, as illustrated in Figure 2

At the output of the scheduler, for a given VL, frames can

appear in a bounded time interval. This interval is defined as

the maximum admissible jitter. Scheduling jitter occurs when

multiple VLs are to be scheduled at the same time. This

situation happens when BAG values coincide with each other.

In the perspective of one VL, the jitter effect can be illustrated

in Figure 3.

Figure 2: The Jitter Effect for a Maximum Bandwidth Data

Flow

Actual traffic shaping is thus performed on a per VL basis.

The scheduler uses each VL’s Bandwidth Allocation Gap

(BAG) and shapes the flow of frames so that no more than one

frame is transmitted in each interval of BAG milliseconds.

Using a BAG scheduler provides a logical isolation with

respect to available bandwidth among VLs it supports.

Regardless of the attempted utilization of a VL by one

application, the allocated Bandwidth on any other VL is

unaffected. The maximum usable bandwidth of each VL is

characterized by its BAG and its authorized Lmax (maximum

VL frame size). The maximum usable bandwidth = Lmax /

BAG in Kbytes per second. The end system should

accommodate VL frames up to the maximum Ethernet frame

size of 1518 bytes, or as specified by its Lmax, in both

transmission and reception.

Integrity Checking

The integrity checking function is responsible for maintaining

the ordering of data as delivered by the application, for both

transmission and reception (ordinal integrity). In

transmission, the integrity checking function adds, per VL, a

Sequence Number (SN) for each transmitted frame on the

AFDX network. The frame SN is one byte long with a range of

0 to 255. The frame SN is incremented by one for each

consecutive frame of the same VL and wraps around to 1

following the value 255.

On the receiving side, under fault-free network operation, the

integrity checking function simply passes the frames that it has

received on to the redundancy management function (see next

section), independently for each network. If there are faults

(based on sequence number), the integrity checking function

Paper ID: NOV163883 2199

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

has the task of eliminating invalid frames, and informing the

network management function accordingly. The integrity

checking function is configurable on a per VL basis.

Redundancy Management

Redundancy is used as a fall-back mechanism in case of a

failing or damaged network. When data becomes unreliable

on one network, that same data can be received from the

second network if the transmitting VL uses both networks.

When both networks are fine, some sort of logic needs to be

applied to discard the second copy of a frame.

3. Design of Switching Software for the AFDX

switch

The project undertaken is for the design of switching software

for the 10 port AFDX switch having ISL ports(Inter switch

Linking port-where Virtual link can be exchanged between

any ports) using the freescale T1020 network power pc. The

basic theme of the project is the User space datapath

acceleration architecture where it is a software framework that

allows Linux user space applications to directly access the

portals in a high-performance manner. This session provides

an overview of USDPAA. Topics include USDPAA threads,

queue manager and buffer manager drivers, and example

applications. So before implementing the automated setup a

manual setup is prepared where the freescale T1040 reference

design board is used to implement the AFDX protocols

consists of fman and L2switch(Responsible for the

transmitting of vl’s between end systems). The T1040 RDB

has the 4-core e5500 power core, the design board is ported

with u-boot from the host PC to the board (Target) for

initiating the board, the Linux kernel 12.2 is ported on the

board which is responsible for the memory management and

other processor related functions, device tree block which

consists of the layout of the total hardware and the Ethernet

interfaces. In this host to target interface the(The manual test

setup) Linux host PC is connected to the target board through

the TEP port(Echoing port) which loads the configuration file

on to the target board and another windows host machine is

connected to the end systems(n in number taking 3 end

systems in this setup) where it loads configuration file to the

respective end systems where during the test the end system

configuration file and the switch side configuration files are

compared and accordingly the test plan is carried out for

different parameter’s.

3.1 T1040 Reference Design board

The QorIQ T1040 Reference Design Board (T1040RDB) is a

high-performance computing evaluation, development and

test platform supporting the QorIQ T1040/20, T1042/22 and

T2081 processors built on Power Architecture® technology.

The board, with its 1.4 GHz T1040 processor and rich I/O

mix, is intended for evaluation of the QorIQ T1 family of

processors in networking and Ethernet-centric applications,

such as mixed control and data plane in fixed routers,

switches, Internet access devices, firewall and other packet

filtering applications, as well as general-purpose embedded

computing. The board consists of 1 TEP port 2 Fman (Frame

manager ports) ports and 8 L2(Layer 2 switch) switch ports.

Accesses DPAA through hardware components called portals.

USDPAA is a software framework that permits Linux user

space applications to directly access the DPAA queue

manager and buffer manager software portals in a high

performance manner. Here in USDPAA there are Queuing

manager (QMan), Buffer manager (Bman) which is

responsible for input to the frame manager for processing the

frames and storing the processed frames.

Figure 3: Block Diagram of T1040 RDB

Feature of T1040 RDB:

Processor:

 QorIQ T1040, 1.4 GHz core with 1600 MT/s DDR3L data

rate

 Multiple SysClk inputs for generating various device

frequencies.

Memory:

 2 GB un buffered DDR3L SDRAM UDIMM/ RDIMM

(64-bit bus), 1600 MHz data rate.

 128 MB NOR flash, 16-bit .

 2 GB SLC NAND flash.

 SD connector to interface.

 SATA interface.

Paper ID: NOV163883 2200

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3.1 User space data path acceleration architecture

Figure 4: Fman Interfaces Block Diagram

Queuing manager:

Receives the incoming transmitted frames within the virtual

link and sends and receives to and from the frame manager

through the queuing manager interface.

Buffer manager:

Routes the processed packets to the L2 switch and also

receives the packets from the L2 switch to the inter switch

linking of the ports.

Frame manager:

Frame manager processes the incoming frames from the

queuing manger process them and releases to the BMI next to

the L2 switch.

Figure 5: Fman Block diagram

Figure 6: USDPAA Driver Architecture

3.2 Pipelining

Functional of Rx pipelining:

Figure 8: Pipelining architecture

Parser:

The parser reads and initiates the incoming packets entry by

entry.

Policer:

Allows the only required frames to be processed by the frame

manager.

4. Design of the switching software for the

AFDX Switching software (Manual method

by porting the u-boot image, Linux kernel,

File system images (Device Tree Block) on to

T1040 Reference design board)

4.1 Procedure

The whole setup consists of a Linux host machine

Which is connected to the T1040RDB and three different Pc’s

are connected to as the output port to the switch which acts as

the end systems. Another host Pc consisting the windows

operating systems which is also connected to the whole setup

through the data center where configuration file is loaded

through the pearl script to the end systems port and TEP port

for loading configuration file on to the switch side and

Paper ID: NOV163883 2201

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

different end systems are connected to the single port data

center where the data can be exchanged and be communicated

between any same as in the AFDX environment. It’s

64-bitoperation

The T1040 processor has 4 e5500 power pc cores where in

our set we use only 2 cores where one of the core will be

dedicated for the linux operation where they will dedicated for

the memory allocations for the Fman memory and interrupt

related functions and the second core will be dedicated for the

protocol functionalities like the SNMP, TFTP(The Trivial

File Transfer Protocol (TFTP) is used to serve the boot image

to the client. Theoretically, any server, on any platform, which

implements these protocols, may be used . The JFFS2 is the

log-structured file system for use with flash memory devices.

The project is deployed by using the freescale standard

development kit(SDK) v1.7 developed on the Yocto project

distribution for the root file system deployment. (The project

is undertaken at Research center imarat A.P.J abdul

kalam Missile complex, Hyderabad for the RCI design

AFDX switch the test setup is done on T1040RDB.)

 4.2 Host setup

Yocto requires some packages to be installed on host. The

following steps are used for preparing the environment for

Yocto running.

1. $ cd <yocto_install_path>

2. $. /scripts/host-prepare.sh

4.2.1 Builds

To set up a cross compile environment and perform builds

.$cd<yocto_install_path>/build_<machine>release

2. $ bitbake <image-target>

Where <image-target> is one of the following:

 fsl-image-minimal: contains basic packages to boot up a

board

 fsl-image-core: contains common open source packages

and Freescale-specific

 packages.

 fsl-image-full: contains all packages in the full package list.

 fsl-image-flash: contains all the user space apps needed to

deploy the fsl-imagefull

 Image to a USB stick, hard drive, or other large physical

media.

 fsl-image-kvm: contains guest rootfs in qemu

 fsl-toolchain: the cross compiler binary package

 package-name(usdpaa): build a specific package

4.2.2 Configure and rebuild the U-Boot

1. Modify U-Boot source code

 a. $ bitbake -c cleansstate u-boot

 b. $ bitbake -c patch u-boot

 c. $ cd <S> and modify the source code

2. Modify U-Boot configuration.

 a. $ modify UBOOT_MACHINES

 e.g. UBOOT_MACHINES = "T1040RDB"

3. Rebuild U-Boot image

 a. $ cd build_<machine>_release

 b. $ bitbake -c compile -f u-boot

 c. $ bitbake u-boot

4.2.3 Configuring Linux Kernel

1. Modify kernel source code

 a. $ bitbake -c cleansstate virtual/kernel

 b. $ bitbake -c patch virtual/kernel

 c. $ cd <S> and change the source code

Use bitbake -e <package-name> | grep ^S= get the value

of<S>.

2. Change the kernel defconfig

a. $ update KERNEL_DEFCONFIG variable in

meta-fsl-ppc/conf/machine/<machine>.conf

 machine =T1040RDB

3. Change dts

a. $ update KERNEL_DEVICETREE variable in

meta-fsl-ppc/conf/machine/<machine>.conf

4. Do menuconfig

 a. $ bitbake -c menuconfig virtual/kernel

5. Rebuild Kernel image

 a. $ cd build_<machine>_release

 b. $ bitbake -c compile -f virtual/kernel

 c. $ bitbake virtual/kernel

4.2.3 Customize a Root Filesystem

Packages included in a rootfs can be customized by editing the

corresponding recipe:

fsl-image-flash:meta-fsl-networking/images/fsl-image-flash.b

b

fsl-image-core:meta-fsl-networking/images/fsl-image-core.b

b

fsl-image-full:meta-fsl-networking/images/fsl-image-full.bb

fsl-image-kvm:

meta-fsl-networking/images/fsl-image-kvm.bb

fsl-image-minimal:meta-fsl-networking/images/fsl-image-mi

nimal.bb

fsl-toolchain:meta-fsl-networking/images/fsl-toolchain.bb

The rootfs type can be customized by setting the

IMAGE_FSTYPES variable in the

above recipes.

Supported rootfs types include the following:

cpio

cpio.gz cpio.xz

cpio.lzma

cramfs

ext2

ext2.gz

ext2.gz.u-boot

ext2.bz2.u-boot

ext3

ext3.gz.u-boot

ext2.lzma

jffs2

live

squashfs

squashfs-lzma

ubi

tar

tar.gz

tar.bz2

tar.xz

Specify the preferred version of package:

Paper ID: NOV163883 2202

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

<PREFERRED_VERSION_pkgname> is used to configure

the required version of a package.

If <PREFERRED_VERSION> is not defined, Yocto will

pick up the recent version.

to downgrade Samba from 3.4.0 to 3.1.0: add

PREFERRED_VERSION_samba = "3.1.0" in meta-fslppc/

conf/machine/<machine>.conf

machine: T1040RDB

Rebuild rootfs:

$ bitbake <image-target>

4.2.4 Extract Source Code

To extract the source code of a package, do the following:

1) $ bitbake -c cleansstate<T1040RDB-fsl_networing-linux/

u-boot>

2) $ bitbake -c patch < T1040RDBRDB-fsl_networing-linux/

u-boot >

3) $ cd <S>Use bitbake -e <package-name> | grep ^S= to get

the value of <S>.

4) $ bitbake -c cleansstate u-boot For example, to do a

U-boot of a T2080RDB processor.

5) $ bitbake -c patch u-boot.

4.2.5 Standalone toolchain

Build and install the standalone toolchain with Yocto:

1. $ source/fsl-setup-poky -m <T1040RDB>

2. $ bitbake fsl-toolchain

3. $ cd build_<T1040RDB>_release/tmp/deploy/sdk

4.$./fsl-networking-eglibc-<host-system>-<e5500>-toolchain

-<release>.sh

The default installation path for standalone toolchain is

/opt/fsl-networking/. The install folder can be specified during

the installation procedure. To use the installed toolchain, go

the the location where the toolchain is installed and source the

environment-setup-<core> file. This will set up the correct

path to the build toolsand also export some environment

variables relevant for development (eg. $CC, $ARCH,

$CROSS_COMPILE, $LDFLAGS etc).

To invoke the compiler, use the $CC variable (eg. $CC

<source files>).

This is a sysrooted toolchain. This means that GCC will start

to look for target fragments and libraries (eg. crt*, libgcc.a)

starting from the path specified by the sysroot. The default

sysroot is preconfigured at build time to point to

/opt/fsl-networking/QorIQ-SDK-<sdk_version>/sysroots/<ta

rget_architecture>.If the toolchain is installed in a location

other than the defaultone (/opt/fsl-networking/),

the--sysroot=<path_to_target_sysroot>

parameter needs to be passed to GCC. When invoking

thecompiler through the $CC variable, there is no need to pass

the --sysroot parameter as it is already included in the variable

(check by running echo $CC).

4.3 The Proof of code (POC) or Reflector program

developed using U-boot on Host machine:

U-boot settings required for HIDA PoC

====================================

 Execute below commands at u-boot prompt.

#below commands disables two CPUs to emulate T1020

cpu 2 disable

cpu 3 disable

#below command set boot arguments to disable qportal and

bportal interrupts and isolates cpu 1 from linux scheduling

setenv bootargs root=/dev/ram rw

ramdisk_size=3000000000 console=ttyS0, 115200

usdpaa_mem=256M qportals=s0 bportals=s0 isolcpus=1

save U-boot settings

Save env

steps to run HIDA switch PoC application

==

Copy all files from app folder to T1040RDB file system

<folder>.

Run below commands at Linux shell prompt to start HIDA

switch PoC application.

 #tftpboot 0x100000 u-Image.bin

#tftpboot 0x400000 Kernelimage 12.3

#tftpboot 0x200000 fsl-image.dtb

#bootm 0x1000000 0x4000000 0x2000000(Store on to

the NOR flash)

 root: xyz

password: xyz

ifconfig -a

#ifconfig fm1-gb2 172.22.22.10 netmask 255.255.255.0

up(Setting up the network to copy the configuration file

to the target board, fm1-gb2 –Ethernet port on the

target board)

#mkdir /usr/etc

#cd /usr/etc

#cp hidaconfig.txt /usr/etc

 #scproot@172.22.22.4:/srv/tftpboot/hidaconfig.txt

 frame manager configuration.

#fmc -c usdpaa_config_t1_serdes_0x66.xml -p

usdpaa_policy_hash_ipv4.xml –a

(kill already running switch daemon and delete all its

files.)

#killall l2sw_bin

#rm -rf /tmp/il2sw /tmp/ol2sw

#chmod +x hidaswitchpoc.binbhida_switch_app.bin

#/hida_switch_app.bin –n 1 –c

usdpaa_config_t1_serdes-0x66.xml –p

usdpaa_policy_hash_ipv4.xml.(Run HIDA Switch PoC

Paper ID: NOV163883 2203

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

application. Name(ipfwd_app) will be changed to

hida_switch_app further).

5. AFDX Protocols test cases and Results

 1. Policing test:

The Configuration file is loaded into the both end system and

the switch when the BAG of the end system is greater than the

BAG value of the switch then test fails if the BAG of the end

system is less than the switch BAG then the test passes. This

test is considered for 10 virtual links port speed of 1000Mbps.

Input to Switch End system:

(hidaconfig.txt)-Configuration file

Input to Switch End system:

(hidaconfig.txt)-Configuration file

#PORTCONFIG, "(portno, maxdelay(in), portstate(1-up,

0-down), portspeed(100-100Mbps, 1000-1Gbps,

10-10Gbps), opbufsizelowprio, opbufsizehiprio)", , , , , , , ,

1, 100, 1, 1000, 128, 256, , , , , , , , , , , ,

2, 100, 1, 1000, 128, 256, , , , , , , , , , , ,

3, 100, 1, 1000, 128, 256, , , , , , , , , , , ,

4, 100, 1, 1000, 128, 256, , , , , , , , , , , ,

5, 100, 1, 1000, 128, 256, , , , , , , , , , , ,

6, 100, 1, 1000, 128, 256, , , , , , , , , , , ,

7, 100, 1, 1000, 128, 256, , , , , , , , , , , ,

8, 100, 1, 1000, 128, 256, , , , , , , , , , , ,

9, 100, 1, 1000, 128, 256, , , , , , , , , , , ,

10, 100, 1, 1000, 128, 256, , , , , , , , , , , ,

#VLCONFIG, "(vlid, Smin, Smax, bag(0.5-128ms),

jitter(0-10000us), inputport, outputport(op)1, op2, op3, op4,

op5, op6, op7, op8, op9, op10, ACi, priority 0 - low 1 - high)",

, , , , , , , , , , , , , , ,

0, 100, 200, 33, 1000, 3, 2, 1, , , , , , , , , 0, 0,

2, 100, 200, 32, 1000, 3, 2, 1, , , , , , , , , 0, 0,

65533, 100, 200, 32, 1000, 1, 3, 2, , , , , , , , , 0, 0,

65534, 100, 200, 50, 1000, 1, 3, 2, , , , , , , , , 0, 0,

350, 100, 200, 32, 1000, 2, 3, 1, , , , , , , , , 0, 0,

500, 100, 200, 49, 1000, 2, 3, 1, , , , , , , , , 0, 0,

, ##END, , , , , , , , , , , , , , , , ,

End system configuration

#VLCONFIG, "(vlid, Smin, Smax, bag(0.5 - 128ms), jitter(0 -

10000us), inputport, outputport(op)1, op2, op3, op4, op5,

op6, op7, op8, op9, op10, ACi, priority 0 - low 1 - high)", , , ,

, , , , , , , , , , , ,

0, 100, 200, 32, 1000, 3, 2, 1, , , , , , , , , 0, 0,

2, 100, 200, 28, 1000, 3, 2, 1, , , , , , , , , 0, 0,

65533, 100, 200, 40, 1000, 1, 3, 2, , , , , , , , , 0, 0,

65534, 100, 200, 49, 1000, 1, 3, 2, , , , , , , , , 0, 0,

350, 100, 200, 36, 1000, 2, 3, 1, , , , , , , , , 0, 0,

500, 100, 200, 32, 1000, 2, 3, 1, , , , , , , , , 0, 0,

Figure 8: Test Result for the Policing test

Figure 9: Packet flow status on the Bare tail tool

5. Filtering Test

a. Smin Filterning Test:

All the frames with size below 84 bytes or Smin value as

programmed in configuration table to be discarded and MIB

to be updated port wise

Configurtion table(hidaconfig.txt)

bufsize low prio, opbufsize hi prio)", , , , , , , , , , , , , , , ,

Paper ID: NOV163883 2204

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

1, 100, 1, 1000, 128, 256, , , , , , , , , , , ,

2, 100, 1, 1000, 128, 256, , , , , , , , , , , ,

3, 100, 1, 1000, 128, 256, , , , , , , , , , , ,

4, 100, 1, 1000, 128, 256, , , , , , , , , , , ,

5, 100, 1, 1000, 128, 256, , , , , , , , , , , ,

6, 100, 1, 1000, 128, 256, , , , , , , , , , , ,

7, 100, 1, 1000, 128, 256, , , , , , , , , , , ,

8, 100, 1, 1000, 128, 256, , , , , , , , , , , ,

9, 100, 1, 1000, 128, 256, , , , , , , , , , , ,

10, 100, 1, 1000, 128, 256, , , , , , , , , , , ,

#VLCONFIG, "(vlid, Smin, Smax, bag(0.5 - 128ms), jitter(0 -

10000us), inputport, outputport(op)1, op2, op3, op4, op5,

op6, op7, op8, op9, op10, ACi, priority 0 - low 1 - high)", , , ,

, , , , , , , , , , , ,

0, 100, 200, 32, 1000, 3, 2, 1, , , , , , , , , 0, 0,

2, 100, 200, 32, 1000, 3, 2, 1, , , , , , , , , 0, 0,

4, 100, 200, 32, 1000, 3, 2, 1, , , , , , , , , 0, 0,

65533, 100, 200, 32, 1000, 1, 3, 2, , , , , , , , , 0, 0,

65534, 100, 200, 32, 1000, 1, 3, 2, , , , , , , , , 0, 0,

65535, 100, 200, 32, 1000, 1, 3, 2, , , , , , , , , 0, 0,

350, 100, 200, 32, 1000, 2, 3, 1, , , , , , , , , 0, 0,

500, 100, 200, 32, 1000, 2, 3, 1, , , , , , , , , 0, 0,

1350, 100, 200, 32, 1000, 2, 3, 1, , , , , , , , , 0, 0,

##END, , , , , , , , , , , , , , , , ,

Figure log file of smin and port status

Smax Filtering Test:

All the frames with size above 1538 bytes or Smax value as

programmed in configuration table to be discarded and MIB

to be updated port wise

Figure 10: Log file S max and the respective port status

6. Conclusion

After implementing the testing the Filtering and policing

logics on the T1040RDB reference design board for a speed

for a speed of 1000Mbps the testing will be implemented on

the RCI designed AFDX switch.

7. Acknowledgement

I would like thank Scientist C. Ramesh Reddy and Chandra

Bhusan Kumar at Research center imarat A.P.J Abdul Kalam

Missile Complex, Hyderabad, for their support and helpful

comments.

References

[1] A Software Implementation of AFDX End System Xin

Chen, Xudong Xiang, Jianxiong Wan and Technology,

2007. Xin Chen, Xudong Xiang, Jianxiong Wan.

[2] AFDX Software Network Stack Implementation –

Practical Lessons Learned, Imad Khazali, Marc-André

Boulais, and Phil Cole, Embvue Inc., Montreal, Quebec,

Canada.

[3] The Design and Implementation of the AFDX Network

Simulation System.

[4] Freescale Linux SDK T2080 v1.1, T1040v0.3

Paper ID: NOV163883 2205

