
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 5, May 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

On Sandwich Theorem for Certain Subclasses of 

Symmetric Analytic Functions Associated with 

Noor Integral Operator 
 

C. Selvaraj
1
, T. R. K. Kumar

2
 

 
1Department of Mathematics, Presidency College, Chennai, Tamilnadu, India 

 
2Department of Mathematics, R. M. K. Engineering College, Tamilnadu, India 

 

 

Abstract: In this paper, we obtain some interesting properties of differential subordination and superordination for the classes of 

symmetric analytic functions in the unit disk, by applying Noor integral operator. We investigate several sandwich theorems on basis of 

this theory. 

 

Keywords: Convex functions, Differential subordination and superordination, Noor integral operator, Best dominant 

 

1. Introduction 
 

Let H(U)  denote the class of analytic functions in the open 

unit disk 1}|<:|{= zzU  and let ,1][aH  denote the 

subclass of the functions H(U)f  of the form:  

)(=)( 2

21 C azazaazf   

 

Also, let A  be the class of functions H(U)f  of the 

form  

,=)(
2=

n

n

n

zazzf 


                     (1) 

For two functions )(zf  given by (1) and  

  n

n

n

zbzzg 



2=

=  

The Hadamard product (or convolution) of f  and g  is 

defined by  

     .==
2=

zfgzbazzgf n

nn

n

 


 

Let H(U)gf , , we say that the function f  is 

subordinate to g , if there exist a Schwarz function w , 

analytic in U , with 0=(0)w  and )(1|<)(| Uzzw , 

such that ))((=)( zwgzf  for all Uz . 

 

This subordination is denoted by gf   or )()( zgzf  . 

It is well known that, if the function g  is univalent in U , 

then )()( zgzf   if and only if (0)=(0) gf  and 

)()( UU gf  . 

 

Let H(U))(),( zhzp , and let 

CUC  3:);,,( ztsr . If )(zp  and 

));(),(),(( 2 zzpzzpzzp   are univalent functions, and 

if )(zp  satisfies the second-order superordination  

));(),(),(()( 2 zzpzzpzzpzh                 (2) 

 then )(zp  is called to be a solution of the differential 

superordination (2). (If )(zf  is subordinatnate to )(zg , 

then )(zg  is called to be superordinate to )(zf ). An 

analytic function )(zq  is called a subordinant if 

)()( zpzq   for all )(zp  satisfies (2). An univalent 

subordinant )(~ zq  that satisfies )(~)( zqzq   for all 

subordinants )(zq  of (2) is said to be the best subordinant. 

 

Recently, Miller amd Mocanu [13] obtained conditions on 

)(),( zqzh  and   for which the following implication 

holds true:  

)()());(),(),(()( 2 zpzqzzpzzpzzpzh    

  

Using these results, the authors in [3] considered certain 

classes of first- order differential superordinations, see also 

[7], as well as superordination-preserving integral operators 

[6]. Aouf et al. [3, 4], obtained sufficient conditions for 

certain normalized analytic functions )(zf  to satisfy  

)(
)(

)(
)( 21 zq

zf

zfz
zq 


 

 where )(1 zq  and )(2 zq  are given univalent functions in 

U  with 1=(0)1q  and 1=(0)2q . 

 

In [18], Sakaguchi defined the class of starlike functions with 

respect to symmetrical points as follows: 

 

Let Af . Then f is said to be starlike with respect to 

symmetrical points in U  if, and only if,  

 
   

).(0,> UR 


z
zfzf

zzf '

 

 Obviously, it forms a subclass of close-to-convex functions 

and hence univalent. Moreover, this class includes the class 
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of convex functions and odd starlike functions with respect 

to the origin, see [18]. 

Let A  denote by AA :D  the operator defined by  
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1

=
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 zf
z

z
zfD  

 or equiavalently,  
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N


k
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kk
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 where the symbol )(  stands for the Hadamard product (or 

Convolution). We note that )(=)(0 zfzfD  and 

)(=)(1 zzfzfD '
. The operator fDk

 is called the 

Ruscheweyh derivative of kth  order of f  , see [17]. 

Analogous to fDk
, Noor [14] and Noor et al. [15] defined 

an integral operator AA :kI  as follows. 

Let 
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kk , and let 
 

kf  be defined 

such that  

  
 21
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 Then  
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 From (3) it is easy to verify that  

 
        .1= 11 zfkIzfIkzfIz kk

'

k  
       

 (4) 

 

We note that    zzfzfI '=0  and    zfzfI =1 . The 

operator  zfIk  defined by (3) is called the Noor Integral 

operator of kth  order of f , see [8]. Moreover, Liu [8] 

introduced some new subclasses of strongly starlike 

functions defined by using the Noor integral operator and 

studied their properties. Liu and Noor [9] investigated some 

interesting properties of the Noor integral operator.  

 

Definition 1.1 A function Af  is said to be in the class 

 BA,,B , if it satisfies the following subordination 

condition:  
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 where and throughout this paper unless otherwise mention 

the parameters , , A and B are constrained as follows: 

   
,,1,1:0>)(: RABAB   RC  

 and all powers are understood as principal values. 

 

In this paper, we prove such results as subordination and 

superordination properties, convolution properties, distortion 

theorems, and inequality properties of the class  BA,,B . 

For interested readers see the work done by the authors [1, 

5].   

 

2. Preliminary Results 
 

Definition 2.1 Let Q  be the set of all functions f  that are 

analytic and injective on )(\ fEU , where  

  ,=lim:=)(











zffE
z 

 U  

 and are such that 0)( 'f  for )(\ fEU . 

To establish our main results we need the following 

Lemmas.  

  

Lemma 2.1 (Miller and Mocanu [12, 13]). Let the function 

)(zh  be analytic and convex (univalent) in U  with 

1=(0)h . Suppose also that the function )(z  given b 

 2

211=)( zczcz                            (6) 

 is analytic in U ,  
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0
( ) ( ) = ( ) ( ),

z

z z t h t dt h z
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 ( ),z U  and )(z  is the best dominant of (1).  

  

Lemma 2.2 (Shanmugam et al. [19]). Let 

0\=, CCC    and let q be a convex univalent 

function in U  with       

     ),(,0;>
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 If p  is analytic in U  and  

        )()()()( zzqzqzzpzp ''     (8) 

 then )()( zqzp  , and q  is the best dominant of (3).  

 

Lemma 2.3 ([13]). let )(zq  be a convex univalent function 

in  U  and let 0>, mm C . Further assume that 

0>mR . If   ,(0),1)( Qqzg H  and  

),()()()( zmzgzgzmzqzg ''    

 implies )()( zgzq  , and )(zq  is the best subordinant.  

Lemma 2.4 ([10]). let F  be a analytic and convex in U . If 

Agf ,  and Fgf ,  Then                    

                    1 , (0 1).f g F       

Lemma 2.5 ([16]). let 
n

nn
zazf 




1=
1=)(  be analytic 
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and convex in U  and 
n

nn
zbzg 




1=
1=)(  be analytic 

and convex in U . If )()( zgzf  , then 

)(,< 1 Nnban . 

 

3. Main Results 
 

Theorem 3.1 Let  BAzf ,)( ,B  with 0>R . Then  
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and )(z  is the best dominant.  

Proof.  Set  
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 Then )(zh  is analytic in U  with 1=(0)h . Logarithmic 

differentiation of (5) and simple computations yield  
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 Applying Lemma 2.2 to (11) with 
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n
, we have  
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 and )(z  is the best dominant. This completes the proof.  

  

Theorem 3.2 Let )(zq  be univalent in 
CU , . Suppose 

also that )(zq  satisfies the following inequality:  
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 If Af  satisfies the following subordination:  
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and )(zq  is the best dominant.  

  

Proof. Let the function )(zh  be defined by (10). We know 

that the first part of (11) holds true. Combining (11) and 

(14), we have  
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 By using Lemma 2.3 and (7), we easily get the assertion of 

Theorem 3.2.  

 

Corollary 3.3 Let 
C  and 1<1  AB . Suppose 

also that  
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If f  is subordinate to F , then F  is superordinate to f . 

We now derive the following superordination result for the 

class  BA,,B .  

 

Theorem 3.4 let )(zq  be convex univalent function in U  

and let C  with 0>R . Also let  
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Proof. Let the function )(zh  be defined by (10). Then  
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An application of Lemma 2.4 yields the assertion of 

Theorem 3.4.  

Taking  
Bz

Az
zq





1

1
=  in Theorem 3.4, we obtain the 

following corollary.  

 

Corollary 3.5 let )(zq  be convex univalent function in U  

and let C 1,<1 AB  with 0>R . Also let  
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Combining the above results of subordination and 

superordination, we easily get the following sandwich- type 

result.  

 

Corollary 3.6 let 1q  be convex univalent and let 2q  be 
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 The bound R  is the best possible.  
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 Using the following well-known estimate, see [11]  
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 Right hand side of (19) is positive, provided that Rr < , 

where R  is given by (16). 

 

In order to show that the bound R is best possible, we 

consider the function A)(zf  defined by  

   
   .1<0,

1

1
1=

2

11 















   Uz
z

z

z

zfIzfI kk  

We note that  

 
   














 









 z

zfIzfI kk

2
1

1

1 11  

    
   

   














 




 







z

zfIzfI

zfIzfI

zfIzfIz kk

kk

kk

2

11

11

 

  
0,=

11

2

1

1
=

2
zk

z

z

z












 

 for Rz = , we conclude that the bound is the best possible 

and this proves the theorem.  
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 Since 1<1 1221  AABB , we easily find that  
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 this is  11
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B . Thus the assertion (20) holds 

true for 21 =0  . If 12 >  , by Theorem 3.1 and (21), 
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 At the same time, we have  
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 Moreover,  
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analytic and convex in U . Combining (21 - 23) and Lemma 

2.4, we find that  
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B , which implies that the assertion 

(12) of Theorem 3.8 holds and this completes the proof.  
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 The extremal function of (24) is defined by  
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 Proof. Let  BAzf ,)( ,B  with 0> . From 

Theorem 1, we know that (1) holds, which implies that  
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 Combining (26) and (27), we obtain (20). Noting that the 

function  zF BA,,,  defined by (25) belongs to the class 
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 BA,,B , we get that inequality (24) is sharp. This 

completes the proof.  

 

In view of Theorem 9, we have the following distortion 

theorems for the class  BA,,B .  

Corollary 3.10 Let  BAzf ,)( ,B  with 0>  and  

1<1 11  AB . Then for 1<= rz , we have  
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 The extremal function of (28) is defined by (25). 

By noting that  
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  From Theorem 9, we can easily derive the following result. 
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 Theorem 3.12 Let  BAzf ,)( ,B  with 0>  and 

1<1 11  AB . Then  
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 The inequality (29) is sharp, with the extremal function 

defined by (25).  

  

Proof. Combining (1) and (5), we have  
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 An application of Lemma 2.4 to (30) yields  
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 Thus, from (31), we easily arrive at (29) asserted by 

Theorem 3.12.  

  

Theorem 3.13 Let  ,0)( , Azf B  with 0>R  and 
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 Proof. let  zh  be defined by (9). It follows from (10) that  
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where  
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is analytic in U  with Uzzw 1,<)( . From (32), we can 

get  
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 It follows from (33) that  
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 We now find from (33) and (34) that  
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 Combining (33) and (35), we can get  
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 Thus, from (10) and (36), we easily arrive at the assertion of 

Theorem 3.13.  

  

Remark 3.1 If 1= , we obtain the results of [2], Theorems 

3.1, 4.1 and 4.4. 
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