
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Managing Failures in IP Networks Using SDN

Controllers by Adding Module to OpenFlow

Vivek S
 1
, Karthikayini T

 2

1PG Scholar, Department of Computer Science and Engineering, New Horizon College of Engineering, Bangalore, Karnataka, India

2Assistant Professor, Department of Computer Science and Engineering, New Horizon College of Engineering, Bangalore, Karnataka, India

Abstract: The creation of networks based on software-defined networking (SDN) are becoming complex to distribute to all cities and it

is very difficult to configure individual routing components and routing path using traditional components. So an easy way to manage

the network components and routing is needed. SDN is the latest area which separates the network components to two planes – Data

Plane and Control Plane. By this separation the logic of operation of network devices can be far separated at different place in Control

plane. By considering the above situation a new configuration is made possible to centralized control over the global view of network

with improved architecture will be considered. This paper produces a solution on a distributed hierarchical control plane as a Orion to

verify the feasibility of the hybrid hierarchical approach.

Keywords: Software defined networking (SDN), central controller, scalability, Orion, hybrid hierarchical, super-linear and large-scale

networks

1. Introduction

In Software Defined Networking (SDN), the control and

data planes are decoupled, and the complex control and

management functions are stripped out of the network

device[1]. Meanwhile, SDN supports a flow-based

management to enable highly programmable and flexible of

Networks. OpenFlow switches are mainly used to achieve

the fine-grained flow control in SDN[2]. However, such

decoupled architecture and fine-grained flow control feature

bring a large amount of communication messages between

the data plane and the control plane which limit the

scalability of the SDN network [3, 4, and 5].

The scalability of Software-Defined Networks is so

important that many researchers have been trying to solve

this problem. Maestro exploits parallelism in single-threaded

controller [6]. Beacon employs multi-threaded techniques to

improve the scalability of a single controller [7]. But the two

studies [6] and [7] do not yet provide communication

between multiple controllers. DevoFlow considers the SDN

controller handling too many micro-flows, which creates

excessive load on the controller and switches [4]. Then it

proposes a way that the control plane maintains a useful

amount of visibility without imposing unnecessary costs.

DIFANE employs authority switches to store necessary rules

to share the work load of the control plane [8]. However,

both studies [4] and [8] require to modify the Open Flow

switch. Then some researchers design different control plane

structures to extend the control planes processing ability.

Though the above two kinds of control plane architecture

can improve the scalability of SDN networks, they still have

unresolved issues. 1) The flat control plane architecture

cannot solve the super-linear computational complexity

growth of the control plane when SDN network scales to

large size. We argue that the fine-grained flow control

feature of SDN will lead to the super-linear computational

complexity growth of the control plane and that limits the

scalability of SDN networks. We take an example to

illustrate the problem. Assuming that a SDN controller

manages M network devices; it uses the to identify the data

flow; the SDN controller adopts Dijkstra algorithm to

compute routing paths.

In the beginning, the computational complexity of the

Dijkstra algorithm is O(M2). When the network size

increases N times, there will be N ∗ M nodes. Then the

computational complexity of the routing algorithm increases

to O(N2M2). If we use N SDN controllers to share the work

load of the Thus, if we use N SDN controllers to share the

work load of the control plane, the processing capacity will

increase N times, but the computational complexity will

increase N2 times.

A typical centralized hierarchical control plane, such as

Kandoo, cannot solve the issue of the super-linear

computational complexity growth of the control plane. 2)

The centralized logical hierarchical control plane

architecture brings path stretch problem. In a network graph,

Stretch (u, v) represents the stretch of path from node u to

node v. It is defined as Stretch(u, v) = Path(u,v)

ShortestPath(u,v), where Path(u, v) is the length of the path

from node u to node v and the ShortestPath(u, v) is the

corresponding shortest path length. To provide scalable SDN

control plane, but the method used brings path stretch

problem. The more layers it abstracts, the bigger the path

stretch is.

Paper ID: NOV163765 1617

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2. Design

In this section, we present the design of Orion, hybrid

hierarchical control plane architecture of SDN. Orion

focuses on the intra-domain control and management of

large-scale networks. In this paper, domain is a whole

network which can be controlled and managed by one

administrator. It divides into several sub-domains. A sub-

domain consists multiple areas that located relatively close

to each other. Area refers a region that can be controlled by

a single SDN controller.

A. Architecture

The hybrid hierarchical architecture of Orion is shown in

Fig. 1. Orion has three layers. 1) The bottom layer of Orion

is the physical layer. The physical layer is composed of large

amounts of connected Open Flow switches. 2) The middle

layer of Orion is the area controller layer. The area

controller is responsible for collecting physical device

information and link information, managing the intra-area

topology and processing intra-area routing requests and

updates. Meanwhile, it abstracts its area network view and

sends it to the top layer. 3) The top layer of Orion is the

domain controller layer. In this layer, the domain controller

treats area controllers as devices, and it synchronizes the

global abstracted network view through a distributed

protocol.

B. Components

There are eight major components in Orion, shown in Figure

3. Among these components, the Host Management,

Topology Management, Routing, Storage and Vertical

Communication Module have two sub-modules. The two

sub-modules are responsible for intra-area information

processing and inter-area information processing.

OpenFlow Base Module: The OpenFlow Base Module is

responsible for collecting OpenFlow switch information and

receiving messages through the SDN southbound Interfaces.

Meanwhile, it provides an interface for the area controller to

install rules on OpenFlow switches, such as Flow-Mod or

Packet-Out.

Host Management Module: The Host Management Module

has two parts to deal with the area host information and

domain host information. 1) The Area Host Management

SubModule obtains the host information in its area through

the ARP packet sent by the host. 2) The inter-area host

information is managed by the Domain Host Management

Sub-Module. I

Link Discovery Module. The link discovery module obtains

the intra-area link information through LLDP protocol. In

order to obtain inter-area link information, an area controller

sends LLDP packets to all ports of its edge switches with its

ControllerID. When the LLDP packet reaches the edge

switch in another area, the switch encapsulates the LLDP

packet into a Packet-In message and sends the message to its

area controller. Then the area controller encapsulates the

Packet-In message and gets the TLV message out of the

LLDP Packet.

Topology Management Module. The Topology

Management module has two sub-modules. 1) The Area

Topology Management sub-module manages the physical

topology information received from the Link Discovery

Module. Meanwhile, it computes the shortest path from

every edge switch to other edge switches. Then it sends the

switch information and the hops between any two edge

switches to the domain controller. When the domain

controller receives the above information, it treat an area as

a node, and treat the edge switches of the area as a port, the

hop between any two edge switches is like the weight of an

abstract link between two port.

Storage Module. The Storage Module includes three kinds

of information: host information, switch information and

link information. Host information includes . Switch

information includes . The link information includes abstract

Paper ID: NOV163765 1618

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

link information and real physical link information. There

are two kinds of abstract link.

C. Abstracted Hierarchical Routing Method

As we know the abstracted hierarchical control plane

architecture brings the path stretch problem. An abstracted

hierarchical routing method is designed to address the

problem. The abstracted hierarchical routing method is

based on the Dijkstra algorithm[16]. Dijkstra algorithm is a

graph search algorithm widely used in network routing

protocols, such as IS-IS[17] and OSPF[18]. The core idea of

the abstracted hierarchical routing method is similar to IS-IS

and OSPF.

The abstracted hierarchical routing method is divided into

two parts. 1) As the area controller has the detailed inner

information of its area, the Area Routing Management

SubModule of the area controller pre-computes the inner

hops from every inner switch to all edge switches by

Dijkstra algorithm and send the result to the domain

controller. 2) The Domain Routing Management Sub-

Module of the domain controller computes the global

shortest path. Though the domain controller level only has

the abstracted lower level network view, it can compute the

shortest path for the flow based on the sum of the inner path

result sending by the area controller and the inter-area path

length.

Area Routing Management Sub-Module: When a

PacketIn message reaches the area controller, the area

routing management sub-module checks the source address

and destination address of the message. 1) If the destination

address is in the area, the area controller employs Dijkstra

algorithm to compute intra-area path. 2) If the destination

address is out of the area, the area controller sends the

source address and the destination address of the message to

the domain controller, and stores the message to a waiting

buffer with index.

Domain Routing Management Sub-Module. At first, the

domain routing management sub-module uses Dijkstra

algorithm to calculate the inter-area routing path. Next, it

collects the intra-area hops from the inner switch to all edge

switches which is sending by area controllers, and adds the

inter-area hops and the intra-area hops together. The shortest

length path determining the final forwarding path.

Routing Example: We give two examples to illustrate how

Orion carries out the intra-area routing and inter-area

routing. The two routing examples are based on the topology

shown in Fig. 4. In the topology, a domain has two sub-

domains and each sub-domain has two areas. At the same

time there are four host (host A, B, C and D) located in the

topology.

Communicate between two hosts (such as host A and host

B) in an area. When the host A sends a data flow to the host

B, the switch which connects to the host A generates a

PacketIn message and sends the message to area controller1.

When area controller1 receives the message, it checks

whether the destination address of the data flow is in its area.

As host B is located in area1, so area controller1 can find the

information of host B. Then it calculates the intra-area

routing path from host A to host B based on the intra-area

topology. Next, area controller1 sends the routing rules to

the switches in the path list, so that the switches can install

the rules for the data flow. Finally, when all the switches in

the path list are installed routing rules, the data flow sent by

host A is forwarded to host B.

Inter-area Routing Example. The second example is an

example of the inter-area routing. The example illustrates

how host C sends data flow to host D with Orion. When host

C sends a data flow to host D, the data flow reaches the

switch which host C connects to. Then the switch generates

a PacketIn message and sends the message to area

controller2. As host D is not in area2, when area controller2

receives the message, it extracts the from the Packet-In

message and encapsulate it to a simple request, sends the

request to domain controller1, and buffers the Packet-In

message with an index.

Paper ID: NOV163765 1619

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3. Implementation And Evaluation

In this section, we present the implementation and

evaluation of Orion. In this part, we evaluate Orion through

both theoretical and experiment ways. A. Evaluation 1)

Theoretical Evaluation: We write a simple single threaded

Dijkstra algorithm to calculate the path from the source

address to the destination address. The algorithm is running

under random topology. In the random topology, if there are

N nodes in the topology, then the topology has Nx edges,

where x is a variable. We run the algorithm on a server with

Intel E5645 processors (6cores in total, 2.40GHz) and 64GB

memory. We compare the proposed abstracted hierarchical

routing method with the traditional Dijkstra algorithm.

Under the best conditions, the computational complexity of

the abstract hierarchical routing method is O(K2), where K

is the number of edge switches. The best conditions refer

that the network does not change, the area controllers do not

need to re-compute the inner hops from every inner switch

to edge switches. Meanwhile, the source host and destination

host of the flow are both connected to edge switches. From

Fig.7, we can observe that with the increasing number of

areas, the computing time of Orion is increased as linear

growth, much lower than the traditional Dijkstra routing

algorithm.

From Fig.8, we can note that when the network nodes

exceed 2900, the abstracted hierarchical routing method

proposed by Orion is better than the traditional Dijkstra

algorithm.

2) Experiments Evaluation: In this part, we build a prototype

system to verify the feasibility and effectiveness of Orion.

The implementation of Orion is in Java. The area controller

of Orion is build based on the Floodlight controller [19]. The

intra-area OpenFlow Base module, Link Discovery module

and Storage module are based on Floodlight. We extend the

Floodlight controller to construct the other modules. The

domain controller of Orion is not an SDN controller with

OpenFlow protocol. The communication between the

domain controller and the area controller is through the

Vertical Communication Module of Orion, and it is not

based on OpenFlow protocol.

Paper ID: NOV163765 1620

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4. Conclusion

In this paper, we design and implement Orion, a hybrid

hierarchical control plane for large-scale networks. Orion

addresses the super-linear computational complexity growth

of the control plane when SDN network scales to large size,

and solves the path stretch problem brought by the

abstracted hierarchical control plane architecture. Further,

we evaluate the effectiveness of Orion through theoretical

and experiment aspects. Our evaluation results show the

efficiency and feasibility of Orion.

References

[1] ONF White Paper, Software-Defined Networking: The

New Norm for Networks, Open Networking

Foundation, 2012.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G.

Parulkar, L. Peterson, J. Rexford, S. Shenker, and J.

Turner, OpenFlow: enabling innovation in campus

networks, ACM SIGCOMM Computer Communication

Review, Vol.38, No.2, pp.69-74, 2008.

[3] A. Tootoocian and Y. Ganjali, HyperFlow: A

distributed control plane for OpenFlow, In Proc. ACM

INM/WREN, 2010.

[4] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,

P. Sharma, and S. Banerjee, DevoFlow: Scaling Flow

Management for High-Performance Networks, In Proc.

ACM SIGCOMM, 2011.

[5] J. McCauley, A. Panda, M. Casado, T. Koponen, S.

Shenker. Extending SDN to Large-Scale Networks, In

Proc. ONS, 2013.

[6] Z. Cai, A. L. Cox, and T. S. E. Ng, Maestro: A System

for Scalable OpenFlow Control, Technical Report, Rice

University, 2010.

[7] D. Erickson, The Beacon OpenFlow Controller, In Proc.

ACM SIGCOMM HotSDN, 2013.

[8] M. Yu, J. Rexford, M. J. Freedman, and J. Wang,

Scalable Flow-Based Networking with DIFANE, In

Proc. ACM SIGCOMM, 2010.

[9] T. Koponen, M. Casado, N. Gude, J. Stribling, L.

Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue,

T. Hama, and S. Shenker, Onix: a distributed control

platform for large-scale production networks, In OSDI,

2010.

[10] B.Lantz, B. Connor, J. Hart, P. Berde, P. Radoslavov,

M. Kobayashi, T. Koide, Y. Higuchi, M. Gerola, W.

Snow, G. Parulkar, ONOS: Towards an Open,

Distributed SDN OS, In Proc. ACM SIGCOMM

HotSDN, 2014.

[11] S. H. Yeganeh, Y. Ganjali, Kandoo: A Framework for

Efficient and Scalable Offloading of Control

Applications, In Proc. ACM SIGCOMM HotSDN,

2012.

[12] J. McCauley, A. Panda, M. Casado, T. Koponen, S.

Shenker, Extending SDN to Large-Scale Networks, In

ONS, 2013.

Paper ID: NOV163765 1621

