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Abstract: The fixed-width multiplier is attractive to many multimedia and digital signalprocessing systems which are desirable to 

maintain a fixed format and allow a little accuracy loss to output data. This brief includes a comparative study of different fixed-width 

Booth multipliers- PT(most accurate fixed width multiplier) and DT(least area requirement) fixed width multipliers with the Proposed 

accuracy-adjustment fixed-width Booth multipliers that compensates the truncation error using a multilevel conditional probability 

(MLCP) estimator.To consider the trade-off between accuracy and area cost, the MLCPprovides varying column information to adjust 

the accuracy with respect to system requirements. Unlike previous conditional-probability methods, the proposed MLCP uses entire 

nonzero code, namely MLCP, to estimate the truncation error and achieve higher accuracy levels. And a comparative study of different 

fixed width multipliers based on MLCP using differentfast adders such as carry look ahead adder, Kogge-stone adder etc are also 

included. The design was modeled using Verilog, simulated and synthesized using Xilinx ISE 14.7. 
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1. Introduction 
 

Multiplier is a widely used component for digital signal 

processing applications such as discrete 

cosinetransform(DCT), fast fourier transform(FFT), finite 

impulse response(FIR) filters etc. In some DSP applications 

such as digital filters,wavelet transformers etc, it is 

necessary that the width of arithmetic data should remain 

fixed throughout the entire computation. The fixed-width 

multiplier is attractive to many multimedia and digital signal 

processing systems which are desirable to maintain a fixed 

format and allow a little accuracy loss to output data. In 

order to achieve this goal a fixed width multiplier capable of 

receiving an N bit multiplicand and an N bit multiplier and 

producing N bit result is necessary. And generally in-order 

to produce an output that is having the same width as input 

the fixed with multipliers truncate half least significant bits. 

And therefore truncation error can occur in fixed width 

multiplier designs. 

 

Truncation can be performed in two ways viz; Post 

truncation(PT)and direct truncation(DT).post truncated fixed 

width multipliers are considered as the fixed width 

multipliers with highest accuracy.PT fixed width multipliers 

truncates half of LSBs results after calculating all the 

products and gives high accuracy but it takes large circuit 

area to calculate the truncation part products. By contrast a 

direct truncated fixed width multipliers will truncate half of 

the least significant partial products directly to conserve the 

circuit area but it produces truncation error. 

 

To effectively reduce the truncation error, various error 

compensation methods, have been proposed. The error 

compensation value can be produced by the constant scheme 

or the adaptive scheme. The constant schemepre-computes 

the constant error compensation value and then feeds them 

to the carry inputs of the retained adder cells when 

performing multiplication operations regardless of the 

influence of the current input data value. By contrast the 

adaptive scheme was developed to achieve higher accuracy 

than the constant scheme through adaptively adjusting the 

compensation value accordingto the input data at the 

expense of a little higher hardware complexity. To achieve a 

balanced design between accuracy (P-T) and area cost(D-T), 

several researchers have presented various error-

compensated circuits to alleviate the truncation errors. 

Majority of these works are done on modified booth 

multipliers due to the high-speed computation and also few 

partial products are truncated after Booth encoding, 

therefore these multipliers have a smaller truncation error. 

Therefore, the truncation error of the fixed-width Booth 

multiplier is reduced due to the decreasing of the truncated 

partial products. 

 

For this reason, several error-compensation works are 

presented for fixed-width Booth multipliers design. To 

reduce the hardware complexity, Jouet al.present statistical 

and linear regression analysis to reduce the hardware 

complexity [2]. However, the truncation error cannot be 

depressed because the input information is limited in 

estimating the carry propagation from the truncated part. A 

self-compensation approach [3] using conditional mean 

method is presented to reduce the hardware complexity. In 

[4] and [5], by taking more information provided by Booth 

encoder, the compensation bias can reduce the truncation 

error with the huge area penalty. Besides, Song et al. present 

binary threshold and more partial products for error 

compensation bias to reduce truncation error [6], and the 

hardware cost is increased, too. In addition, for the high-

accuracy applications, more information of partial products 

to estimate the error compensation bias can achieve higher 

goal of accuracy [6]. The generalized forms of more than 

columns’ information to estimate error-compensation biases 

are derived in [6]. Nevertheless, the resulting carry 

estimation circuit must be designed in a heuristic way, and 

that the high-accuracy fixed-width multipliers would result 

in large circuit area is a constant truth. Therefore, building 

an area-efficient estimation circuit with high accuracy is a 

challenging task.In earlier adaptive conditional probability 

estimator was used to improve accuracy, it uses single 
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nonzero code to calculate the truncation errors whereas the 

MLCP method employing all nonzero code to estimate 

truncation error. The compensated circuit will respond 

quickly, produces a closed form with various bit-widths L 

and column information w. Thus accuracy can be adjusted 

by changing column information𝑤. 

 

This paper is organized as follows. In Section II, the back-

ground of the fixed-width modified Booth multiplier is 

given. The proposed MLCP method is discussed in Section 

III, which includes the generalized form’s derivation,the 

systematic procedure and the proposed MLCP circuit 

.Section IV includes the results and comparative study..The 

comparisons of accuracy area, are made in this Section . In 

addition, SectionI V presents the performance of MLCP 

with the proposed compensation circuit. Finally, conclusions 

of this paper are drawn in Section V. 
 

2. Fixed Width Modified Booth Multiplier 
 

Multiplication can be divided into three steps-: 

a) Generating partial products  

b) Summing up all partial products until only two rows 

remain 

c) Adding the remaining two rows of partial products by 

using a carry propagation adder. 

 

In the first step, two methods are commonly used to generate 

partial products. The first method generates partial product 

directly by using a 2-input AND gate. The second one uses 

Baugh Wooley, radix-2, radix-4 modified Booth’s encoding 

(MBE),and radix-8 to generate partial products. Radix-4 

MBE has been widely used in parallel multipliers to reduce 

the number of partial products by a factor of two. Baugh 

Wooley generally not used because they are not suitable for 

large size operands. Techniques like Wallace tree, 

Compressor tree etcare used in the second step to reduce the 

number of rows of the partial product. During third step, 

advanced adding concepts like carry-look-ahead, carry select 

adderetc are used. 

 

Modified Booth encoding is commonly used in multiplier 

designs to reduce the number of partial products. It is known 

as the most efficient Booth encoding and decoding scheme. 

To multiply X by Y using the modified Booth algorithm 

starts from grouping Y by three bits and encoding into one 

of {-2, -1, 0, 1, 2}.Table1 shows the rules to generate the 

encoded signals by MBE scheme and Fig.1 shows the 

corresponding logic diagram. The Booth decoder generates 

the partial products using the encoded signals as shown in 

Fig. 2. 

 

The 2L-bit product P can be expressed in two’s complement 

representation as follows: 

𝑋 = −𝑥𝐿−12𝐿−1 +  𝑥𝑖2
𝑖

𝐿−2

𝑖=0

 

𝑌 = −𝑦𝐿−12𝐿−1 +  𝑦𝑖2
𝑖

𝐿−2

𝑖=0

 

𝑃 = 𝑋 ∗ 𝑌                                         (1)  

 

TableII lists three concatenated inputs 𝒚𝟐𝒊+𝟏 , 𝒚𝟐𝒊 ,and 

𝒚𝟐𝒊−𝟏mapped into 𝒚𝒊’ using a Booth encoder, in which the 

nonzero code 𝒛𝒊 is an one-bit digit of which the value is 

determined according to whether 𝒚𝒊’ equals zero. If it is zero 

,𝒛𝒊 will be zero and in all other cases it will not be a zero.. 

After encoding, the partial product array with an even width 

L contains Q=L/2 rows. 

 

Table 1: Truth Table for Booth Encoder 
 𝑦𝑖  𝑦𝑖−1 Operation X 2X Neg 

0 0 0 +0 *X 0 0 0 

0 0 1 +1 * X 1 0 0 

0 1 0 +1 * X 1 0 0 

0 1 1 +2 * X 0 1 0 

1 0 0 -2 * X 0 1 1 

1 0 1 -1 * X 1 0 1 

1 1 0 -1 * X 1 0 1 

1 1 1 -0 * X 0 0 1 

 

 
Figure 1: Encoder for modified booth encoding scheme 

 
Figure 2: Decoder for MBE scheme 

 

Table 2: Mapped Table of A Modified Booth Encoder 

𝒚𝟐𝒊+𝟏 𝒚𝟐𝒊 𝒚𝟐𝒊−𝟏 𝒚𝒊’ 𝒛𝒊 

0 0 0 0 0 

0 0 1 1 1 

0 1 0 1 1 

0 1 1 2 1 

1 0 0 -2 1 

1 0 1 -1 1 

1 1 0 -1 1 

1 1 1 0 0 

 

A . A typical implementation 

Booth's algorithm can be implemented by repeatedly adding 

(with ordinary unsigned binary addition) one of two 

predetermined values A and S to a product P, then 
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performing a rightward arithmetic shift on P. Let m and r be 

the multiplicand and multiplier, respectively; and let x and y 

represent the number of bits in m and r. 

 

1.Determine the values of A and S, and the initial value of P. 

All of these numbers should have a length equal to (x + y + 

1). 

 

A: Fill the most significant (leftmost) bits with the value of 

m. Fill the remaining (y + 1) bits with zeros. 

 

S: Fill the most significant bits with the value of (−m) in 

two's complement notation. Fill the remaining (y + 1) bits 

with zeros. 

 

P: Fill the most significant x bits with zeros. To the right of 

this, append the value of r. Fill the least significant 

(rightmost) bit with a zero. 

 

2. Determine the two least significant (rightmost) bits of P. 

 If they are 01, find the value of P + A. Ignore any 

overflow. 

 If they are 10, find the value of P + S. Ignore any 

overflow. 

 If they are 00, do nothing. Use P directly in the next step. 

 If they are 11, do nothing. Use P directly in the next step. 

 

3. Arithmetically shift the value obtained in the 2nd step by 

a single place to the right. Let P now equal this new value. 

 

4. Repeat steps 2 and 3 until they have been done y times. 

 

5. Drop the least significant (rightmost) bit from P. This is 

the product of m and r. 

 
Figure 3:  Booth encoder architecture 

 

3. Design of Fixed Width Booth Multiplier 
 

The 2n bit product of the n by n 2-complement 

multiplication can be divided in to two sections 
 

 𝑃 = 𝑋𝑌 = 𝑀𝑃 + 𝑇𝑃                              (2) 
 

It is known that the most accurate truncated product is given 

by 

 𝑃 = 𝑀𝑃 + 𝜎 ∗ 2𝑛                                (3) 

Where ϭ is the compensated bias presented by the multilevel 

conditional probability (MLCP) estimator. This can be 

further decomposed into 𝑇𝑃𝑀𝑎𝑗𝑜𝑟  and 𝑇𝑃𝑀𝑖𝑛𝑜𝑟  parts as  

 

 𝜎 =   𝑇𝑃𝑀𝑎𝑗𝑜𝑟 + 𝑇𝑃𝑚𝑖𝑛𝑜𝑟   (4) 

 

Where  .   represents rounding operation.The 

𝑇𝑃𝑀𝑎𝑗𝑜𝑟  and  𝑇𝑃𝑀𝑖𝑛𝑜𝑟 are the major and the minor 

compensation part in TP,respectively.𝑇𝑃𝑀𝑎𝑗𝑜𝑟   has greater 

weight than  𝑇𝑃𝑀𝑖𝑛𝑜𝑟  with regard to its effect on 

MP.The 𝑇𝑃𝑀𝑎𝑗𝑜𝑟  provides true information to estimate 

MLCP and is same as MP , and the 𝑇𝑃𝑀𝑖𝑛𝑜𝑟 contributes 

compensation bias to MP based on conditional probability 

estimation or the expected value. Therefore, the 

compensation bias can be calculated by obtaining 𝑇𝑃𝑀𝑎𝑗𝑜𝑟  

and estimating 𝑇𝑃𝑀𝑖𝑛𝑜𝑟 . Column information  𝑤  is 

introduced to adjust𝑇𝑃𝑀𝑎𝑗𝑜𝑟  and is adapted to adjust the 

accuracy for different applications. 

 

A. Derived MLCP Formula 
 

The TP can be partitioned into encoding group set (G)and 

column set (T) as shown in fig(3). By inspecting the figure it 

can be seen that G contain encoding groups and T contain 

column groups.The encoding groups in G are defined as 

follows: 

 

𝐺0 = 2−𝐿 𝑃0,0 + 𝑛0 + ⋯ + 2−1−𝑤𝑃𝐿−1−𝑊,0 

𝐺1 = 2− 𝐿−2  𝑃0,1 + 𝑛1 + ⋯ + 2−1−𝑤𝑃𝐿−3−𝑊,0 

. 

. 

. 

.  

 𝐺𝑄−1 = 2−2 𝑃0,𝑄−1 + 𝑛𝑄−1  (5) 

And the column groups in Tset are defined as follows: 

𝑇1 = 2−1 𝑃𝐿−1,0 + 𝑃𝐿−3,1 + ⋯ + 𝑃1,𝑄−1  

𝑇2 = 2−2(𝑃𝐿−2,0 + 𝑃𝐿−4,1 + ⋯ + 𝑛𝑄−1) 

. 

. 

. 

.  

 𝑇𝐿 = 2−𝐿 𝑃0,0 + 𝑛0  (6) 
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Figure 3:  G set and T Set of the proposed booth multiplier 

with w=3 

 

The value of 𝑇𝑃𝑀𝑎𝑗𝑜𝑟  and 𝑇𝑃𝑀𝑖𝑛𝑜𝑟  can be obtained from the 

encoding groups in set G and column groups from set T as 

shown in the following equations: 

𝑇𝑃𝑚𝑗 = 𝑇1 + 𝑇2 + ⋯ +𝑇𝑊  

 =  𝑇𝑃𝑖                                             (7)

𝑤

𝑖=0

 

  𝑇𝑃𝑚𝑖 = 𝐺0 + 𝐺1 + ⋯ + 𝐺𝛼  

 =  𝐺𝑖                                                (8)

𝛼

𝑖=0

 

where 𝛼 = 𝑄 − 1 −  
𝑤

2
  where,  .   represents the flooring 

operation. Here we can see that the 𝑇𝑃𝑚𝑖 depends upon the 

term 𝛼 which in turn depends on the column information w . 

Therefore the compensation bias also depends on column 

information. ie, the accuracy can be adjusted by varying the 

parameter column information. 

The expected value of 𝑇𝑃𝑀𝑖𝑛𝑜𝑟  can be calculated as: 

 

𝐸[𝑇𝑃𝑀𝑖𝑛𝑜𝑟 ]= E[(𝑇𝑃0+𝑇𝑃1 + ⋯………… . 𝑇𝑃𝛼 )|𝑍]  
 

 = 𝐸 𝑇𝑃0 𝑍0 + 𝐸[𝑇𝑃1 |{𝑍0,𝑍1}] + ⋯ . . 𝐸 𝑇𝑃𝛼  𝑍  
 = 𝐸0 + 𝐸1 + ⋯………… . 𝐸𝛼  

 

 =  𝐸𝑖                                                                    (9)

𝛼

𝑖=0

 

 

This conditional probability values depends greatly on the 

non -zero code z which is obtained from booth encoding 

which in turn depends on the inputs that are fead to the 

multiplier. Therefore the compensated circuit will improve 

the accuracy of the fixed width multiplier. 

 

Equation (8)can be approximated as: 

 

 𝑇𝑃𝑚𝑖 ≅ 𝑠𝑜𝑛𝑒 ∗ 2−𝑤                        (10) 

 

Where 𝑠𝑜𝑛𝑒 =   
 
𝛽−1

2
  𝑤ℎ𝑒𝑛 𝑧 ≠ 00. .0

0 𝑤ℎ𝑒𝑛 𝑧 = 00. .0

                  (11) 

 

Where 𝑠𝑜𝑛𝑒  is the sum of non-zero code z with 

corresponding w. Therefore 

 

 𝜎 =  𝑇𝑃𝑚𝑗 + 𝑠𝑜𝑛𝑒 ∗ 2−𝑤                                 (12) 

 
 

B. Architecture of the proposed booth multiplier 

The modified Booth multiplier can be implemented in 

accordance with (12). Fig. 4 illustrates the entire architecture 

of the proposed Booth multiplier, which includes a modified 

booth encoder for generating reduced number of partial 

products, tree-based carry-save reduction in-order to further 

reduce the partial product array to the addition of only two 

operands followed by parallel-prefix adder for adding the 

remaining two rows.. The steps involved can be summarized 

as follows: 

1) Select the specifications: Word length L and column 

information w are selected based on the accuracy 

requirement of the application. 

2) The value of 𝛼 and compensation bias 𝜎  can be 

calculated from the specifications selected. 

3) Compensation circuit design: Compensation bias is 

obtained by summing 𝑇𝑃𝑚𝑗  and 𝑇𝑃𝑚𝑖  by using a carry 

save adder(CSA) tree. The tree is comprised of full 

adders an half adders. 

4) Design of MP circuit: All of the partial products in MP 

and carry value from compensation circuit to MP are 

summed using the CSA tree and parallel-prefix adder. 

The CSA is comprised of 4-2 adders, FAs, or Has. The 

high speed 4-2 adder comprises two Fas. The priority of 

4-2 adder is higher than FA and HA. 

 

To lower the latency of partial product accumulation stage 

4-2 compressors are widely employed nowadays for high 

speed multipliers.fig 6 shows the conventional 

implementation of 4-2 compressor.It is composed of two 

serially connected full adders and comprises of 5 inputs 

x1,x2,x3,x4 and receives an input 𝑐𝑖𝑛  from 

preceedingmodule.And produces3 outputs a sum, a carry 

and 𝑐𝑜𝑢𝑡  which propogates to the next module. 𝑐𝑜𝑢𝑡 is 

independent of 𝑐𝑖𝑛 .therefore speed performance of multiplier 

increases. 
 

 
Figure 4: The whole architecture of the proposed booth 

multiplier 
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Figure 5: Architecture of the proposed MLCP Booth 

multiplier for L=16 and w=3. 
 

Fig. 5represents the detailed architecture of the propose 

booth multiplier with L=16 and column information 

w=3.Carry save adder architecture and function of 

subtracting one is designed by adding all one values for twos 

complementation representation. Theproposed MLCP 

circuits depend on α, thus,various word lengths L and 

column information w can use the same MLCP circuit. 
 

 
Figure 7: 4-2 Compressor 

 

4. Performance Comparison and Results 
 

4.1 Performance comparisons 

 

4.1.1 comparison of MLCP multiplier with DT and PT 

fixed width multipliers 

This sub-section addresses the accuracy,and area of direct 

truncated (DT) and post truncate (PT) fixed-width Booth 

multipliers with that of the proposed MLCP multiplier.The 

proposed multiplier is expected to achieve a balance 

between area and accuracy.for comparison, we also 

implemented and synthesized the conventional post 

truncated multiplier with the partial product array similar to 

the one shown in Fig7.Consider the example shown. Let the 

inputs given are: 
 

din1=0110100000010001(26641) 

din2=0000100010100001(2209) 

 

Table 3: Comparison of DT, PT AND MLCP fixed width 

booth multipliers 
The output obtained by DT 0000011000110111 1591 

The output obtained by PT 0000011010001001 13384 

The output obtained by proposed 

MLCP method 

000000111100100100 3876 

 

By inspecting the results it can be seen that the result 

obtained from MLCP is more accurate than DT but it is not 

as accurate as the result obtained from PT fixed width 

multiplier which is the fixed width multiplier with highest 

accuracy. And since it does not calculate all partial products 

in contrast to PT, it requires less area than that of PT fixed 

width multipliers.Ie the proposed fixed width multiplier 

based on MLCP achieves a balance between accuracy and 

area. 

 

 
Figure 7:  MBE partial product arrays for 8×8 post 

truncated multiplication 
 

4.1.2 Comparison of various MLCP multipliers using 

different fast adders 

For comparison, we have implemented several MLCP 

multipliers whose final parallel –prefix adder is replaced by 

using different fast adders.The adder block in the proposed 

MLCP architecture is replaced with different fast adders and 

the area and delay are compared. Adder blocks used are 

ripple carry adder, carry look ahead adder, kogge-stone 

adder ,parallel prefix adder and Brent -kung adder.These 

multipliers were modeled in Verilog HDL and synthesized 

by using xilinx ISE 14.7inorder to compare area and delay. 

Among all these architectures the fastest architecture for the 

proposed method is the implementation using Kogge- stone 

adder. The slowest architecture is the one using ripple carry 

adder. 

 

4.1.2.1 Ripple carry adder: 

The ripple carry adder is composed of a chain of full adders 

with length n, where n is the length of the input 

operands.The following Boolean expressions describe the 

full adder. 

𝑝 = 𝑎 ⊕ 𝑏 𝑎𝑛𝑑 𝑔 = 𝑎. 𝑏                         (13) 
Here a and b are the input operands and p and g are the 

propagate and generate signals respectively. Carry is 

propagated if p is high or is generated if g is high.Thus, the 

sum S and carryout Co signals can be expressed as: 

 

𝑠 = 𝑎⨁𝑏⨁𝑐𝑖 = 𝑝⨁𝑐𝑖  𝑎𝑛𝑑 

𝑐𝑜 = 𝑔 + 𝑝. 𝑐𝑖                                   (14) 
 

4.1.2.2 Carry Look-ahead Adder 

Weinberger and Smith proposed this scheme in 1958 . It 

uses look-ahead technique rather than carry-rippling 

technique to speed-up the carry propagation. By using 

additional logics, group generate and propagate signals can 

be generated. Equation15 Equation16 and Equation 17 show 

the logical expression of prefix-4 group generate, propagate 

and carry-out signals respectively. Thus, multiple levels of 

carry-lookahead logics can be used to propagate carry-in 

from the least significant bit (LSB) to the most significant 

bit (MSB). 

𝑃∗ = 𝑃0𝑃1𝑃2𝑃3                                 (15) 

𝐺∗ = 𝑔3 + 𝑃3𝑔2 + 𝑃3𝑃2𝑔1 + 𝑃3𝑃2𝑃1𝑔0         (16) 

𝐶𝑜𝑢𝑡 = 𝐺∗ + 𝑃∗. 𝐶𝑖𝑛                          (17) 
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4.1.2.3 Kogge-Stone Adder 

Kogge and Stone proposed a general recurrence scheme for 

parallel computation in 1973 . The tree structure of this 

generalization is shown in Figure 3-3. Adders implemented 

using this technique is in favor due to the following: 

1) Regular layout 

2) Controlled fan-out 

However, they are nothing but prefixed carry-lookhead 

adders. The intermediate carries is generated by replicating 

the prefix tree shown in Figure 8 at every bit position. Figure 

9 shows the resultant prefix graph of a 16-bit prefix-2 Kogge 

Stone adder. 

 

 
Figure 8: 16-bit Prefix-2 Tree Structure 

 
Figure 9: Prefix graph of 16-bit prefix-2 Kogge Stone adder 

 

4.1.2.4 Brent-Kung Adder 

The replicated Kogge Stone structure to generate 

intermediate carries shown in Figure 9 is very attractive to 

high-performance applications. However, it comes at the 

cost of area and power. A simpler tree structure could be 

formed if only the carry at every power of two positions is 

computed as proposed by Brent and Kung . Figure 10 shows 

a 16-bit prefix tree of their idea. An inverse carry tree is 

added to compute intermediate carries. Its wire complexity 

is much less than that of Kogge Stone adder. 

 

 
Figure 10: 16-bit Brent-Kung Scheme 

 

Table 4: Comparison of Different MLCP Multipliers Using 

Various Fast Adders 
Name of adder Area  

(1 unit/gate) 

Delay 

(ns) 

Number of 

LUTs 

Brent- kung 1484 18.301 224 

CLA adder 1599 18.983 263 

Kogge- stone 1416 18.261 214 

Ripple carry adder 2568 20.006  414 

 
4.2 Simulation Result 

 

 
Figure 11: Simulation result 

 

4.3 Synthesis Result 

 

Table 5: Tabulation of Synthesis Results 
No of slices 225/4656 

Gate delay 13.359.100ns 

Net delay 6.6474ns 

Area(1 unit = 1 nand gate area) 2568 

 

The total delay of the whole circuit is the total sum of delay 

associated with each single gate and interconnection 

between them. Our proposed MLCP multiplier is having a 

total delay of 20.006 ns, which includes a gate delay of 

13.359ns and net delay of 6.647ns.The size of the circuit can 

be estimated on total number of gates used. The actual size 

of chip depends upon routing of these gates. 
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Figure 12:  Synthesis result illustrating the delay 

 

 
Figure 13: Synthesis result illustrating the delay 

 

Figure 14 shows the RTL schematic of the proposed system. 

The proposed fixed width booth multiplier is having two 16 

bit inputs din1, din2. The output which is an 18 bit number , 

the partial produts p0,p1,p2,p3,p4,p5,p6,p7 and the encoded 

results of a modified booth encoder cor_out, n_out, one_out, 

two_out, z_out can be obtaind as the outputs. 

 

 
Figure 14: RTL schematic of the proposed MLCP multiplier 

 

 
Figure 15: Partial product generation circuit 

 

 
Figure 16: Full adder 

 

5. Conclusions 
 

This paper proposes a fixed-width Booth multiplier based on 

multi-level conditional probability.The MLCP Booth 

multiplier outperforms almost all previous solutions for 

accuracy loss in fixed width booth multipliers with regard to 

accuracy or circuit performance. Accuracy increased since it 

use more information from booth encoder and partial 

products.Introduction of column information 𝑤 provide 

more choices between accuracy and area cost.the 

compensation function is also established to adjust the 

accuracy with respect to system requirements based on 

varying 𝑤 .And also speed performance is higher since 

conditional probability is used in compensation circuit and 

also since fast CSA tree is used. 
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