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Abstract: In this paper we consider identification and estimation of a nonparametric location scale model. We first use the truncated 

data. Then we use truncated regression model. Truncated regression is used to model dependent variables for which some of the 

observations are not included in the analysis because of the value of the dependent variable. In the latter case we propose a simple 

estimation procedure based on combining conditional quantile estimators for three distinct quantiles. The new estimator is shown to 

converge at the optimal nonparametric rate with a limiting normal distribution. A small scale simulation study indicates that the 

proposed estimation procedure performs well in finite samples. We also present an empirical application on plotting employees in a firm. 
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1. Introduction 
 

T he nonparametric location-scale model is usually of the 

form: 

 

yi = μ xi + σ(xi)ϵi  

 

where xi is an observed d−dimensional random vector and 

єi is an unobserved random variable, distributed 

independently of xi, and assumed to be centered around 

zero in some sense. The functions μ(·) and σ(·) are 

unknown. In this paper, we consider extending the 

nonparametric location-scale model to accommodate 

censored data. The advantage of our nonparametric 

approach here is that economic theory rarely provides any 

guidance on functional forms in relationships between 

variables.  

 

To allow for censoring, we work within the latent 

dependent variable framework, as is typically done for 

parametric and semiparametric models. We thus consider a 

model of the form: 

 

yi
∗ = μ xi + σ(xi)ϵi 

yi = max⁡(yi
∗, 0) 

 

where yi
∗ is a latent dependent variable, which is only 

observed if it exceeds the fixed censoring point, which we 

assume without loss of marketingity is 0. We consider 

identification and estimation of μ(xi) after imposing the 

location restriction that the median of єi = 0. We 

emphasize that our results allow for identification of μ(xi) 

on the entire support of xi. This is in contrast to identifying 

and estimating μ(xi) only in the region where it exceeds 

the censoring point, which could be easily done by 

extending Powell’s(1984) CLAD estimator to a 

nonparametric setting. One situation is when the data set is 

heavily censored. In this case, μ(xi) will be less than the 

censoring point for a large portion of the support of xi, 

requiring estimation at these points necessary to draw 

meaningful inference regarding its shape. 

 

Our approach is based on a structural relationship between 

the conditional median and upper quantiles which holds 

for observations where μ(xi)≥0. This relationship can be 

used to motivate an estimator for μ(xi) in the region where 

it is negative. Our results are thus based on the condition 

 

PX (xi: μ(xi) ≥ 0) > 0 

 

where PX(·) denotes the probability measure of the 

random variable xi. 

 

The paper is organized as follows. The next section 

explains the key identification condition, and motivates a 

way to estimate the function μ(·) at each point in the 

support of xi. Section 3 introduces the new estimation 

procedure and establishes the asymptotic properties of this 

estimator when the identification condition is satisfied. 

Section 4 considers an extension of the estimation 

procedure to estimate the distribution of the disturbance 

term. Section 5 explores the finite sample properties of the 

estimator through the results of a simulation study. Section 

6 presents an empirical application STIFIN test, in which 

we estimate the survivor function in the region beyond the 

censoring point. Section 7 concludes by summarizing 

results. 

 

2. Censored and Truncated Data: 

Comparison Definitions 
 

 Y is censored when observe X for all observations, but 

we only know the true value of Y for a restricted range 

of observations. Values of Y in a certain range are 

reported as a single value or there is significant 

clustering around a value, say 0. 

 

-if y=k or Y>k for all Y =>Y is censored from below or 

left censored 

-if y=k or Y<k for all Y =>Y is censored from above or 

right censored 

 

We usually think of an uncensored Y, Y
*
, the true value oh 

Y when the censoring mechanism is not applied. We 

typically have all the observations for {Y,X}, but not 

{Y
*
,X}. 
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 Y is truncated when we only observe X for observations 

where Y
 
would not be censored. We do not have a full 

sample for {Y,X}, we exclude observations based on 

characteristics of Y. 

 

3. Estimation Procedure and Asymptotic 

Properties 
 

3.1 Estimation Procedure 

 

In this section we consider estimation of the function μ(·). 

Our procedure will be based on our identification results in 

the previous section, and involves nonparametric quantile 

regression at different quantiles and different points in the 

support of the regressors. Our asymptotic arguments are 

based on the local polynomial estimator for conditional 

quantile functions introduced in Chaudhuri(1991a,b). For 

expositional ease, we only describe this nonparametric 

estimator for a polynomial of degree 0, and refer 

psycotesters to Chaudhuri(1991a,b), Chaudhuri et 

al.(1997), Chen and Khan(2000,2001), and Khan(2001) 

for the additional notation involved for polynomials of 

arbitrary degree. 

 

First, we assume the regressor vector xi can be partitioned 

as (xi
ds

,x
c
) where the dds−dimensional vector xi

ds 
is 

discretely distributed, and the dc-dimensional vector xi
c
 is 

continuously distributed. 

 

We let Cn(xi) denote the cell of observation xi and let hn 

denote the sequence of bandwidths which govern the size 

of the cell. For some observation xj , j ≠ i, we let xj ϵ Cn(xi) 

denote that xj
(ds)

=xi
(ds)

 and xj
©
 lies in the dc-dimensional 

cube centered at xi
c
 with side length 2hn. 

 

Let I[·] be an indicator function, taking the value 1 if its 

argument is true, and 0 otherwise. Our estimator of the 

conditional α
th

 quantile function at a point xi for any α ϵ (0, 

1) involves α-quantile regression (see Koenker and Bassett 

(1978)) on observations which lie in the defined cells of xi. 

Specifically, let θ minimize: 

 

 I[xj ∈ Cn(

n

j=1

xi)]ρα(yj − θ) 

Where 

ρα(. ) ≡ α|. | +  2α − 1  .  I[. < 0] 
 

Our estimation procedure will be based on a random 

sample of n observations of the vector (yi,xi
’
)
’
 and involves 

applying the local polynomial estimator at three stages. 

Throughout our description, ˆ· will denote estimated 

values. 

 

1) Local Constant Estimation of the Conditional 

Median Function. In the first stage, we estimate the 

conditional median at each point in the sample, using a 

polynomial of degree 0. We will let h1n denote the 

bandwidth sequence used in this stage. Following the 

terminology of Fan(1992), we refer to this as a local 

constant estimator, and denote the estimated values by 

ˆq0.5(xi). Recalling that our identification result is based 

on observations for which the median function is positive, 

we assigns weights to these estimated values using a 

weighting function, denoted by w(·). Essentially, w(·) 

assigns 0 weight to observations in the sample for which 

the estimated value of the median function is 0, and 

assigns positive weight for estimated values which are 

positive. 

 

2) Weighted Average Estimation of the Disturbance 

Quantiles In the second stage, the unknown quantiles cα1 , 

cα2 are estimated (up to the scalar constant _c) by a 

weighted average of local polynomial estimators of the 

quantile functions for the higher quantiles α1, α2. In this 

stage, we use a polynomial of degree k, and denote the 

second stage bandwidth sequence by h2n. 

 

We let ˆc1, ˆc2 denote the estimators of the unknown 

constants 
𝑐𝛼1

∆𝑐
,
𝑐𝛼2

∆𝑐
 and define them as: 

 

𝑐1 =

1
𝑛
 𝜏 𝑥𝑖 𝑤 𝑞0.5   𝑥𝑖  ∙

 𝑞 𝛼1 𝑥𝑖 − 𝑞 0.5
 𝑝  𝑥𝑖  

 𝑞 𝛼2 𝑥𝑖 − 𝑞 𝛼1 𝑥𝑖  

𝑛
𝑖=1

1
𝑛
 𝜏 𝑥𝑖 𝑤 𝑞0.5   𝑥𝑖  

𝑛
𝑖=1

 

𝑐2 =

1
𝑛
 𝜏 𝑥𝑖 𝑤(𝑞0.5    xi ) ∙

(q α2 xi − q 0.5
 p 

(xi))

(q α2 xi − q α1(xi))
𝑛
𝑖=1

1
n
 τ xi w(q0.5    xi )n

i=1

 

 

where τ(xi) is a trimming function, whose support, denoted 

by Xτ , is a compact set which lies strictly in the interior of 

X. The trimming function serves to eliminate“ boundary 

effects” that arise in nonparametric estimation. We use the 

superscript (p) to distinguish the estimator of the median 

function in this stage from that in the first stage. 

 

3) Local Polynomial Estimation at the Point of Interest 

Letting x denote the point at which the function μ(·) is to 

be estimated at, we combine the local polynomial 

estimator, with polynomial order k and bandwidth 

sequence h3n, of the conditional quantile function at x 

using quantiles α1, α2, with the estimator of the unknown 

disturbance quantiles, to yield the estimator of μ(x): 

 

μ  x = c 2q α1 x − c 1q α2 x  
 

4. Estimating the Distribution of ϵi 
 

As mentioned in Section 2, the distribution of the random 

variable ϵi is identified for all quantiles exceeding α0≡ 

inf{α: supxϵX qα(x) > 0}. In this section we consider 

estimation of these quantiles, and the asymptotic 

properties of the estimator. Estimating the distribution of ϵi 

is of interest for two reasons. First, the econometrician 

may be interested in estimating the entire model, which 

would require estimators of σ(xi) and the distribution of ϵi 

as well as of μ(xi). Second, the estimator can be used to 

construct tests of various parametric forms of the 

distribution of ϵi, and the results of these tests could then 

be used to adopt a (local) likelihood approach to 

estimating the function μ(xi). 
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Before proceeding, we note that the distribution of ϵi is 

only identified up to scale, and we impose the scale 

normalization that c0.75 − c0.25 ≡ 1. We also assume 

without loss of marketing that α0 ≤ 0.25. To estimate cα 

for any α≥α0, we let α- = min(α, 0.5) and define our 

estimator as 

 

cα =

1
n
 τ xi w(qα−   xi ) ∙ (q α xi − q 0.5

 p 
(xi))n

i=1

1
n
 τ xi w(qα−   xi ) ∙ (q 0.75 xi − q 0.25(xi))n

i=1

 

 

The proposed estimator, which involves averaging 

nonparametric estimators, will converge at the parametric ( 

√n) rate and have a limiting normal distribution, as can be 

rigorously shown using similar arguments found in Chen 

and Khan(1999b). 

 

5. Truncated Regression 
 

 Data truncation is (B-1): the truncation is based on the 

y-variable. 

 We have the following regression satisfies all CLM 

assumptions: 

 

yi = xi
′β + εi , εi~N(0, σ2) 

 we sample only if yi<ci 

 Observations dropped if yi ≥ci by design. 

 We know the exact value of ci for each person. 

 Given the normality assumption for εi, ML is easy to 

apply. 

 

6. Application in Plotting Employees 
 

Plotting employees program wishes to model achievement 

as a function of language skills and the type of program in 

which the employee is currently enrolled. A major concern 

is that employees are required to have a minimum 

achievement score of 40 to enter the special program. 

Thus, the sample is truncated at an achievement score of 

40. 

 

 
Summary for variables: achieve by categories of: prog 

(type of program) 

 
prog N mean sd 

Marketing 40 51.575 7.97074 

Management 101 56.89109 9.018759 

Administration 37 49.86486 7.276912 

Total 178 54.23596 8.96323 

 

 
 

Type of Program Frequency Percent Cum. 

Marketing 40 22.47 22.47 

Management 101 56.74 79.21 

Administration 37 20.79 100.00 

Total 178 100.00  

 

Fitting full model: 

 

Iteration 0: log likelihood = -598.11669  

Iteration 1: log likelihood = -591.68374  

Iteration 2: log likelihood = -591.31208  

Iteration 3: log likelihood = -591.30981  

Iteration 4: log likelihood = -591.30981  

 

 
 

In the table above, we can see that the expected mean of 

avchiv for the first level of prog is approximately 49.79; 

the expected mean for level 2 of prog is 53.85; the 

expected mean for the third level of prog is 48.65. 
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marginsplot 

 
 

7. Conclusion 
 

In the output above, we can see that the expected mean of 

avchiv for the first level of prog is approximately 49.79; 

the expected mean for level 2 of prog is 53.85; the 

expected mean for the third level of prog is 48.65. 
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