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Abstract: In this paper we consider identification and estimation of a censored nonparametric location scale model. We first show that
in the case where the location function is strictly less than the (fixed) censoring point for all values in the support of the explanatory
variables, then the location function is not identified anywhere. In contrast, if the location function is greater or equal to the censoring
point with positive probability, then the location function is identified on the entire support, including the region where the location
function is below the censoring point. In the latter case we propose a simple estimation procedure based on combining conditional
quantile estimators for three distinct quantiles. The new estimator is shown to converge at the optimal nonparametric rate with a limiting
normal distribution. A small scale simulation study indicates that the proposed estimation procedure performs well in finite samples. We

also present an empirical application on plotting employees in a firm.
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1. Introduction

The nonparametric location-scale model is usually of the
form:

yi = plxi) + olxi)e

where x; is an observed d—dimensional random vector and
¢ is an unobserved random variable, distributed
independently of x;, and assumed to be centered around
zero in some sense. The functions u(-) and o(:) are
unknown. In this paper, we consider extending the
nonparametric location-scale model to accommodate
censored data. The advantage of our nonparametric
approach here is that economic theory rarely provides any
guidance on functional forms in relationships between
variables.

To allow for censoring, we work within the latent
dependent variable framework, as is typically done for
parametric and semiparametric models. We thus consider a
model of the form:

g o= p(es) +o(xe

Ui max(y., 0)
¥i

where is a latent dependent variable, which is only
observed if it exceeds the fixed censoring point, which we
assume without loss of marketingity is 0. We consider
identification and estimation of p(xi) after imposing the
location restriction that the median of ¢ = 0. We
emphasize that our results allow for identification of p(xi)
on the entire support of xi. This is in contrast to identifying
and estimating p(xi) only in the region where it exceeds
the censoring point, which could be easily done by
extending Powell’s(1984) CLAD estimator to a
nonparametric setting. One situation is when the data set is
heavily censored. In this case, u(xi) will be less than the

censoring point for a large portion of the support of xi,
requiring estimation at these points necessary to draw
meaningful inference regarding its shape.

Our approach is based on a structural relationship between
the conditional median and upper quantiles which holds
for observations where p(xi)>0. This relationship can be
used to motivate an estimator for p(xi) in the region where
it is negative. Our results are thus based on the condition

Py (z; - p(z;) = 0) =0

where PX(-) denotes the probability measure of the
random variable X;.

The paper is organized as follows. The next section
explains the key identification condition, and motivates a
way to estimate the function u(-) at each point in the
support of x;. Section 3 introduces the new estimation
procedure and establishes the asymptotic properties of this
estimator when the identification condition is satisfied.
Section 4 considers an extension of the estimation
procedure to estimate the distribution of the disturbance
term. Section 5 explores the finite sample properties of the
estimator through the results of a simulation study. Section
6 presents an empirical application STIFIN test, in which
we estimate the survivor function in the region beyond the
censoring point. Section 7 concludes by summarizing
results.

2. Estimation Procedure and Asymptotic
Properties

2.1 Estimation Procedure

In this section we consider estimation of the function p(-).
Our procedure will be based on our identification results in
the previous section, and involves nonparametric quantile
regression at different quantiles and different points in the
support of the regressors. Our asymptotic arguments are
based on the local polynomial estimator for conditional
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quantile functions introduced in Chaudhuri(1991a,b). For
expositional ease, we only describe this nonparametric
estimator for a polynomial of degree 0, and refer
psycotesters to Chaudhuri(1991a,b), Chaudhuri et
al.(1997), Chen and Khan(2000,2001), and Khan(2001)
for the additional notation involved for polynomials of
arbitrary degree.

First, we assume the regressor vector xi can be partltloned
as (X|ds x°) where the dg—dimensional vector xi® is
discretely distributed, and the d.-dimensional vector xi® is
continuously distributed.

We let Cn(x;) denote the cell of observation x; and let h,
denote the sequence of bandwidths which govern the size
of the cell. For some observation x; , j # i, we let X; € Cy(x;)
denote that x;' —x,(ds and x° lies in the d.-dimensional
cube centered at x; with side length 2h,,.

Let I[-] be an indicator function, taking the value 1 if its
argument is true, and 0 otherwise. Our estimator of the
conditional o™ quantile function at a point x; for any « € (0,
1) involves a-quantile regression (see Koenker and Bassett
(1978)) on observations which lie in the defined cells of x;.
Specifically, let 8 minimize:

n

Z !!J_; S C.rar:-ila'_}:f’f.k [:")'j — )

=1

where p,(-) = a| - | + (22 — 1)(-)I[- < 0.

Our estimation procedure will be based on a random
sample of n observations of the vector (y;,x;) and involves
applying the local polynomial estimator at three stages.
Throughout our description, - will denote estimated
values.

1) Local Constant Estimation of the Conditional
Median Function. In the first stage, we estimate the
conditional median at each point in the sample, using a
polynomial of degree 0. We will let hy, denote the
bandwidth sequence used in this stage. Following the
terminology of Fan(1992), we refer to this as a local
constant estimator, and denote the estimated values by
"q0.5(xi). Recalling that our identification result is based
on observations for which the median function is positive,
we assigns weights to these estimated values using a
weighting function, denoted by w(-). Essentially, w(:)
assigns 0 weight to observations in the sample for which
the estimated value of the median function is 0, and
assigns positive weight for estimated values which are
positive.

2) Weighted Average Estimation of the Disturbance
Quantiles In the second stage, the unknown quantiles c,; ,
C,, are estimated (up to the scalar constant _c) by a
weighted average of local polynomial estimators of the
quantile functions for the higher quantiles al, a2. In this
stage, we use a polynomial of degree k, and denote the
second stage bandwidth sequence by h,,.

We let “cl, “c2 denote the estimators of the unknown
Cay  Cag
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where t(x;) is a trimming function, whose support, denoted
by X, , is a compact set which lies strictly in the interior of
X. The trimming function serves to eliminate* boundary
effects” that arise in nonparametric estimation. We use the
superscript (p) to distinguish the estimator of the median
function in this stage from that in the first stage.

3) Local Polynomial Estimation at the Point of Interest
Letting x denote the point at which the function u(-) is to
be estimated at, we combine the local polynomial
estimator, with polynomial order k and bandwidth
sequence hg,, of the conditional quantile function at x
using quantiles al, a2, with the estimator of the unknown
disturbance quantiles, to yield the estimator of p(x):

fi(z) = €2Gay (%) — €1Gas (2)

3. Estimating the Distribution of ¢;

As mentioned in Section 2, the distribution of the random
variable ¢ is identified for all quantiles exceeding a,=
inf{a: SUpxx 0q«(X) > 0}. In this section we consider
estimation of these quantiles, and the asymptotic
properties of the estimator. Estimating the distribution of ¢;
is of interest for two reasons. First, the econometrician
may be interested in estimating the entire model, which
would require estimators of o(xi) and the distribution of ¢;
as well as of p(xi). Second, the estimator can be used to
construct tests of various parametric forms of the
distribution of ¢;, and the results of these tests could then
be used to adopt a (local) likelihood approach to
estimating the function p(xi).

Before proceeding, we note that the distribution of ¢ is
only identified up to scale, and we impose the scale
normalization that c0.75 — c0.25 = 1. We also assume
without loss of marketingity that a0 < 0.25. To estimate ¢,
for any o>ag, we let a. = min(o, 0.5) and define our
estimator as

G :.a Z: 17 (z)w(Ga_(x:)) - (Galz;) — ‘?illlﬁ':[‘rf]]
: 3, Yo T @) w(Ga () - (Gors(zi) — Go.os(x:))

The proposed estimator, which involves averaging
nonparametric estimators, will converge at the parametric (
n) rate and have a limiting normal distribution, as can be
rigorously shown using similar arguments found in Chen
and Khan(1999b).

Volume 5 Issue 5, May 2016

WWW.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: NOV163569

1304




International Journal of Science and Research (1JSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

4. Monte Carlo Results

In this section the finite sample properties of the proposed
estimator are explored by way of a small scale simulation
study. We simulated from designs of the form:

o(x;)e;, 0)

y; — max(p(x;) +

where xi was a random variable distributed uniformly
between -1 and 1, ¢ was distributed standard normal, and
the scale function o(xi) was set to e**" . We considered
four different functional forms for p(xi) in our study:

L plr)==

2. pulz) =2 —C

&2

() =05 2%

b

plx) =t —Co

where the constants C1, C2 were chosen so that the
censoring level was 50%, as it was for the other two
designs.

We adopted the following data-driven method to select the
quantile pair. For a given point X, we note that the
estimator requires that g, (X), g.»(X) both be strictly
positive for identification, requiring that the quantiles be
sufficiently close to 1. On the other hand, efficiency
concerns would suggest that the quantiles not be at the
extreme, as the quantile regression estimator becomes
imprecise. We thus let the probability of being censored,
or the “propensity score” (see Rosenbaum and
Rudin(1983)) govern the choice of quantiles for estimating
the function p(-) at the point x. Letting di denote an
indicator function which takes the wvalue 1 if an
observation is uncensored, we note that;

1 — E[di|z; = =] = F, (:Aiif(d:):)
B - alx)

where F,(-) denotes the c.d.f. of . Letting o™ = F, ( X T ) we note that

Ga-(r) = max(p(z) + cu-0(x),0)
= nmxl:luf..r] + Lmﬁ(.l‘}.“}
alx)

=0

Thus if one knew the propensity score value, identification
would require that o be a lower bound for the choice of
quantile pair. The propensity score can be easily estimated
using kernel methods, suggesting an estimator of o :

Ly ¢ W]_ \ﬂ 1 _ ()
a Yy Gl = e[ =]

‘%
°= lzn K, J‘\“—f\” [i-d.—f‘rf
n

where Ky() = b~ - K(;) where s a bandwidth sequence, and K(-) is a kernel function.

Our proposed choice of quantile pair takes into account
this lower bound as well as the efficiency loss of
estimating quantiles at the extreme. We set:

20 + 1 2+at
v = ——— g =

3 ) 3

which divides the interval ["a’, 1] into three equal spaces.
In implementing this procedure in the Monte Carlo study,
the propensity scores were estimated using a normal kernel
function and a bandwidth of n"*®

For the quantile estimators, a local constant was fit in the
first stage, using a bandwidth of n"™*®, and a local linear
estimator was used in the second and third stages, using a
bandwidth of the form kn™*. The constant k was selected
using the “rule of thumb” approach detailed on page 202
in Fan and Gijbels(1996).

5. Case Studies

5.1 Application Tobit regression to plot employees
Consider the situation in which we have a measure of
management aptitude (scaled 200-800) which we want to
model using psycotesting and math test scores, as well as,
the type of program the student is enrolled in
(management, marketing, or administration). The problem
here is that students who answer all questions on the
management aptitude test correctly receive a score of 800,
even though it is likely that these students are not "truly"
equal in aptitude. The same is true of students who answer
all of the questions incorrectly. All such students would
have a score of 200, although they may not all be of equal
aptitude.

R RGui W T | (][]

File Edit View Misc Packages Windows Help

R R Console
‘ > summary (dat)
id psycotest math prog
Min. : 1.00 Min. :28.00 Min. :33.00 administration: 50
ist Qu.: 50.75 18t Qu.:44.00 1st Qu.:45.00 management 1 45
Median :100.50 Median :50.00 Median :52.00 marketing :105
Mean :100.50 Mean :152.23 Mean 152.65
3rd Qu.:150.25 3rd Qu.:60.00 3rd Qu.:59.00
Max. :200.00 Max. :76.00 Max. :75.00
apt
Min. :352.0

1st Qu.:575.5
Median :633.0
Mean  :640.0
3zrd Qu.:705.2
Max.

hat gives the density of normal distribution
mean and sd, scal Ed to be on a count metri
; * zample 3ize * b'_r. width

* length(var) * bw
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5 — )
R Roui w E=EEE math 0.6622801 1.0000000 0.7332702
File History Resize  Windows apt 0.6451215 0.7332702 1.0000000
- ==
— = . A . N
R 7| R RGraphics Device 2 (ACTVD) == e R;‘RG“H'R e I= ==
= |
Ha - :{Z;S::; IR R Graphics: Device 2 (ACTIVE) oo e | |
i e
MHe 15— > # functid 0
M > & for giv 50
3: prog 50 psycotest T',‘
Ma — L ;
s & % 10 administration = 40
> F 3 management 3040506070
7T katin tet
i £ marl g 3.:.'.%;;.. 70
: 5- .,a{ﬁii‘s <% matn o
+as, 3084 ¢ b il
i ; II * ’: Y . 40 50 60 70 E
> 0- > cor(dat[, * . ——
. ) ) I I ) . Error in " e . s&?&"\"‘. 800
g 400 500 600 700 80O , e .::‘"';g; il B ’g}:’; 700
> ! o o8 -
oF R ?pt | izzzmsng '.i,ﬂi ;‘f:! SR :::: apt
O ETAS = TiarTeav = mereeneT . apt d et ¥ ?
> # plot ma e - 400 500 600 700 80C
> ggpairs | . .
> | L
Looking at the above histogram, we can see the censoring " :
in the values of apt, that is, there are far more cases with 2
scores of 750 to 800 than one would expect looking at the N
rest of the distribution. Below is an alternative histogram "’F“RG“E'“ o =R
>t Te Edt View Mic Packages Windows Help
that furth_er highlights the excess of cases \_Nhere apt=800. |
In the histogram below, the breaks option produces a L R
histogram where each unique value of apt has its own bar
(by setting breaks equal to a vector containing values from TEImToTmite [ P77 Po¥SSrest *math © prog, family - rebit(Upper - 80913
the minimum of apt to the maximum of apt). Because apt
is continuous, most values of apt are unique in the dataset, s <2294 -0.7500 <0.08117s 0.76200 3.0806
- - - log(sd) -1.2565 -0.63457 -0.324974 0.25235 5.1161
although close to the center of the distribution there are a . " .
few values of apt that have two or three cases. The spike | Esvimate sta. Trror z value
. . . (Intercept):1 163.4193 30.327541 ©5.3885
On the fal‘ I’Ight Of the hIStOgram |S the ba.r fOI’ C&SGS Where ;i;zz::::) 1z ;1;;:3: gc‘ji:;z;; "zgzif
apt=800, the height of this bar relative to_ all Fhe others rcamanagment 161131 15.72148 33628
clearly shows the excess number of cases with this value. PIOGIATKECING 338275 1250233 2.8907
Number of linear predictors: 2
R foui T ]S [ ] | Names of linear predictors: mu, log(sd)
File History Resize Windows Dispersion Parameter for tobit family: 1
Log-likelihood: -1041.063 on 394 degrees of freedom 3
ok 220270 | R R Grophics evce2 ey Bl | Memper of irerscions: ¢
Mean 640 S

count

options we specified, etc.
o The table labeled coefficients gives the coefficients,
their standard errors, and the z-statistic. No p-values
g are included in the summary table, but we show how
| to calculate them below. Tobit regression coefficients
n ‘ are interpreted in the similar manner to OLS
regression coefficients; however, the linear effect is
' A on the uncensored latent variable, not the observed
apt outcome.
o For a one unit increase in psycotest, there is a 2.6981
point increase in the predicted value of apt.
o A one unit increase in math is associated with a

management

marketing

I

6. Conclusion

e « In the output above, the first thing we see is the call, this
> 4 niscos 10- prog is R reminding us what the model we ran was, what
> administration

Next we'll explore the bivariate relationships in our

dataset. 5.9146 unit increase in the predicted value of apt.
sveotest math ant o The terms for prog have a slightly different
Bszcotest 1 OOOOF(;OO 0.6622801 0.6451215 interpretation. The predicted value of apt is -46.1419
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points lower for students in a administration program
than for students in an management program.

o The coefficient labeled "(Intercept):1" is the intercept
or constant for the model.

o The coefficient labeled "(Intercept):2" is an ancillary
statistic. If we exponentiate this value, we get a
statistic that is analogous to the square root of the
residual variance in OLS regression. The value of
65.6773 can compared to the standard deviation of
management aptitude which was 99.21, a substantial
reduction.

e The final log likelihood, -1041.0629, is shown toward
the bottom of the output, it can be used in comparisons
of nested models.

e For a one unit increase in psycotest, there is a 2.7 point
increase in the predicted value of apt.

e A one unit increase in math is associated with a 5.91
unit increase in the predicted value of apt.

e The terms for prog have a slightly different
interpretation. The predicted value of apt is 46.14 points
lower for students in a administration program (prog=3)
than for students in an management program (prog=1).

The tobit model, also called a censored regression model,
is designed to estimate linear relationships between
variables when there is either left- or right-censoring in the
dependent variable (also known as censoring from below
and above, respectively). Censoring from above takes
place when cases with a value at or above some threshold,
all take on the value of that threshold, so that the true value
might be equal to the threshold, but it might also be higher.
In the case of censoring from below, values those that fall
at or below some threshold are censored.

Interval regression is used to model outcomes that have
interval censoring. In other words, you know the ordered
category into which each observation falls, but you do not
know the exact value of the observation. Interval
regression is a marketingization of censored regression.
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