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Abstract: In this paper we consider identification and estimation of a censored nonparametric location scale model. We first show that 

in the case where the location function is strictly less than the (fixed) censoring point for all values in the support of the explanatory 

variables, then the location function is not identified anywhere. In contrast, if the location function is greater or equal to the censoring 

point with positive probability, then the location function is identified on the entire support, including the region where the location 

function is below the censoring point. In the latter case we propose a simple estimation procedure based on combining conditional 

quantile estimators for three distinct quantiles. The new estimator is shown to converge at the optimal nonparametric rate with a limiting 

normal distribution. A small scale simulation study indicates that the proposed estimation procedure performs well in finite samples. We 

also present an empirical application on plotting employees in a firm. 
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1. Introduction 
 

The nonparametric location-scale model is usually of the 

form: 

 

 
 

where xi is an observed d−dimensional random vector and 

єi is an unobserved random variable, distributed 

independently of xi, and assumed to be centered around 

zero in some sense. The functions μ(·) and σ(·) are 

unknown. In this paper, we consider extending the 

nonparametric location-scale model to accommodate 

censored data. The advantage of our nonparametric 

approach here is that economic theory rarely provides any 

guidance on functional forms in relationships between 

variables. 

 

To allow for censoring, we work within the latent 

dependent variable framework, as is typically done for 

parametric and semiparametric models. We thus consider a 

model of the form: 

 

 
 

where  is a latent dependent variable, which is only 

observed if it exceeds the fixed censoring point, which we 

assume without loss of marketingity is 0. We consider 

identification and estimation of μ(xi) after imposing the 

location restriction that the median of єi = 0. We 

emphasize that our results allow for identification of μ(xi) 

on the entire support of xi. This is in contrast to identifying 

and estimating μ(xi) only in the region where it exceeds 

the censoring point, which could be easily done by 

extending Powell’s(1984) CLAD estimator to a 

nonparametric setting. One situation is when the data set is 

heavily censored. In this case, μ(xi) will be less than the 

censoring point for a large portion of the support of xi, 

requiring estimation at these points necessary to draw 

meaningful inference regarding its shape. 

 

Our approach is based on a structural relationship between 

the conditional median and upper quantiles which holds 

for observations where μ(xi)≥0. This relationship can be 

used to motivate an estimator for μ(xi) in the region where 

it is negative. Our results are thus based on the condition 

 

 
 

where PX(·) denotes the probability measure of the 

random variable xi. 

 

The paper is organized as follows. The next section 

explains the key identification condition, and motivates a 

way to estimate the function μ(·) at each point in the 

support of xi. Section 3 introduces the new estimation 

procedure and establishes the asymptotic properties of this 

estimator when the identification condition is satisfied. 

Section 4 considers an extension of the estimation 

procedure to estimate the distribution of the disturbance 

term. Section 5 explores the finite sample properties of the 

estimator through the results of a simulation study. Section 

6 presents an empirical application STIFIN test, in which 

we estimate the survivor function in the region beyond the 

censoring point. Section 7 concludes by summarizing 

results. 

 

2. Estimation Procedure and Asymptotic 

Properties 
 

2.1 Estimation Procedure 

 

In this section we consider estimation of the function μ(·). 

Our procedure will be based on our identification results in 

the previous section, and involves nonparametric quantile 

regression at different quantiles and different points in the 

support of the regressors. Our asymptotic arguments are 

based on the local polynomial estimator for conditional 

Paper ID: NOV163569 1303



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 5, May 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

quantile functions introduced in Chaudhuri(1991a,b). For 

expositional ease, we only describe this nonparametric 

estimator for a polynomial of degree 0, and refer 

psycotesters to Chaudhuri(1991a,b), Chaudhuri et 

al.(1997), Chen and Khan(2000,2001), and Khan(2001) 

for the additional notation involved for polynomials of 

arbitrary degree. 

 

First, we assume the regressor vector xi can be partitioned 

as (xi
ds

,x
c
) where the dds−dimensional vector xi

ds 
is 

discretely distributed, and the dc-dimensional vector xi
c
 is 

continuously distributed. 

 

We let Cn(xi) denote the cell of observation xi and let hn 

denote the sequence of bandwidths which govern the size 

of the cell. For some observation xj , j ≠ i, we let xj ϵ Cn(xi) 

denote that xj
(ds)

=xi
(ds)

 and xj
©
 lies in the dc-dimensional 

cube centered at xi
c
 with side length 2hn. 

 

Let I[·] be an indicator function, taking the value 1 if its 

argument is true, and 0 otherwise. Our estimator of the 

conditional α
th

 quantile function at a point xi for any α ϵ (0, 

1) involves α-quantile regression (see Koenker and Bassett 

(1978)) on observations which lie in the defined cells of xi. 

Specifically, let θ minimize: 

 

 
 

Our estimation procedure will be based on a random 

sample of n observations of the vector (yi,xi
’
)
’
 and involves 

applying the local polynomial estimator at three stages. 

Throughout our description, ˆ· will denote estimated 

values. 

 

1) Local Constant Estimation of the Conditional 

Median Function. In the first stage, we estimate the 

conditional median at each point in the sample, using a 

polynomial of degree 0. We will let h1n denote the 

bandwidth sequence used in this stage. Following the 

terminology of Fan(1992), we refer to this as a local 

constant estimator, and denote the estimated values by 

ˆq0.5(xi). Recalling that our identification result is based 

on observations for which the median function is positive, 

we assigns weights to these estimated values using a 

weighting function, denoted by w(·). Essentially, w(·) 

assigns 0 weight to observations in the sample for which 

the estimated value of the median function is 0, and 

assigns positive weight for estimated values which are 

positive. 

 

2) Weighted Average Estimation of the Disturbance 

Quantiles In the second stage, the unknown quantiles cα1 , 

cα2 are estimated (up to the scalar constant _c) by a 

weighted average of local polynomial estimators of the 

quantile functions for the higher quantiles α1, α2. In this 

stage, we use a polynomial of degree k, and denote the 

second stage bandwidth sequence by h2n. 

 

We let ˆc1, ˆc2 denote the estimators of the unknown 

constants  and define them 

as:  

where τ(xi) is a trimming function, whose support, denoted 

by Xτ , is a compact set which lies strictly in the interior of 

X. The trimming function serves to eliminate“ boundary 

effects” that arise in nonparametric estimation. We use the 

superscript (p) to distinguish the estimator of the median 

function in this stage from that in the first stage. 

 

3) Local Polynomial Estimation at the Point of Interest 

Letting x denote the point at which the function μ(·) is to 

be estimated at, we combine the local polynomial 

estimator, with polynomial order k and bandwidth 

sequence h3n, of the conditional quantile function at x 

using quantiles α1, α2, with the estimator of the unknown 

disturbance quantiles, to yield the estimator of μ(x): 

 

 
 

3. Estimating the Distribution of ϵi 
 

As mentioned in Section 2, the distribution of the random 

variable ϵi is identified for all quantiles exceeding α0≡ 

inf{α: supxϵX qα(x) > 0}. In this section we consider 

estimation of these quantiles, and the asymptotic 

properties of the estimator. Estimating the distribution of ϵi 

is of interest for two reasons. First, the econometrician 

may be interested in estimating the entire model, which 

would require estimators of σ(xi) and the distribution of ϵi 

as well as of μ(xi). Second, the estimator can be used to 

construct tests of various parametric forms of the 

distribution of ϵi, and the results of these tests could then 

be used to adopt a (local) likelihood approach to 

estimating the function μ(xi). 

 

Before proceeding, we note that the distribution of ϵi is 

only identified up to scale, and we impose the scale 

normalization that c0.75 − c0.25 ≡ 1. We also assume 

without loss of marketingity that α0 ≤ 0.25. To estimate cα 

for any α≥α0, we let α- = min(α, 0.5) and define our 

estimator as 

 

 
 

The proposed estimator, which involves averaging 

nonparametric estimators, will converge at the parametric ( 

√n) rate and have a limiting normal distribution, as can be 

rigorously shown using similar arguments found in Chen 

and Khan(1999b). 
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4. Monte Carlo Results 
 

In this section the finite sample properties of the proposed 

estimator are explored by way of a small scale simulation 

study. We simulated from designs of the form: 

 

 
 

where xi was a random variable distributed uniformly 

between -1 and 1, ϵi was distributed standard normal, and 

the scale function σ(xi) was set to e
0.15xi

 . We considered 

four different functional forms for μ(xi) in our study: 

 

 
 

where the constants C1, C2 were chosen so that the 

censoring level was 50%, as it was for the other two 

designs. 

 

We adopted the following data-driven method to select the 

quantile pair. For a given point x, we note that the 

estimator requires that qα1(x), qα2(x) both be strictly 

positive for identification, requiring that the quantiles be 

sufficiently close to 1. On the other hand, efficiency 

concerns would suggest that the quantiles not be at the 

extreme, as the quantile regression estimator becomes 

imprecise. We thus let the probability of being censored, 

or the “propensity score” (see Rosenbaum and 

Rudin(1983)) govern the choice of quantiles for estimating 

the function μ(·) at the point x. Letting di denote an 

indicator function which takes the value 1 if an 

observation is uncensored, we note that; 

 

 
 

Thus if one knew the propensity score value, identification 

would require that α
*
 be a lower bound for the choice of 

quantile pair. The propensity score can be easily estimated 

using kernel methods, suggesting an estimator of α
*
: 

 

 
 

Our proposed choice of quantile pair takes into account 

this lower bound as well as the efficiency loss of 

estimating quantiles at the extreme. We set: 

 
 

which divides the interval [ˆα
*
, 1] into three equal spaces. 

In implementing this procedure in the Monte Carlo study, 

the propensity scores were estimated using a normal kernel 

function and a bandwidth of n
−1/5

. 

 

For the quantile estimators, a local constant was fit in the 

first stage, using a bandwidth of n
−1/5

, and a local linear 

estimator was used in the second and third stages, using a 

bandwidth of the form kn
−1/5

. The constant k was selected 

using the “rule of thumb” approach detailed on page 202 

in Fan and Gijbels(1996). 

 

5. Case Studies 
 

5.1 Application Tobit regression to plot employees 

Consider the situation in which we have a measure of 

management aptitude (scaled 200-800) which we want to 

model using psycotesting and math test scores, as well as, 

the type of program the student is enrolled in 

(management, marketing, or administration). The problem 

here is that students who answer all questions on the 

management aptitude test correctly receive a score of 800, 

even though it is likely that these students are not "truly" 

equal in aptitude. The same is true of students who answer 

all of the questions incorrectly. All such students would 

have a score of 200, although they may not all be of equal 

aptitude. 
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Looking at the above histogram, we can see the censoring 

in the values of apt, that is, there are far more cases with 

scores of 750 to 800 than one would expect looking at the 

rest of the distribution. Below is an alternative histogram 

that further highlights the excess of cases where apt=800. 

In the histogram below, the breaks option produces a 

histogram where each unique value of apt has its own bar 

(by setting breaks equal to a vector containing values from 

the minimum of apt to the maximum of apt). Because apt 

is continuous, most values of apt are unique in the dataset, 

although close to the center of the distribution there are a 

few values of apt that have two or three cases. The spike 

on the far right of the histogram is the bar for cases where 

apt=800, the height of this bar relative to all the others 

clearly shows the excess number of cases with this value. 

 

 
 

Next we'll explore the bivariate relationships in our 

dataset. 

 

psycotest math apt 

psycotest 1.0000000 0.6622801 0.6451215 

math 0.6622801 1.0000000 0.7332702 

apt 0.6451215 0.7332702 1.0000000 

 

 
 

 
 

6. Conclusion 
 

 In the output above, the first thing we see is the call, this 

is R reminding us what the model we ran was, what 

options we specified, etc. 

o The table labeled coefficients gives the coefficients, 

their standard errors, and the z-statistic. No p-values 

are included in the summary table, but we show how 

to calculate them below. Tobit regression coefficients 

are interpreted in the similar manner to OLS 

regression coefficients; however, the linear effect is 

on the uncensored latent variable, not the observed 

outcome.  

o For a one unit increase in psycotest, there is a 2.6981 

point increase in the predicted value of apt. 

o A one unit increase in math is associated with a 

5.9146 unit increase in the predicted value of apt. 

o The terms for prog have a slightly different 

interpretation. The predicted value of apt is -46.1419 
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points lower for students in a administration program 

than for students in an management program. 

o The coefficient labeled "(Intercept):1" is the intercept 

or constant for the model. 

o The coefficient labeled "(Intercept):2" is an ancillary 

statistic. If we exponentiate this value, we get a 

statistic that is analogous to the square root of the 

residual variance in OLS regression. The value of 

65.6773 can compared to the standard deviation of 

management aptitude which was 99.21, a substantial 

reduction. 

 The final log likelihood, -1041.0629, is shown toward 

the bottom of the output, it can be used in comparisons 

of nested models. 

 For a one unit increase in psycotest, there is a 2.7 point 

increase in the predicted value of apt. 

 A one unit increase in math is associated with a 5.91 

unit increase in the predicted value of apt. 

 The terms for prog have a slightly different 

interpretation. The predicted value of apt is 46.14 points 

lower for students in a administration program (prog=3) 

than for students in an management program (prog=1).  

 

The tobit model, also called a censored regression model, 

is designed to estimate linear relationships between 

variables when there is either left- or right-censoring in the 

dependent variable (also known as censoring from below 

and above, respectively). Censoring from above takes 

place when cases with a value at or above some threshold, 

all take on the value of that threshold, so that the true value 

might be equal to the threshold, but it might also be higher. 

In the case of censoring from below, values those that fall 

at or below some threshold are censored. 

 

Interval regression is used to model outcomes that have 

interval censoring. In other words, you know the ordered 

category into which each observation falls, but you do not 

know the exact value of the observation. Interval 

regression is a marketingization of censored regression. 
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