
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Survey on Partial Reconfiguration Techniques

Sowmya Aithal
1

1PG Student, Dr. Ambedkar Institute of Technology, Bangalore, India

Abstract: The technology evolvement has led to incorporation of more and more features into the system. One such feature is the

flexibility of changing the hardware and software at the time of fabrication. Such a feature is called reconfiguration. The

reconfiguration allows the user to incorporate more control over the hardware and software even at final stages of the process. Such

type of reconfiguration is possible in Field Programmable Gate Array (FPGA). There are various classifications of reconfiguration

based on application of reconfiguring a device usually FPGA. In this paper we go through the overview of partial reconfiguration and

various techniques employed to achieve it.

Keywords: Dynamic Partial Reconfiguration, FPGA, Partial Reconfiguration, Reconfiguration

1. Introduction

The reconfiguration is the key factor in today’s world of

technology as it gives us control over the system at the

manufacturing level. The reconfiguration will allow adapting

to the system changes.

The Application Specific Integrated Circuit (ASIC) is very

fast and efficient when it is designed to do a specific task.

The hardware cannot be changed or reconfigured after

fabrication. The microprocessor or microcontroller is

software controlling hardware and it has more latency in

computation as it needs minimum 4 cycles to do any

operation. The reconfigurable device like FPGA is one

where software generates hardware and so is flexible. The

Mask Programmable Gate Array (MPGA) is also one of the

reconfigurable devices like FPGA. MPGA are transistor

arrays which can be configured into logic by metalinter

connections, made at the time of fabrication.

The reconfiguration is classified into static and dynamic

reconfiguration. Static reconfiguration is also called Compile

time reconfiguration. It is the simplest form and most

commonly used type of reconfiguration. Here the

reconfigurable resources are loaded with the respective

reconfigurations. When the operation begins the resources

will remain there until the operation finishes. Here the

hardware resources remain static throughout the operation.

So it is aptly called static reconfiguration.

The dynamic reconfiguration is also called Run time

reconfiguration. It is one commonly used type of

reconfiguration. Here it uses dynamic allocation of resources

at run time. This increases the performance and use of

optimized circuits which are loaded and unloaded

dynamically during the operation. So in this way the

flexibility of the system is maintained and functional density

is increased.

2. Partial Reconfiguration

Partial Reconfiguration is the process of reconfiguring logic

of part of the system while other parts are operating

normally. The partial reconfiguration is effective as it allows

the designer to move or change fewer devices and thus

reduce power and improve system upgradability.

To program the FPGA we will have to change the bit-file.

The bit–file can be greater than 1MB so while

reconfiguration we have to alter the bit-file so it is too hectic

job so we go for partial reconfiguration.

There are two types of partial reconfiguration based on the

functionality. One is static partial reconfiguration and other

is dynamic partial reconfiguration.

Figure 1: Static Partial Reconfiguration

Figure 2: Dynamic Partial Reconfiguration

In static partial reconfiguration, the device is not active and it

becomes active after the reconfiguration process as

illustrated in figure 1.

Dynamic partial reconfiguration (DPR), also known as active

partial reconfiguration. Here the alteration can be done when

rest of FPGA is running. It is carried out to allow FPGA to

adapt to the reduced power, higher efficiency and resource

utilization. DPR is very useful in critical environments where

the devices need to continue operating when some of the

regions are redefined.

There are 2 basic styles of DPR on single FPGA. The

difference based partial reconfiguration and module based

partial reconfiguration.

Difference based partial reconfiguration
1
 is used when small

change is made to the design. This method is widely used in

Look Up Table (LUT) for changing the equations or in the

dedicated memory. Here the partial bit stream contains only

the difference between the old content and new content of an

FPGA. The switching configuration of a module from one

implementation to other is very quick as bit stream are very

small.

Module based partial reconfiguration
1
 is used when we have

to reconfigure large blocks of logic. Reconfigurable modules

Paper ID: NOV163563 1575

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

are the distinct portions of the design which need to be

reconfigured. For any reconfigurable module some specific

properties and specific layout need to be laid out so we need

to plan the use of partial reconfiguration in FPGA.

Another technique is Early Access Partial reconfiguration

(EAPR)
 1

. Here the DPR system is used in EAPR flow. The

gray and Johnson counter are reconfigured dynamically on

Xilinx Virtex4- FX12 FPGA chip. The output has four LEDs

used to demonstrate the counter. Figure 3 illustrates the

proposed architecture. The system consists of LED control

module and two partial reconfiguration modules (PRM A1,

PRM A2) which are placed on same partial reconfiguration

design. LED control module which enables LEDs is a static

module.

Figure 3: Architecture of the design

EAPR Design Flow is shown in figure 4. Here in first step of

Hardware Descriptive Language Synthesis where the top

design, base design and PRM design.

In Top Design the top module which has clock instantiations,

I/O instantiations, partial reconfiguration instantiations,

signal instantiations and all macro instantiations are done.

In Base Design the static modules are present and are static

throughout there configuration. This module does not contain

clock or reset.

In PRM Design also clock is not included in the module but

can be referenced through the top module. In this design we

have 2 PRM’s one of Gray Counter another Johnson

Counter.

Figure 4: EAPR design Flow

The Second step is Set Design Constraints. Here the

constraints are area group, reconfiguration mode, timing

constraint and location constraints. The constraint area group

defines which modules in top module is static and which are

reconfigurable. The reconfiguration mode constraint is

applied to specific group to be reconfigurable module.

Location constraints are set for each pin, clock pins and all

bus macros.

The Third step is Implement Base Design where translate,

map, place and route is implemented. Before implementation

constraints file should be created.

The Fourth step is Implement PRM’s where each PRM is

implemented separately and follows translate, map, place

and route as in base design implementation.

The Final Phase is Merge where complete design is built

based on base design and each PRM’s. Here many partial

bit-streams are generated for each PRM’s and full bit-

streams are created initially to configure FPGA.

The EAPR technique is used for small blocks like counters

or multipliers etc, but for real time signals or video or speech

we cannot use the EAPR technique. The below mentioned

technique is used in such cases.

Another technique for partial reconfiguration is for video

processing
2
. Here Speed Efficient Dynamic Partial

Reconfiguration Controller (SEDPRC)is used. Noise is

present in an image while generation, distribution or in

display. The image noise appears in different forms based on

their place of generation so we need different kinds of filters

to be used while processing an image. So having variety of

filters is useful but only one type of filter is used at a time.

Now DPR can be exploited to accommodate different types

of filters. The filters are deployed in slots at run time based

on their requirement. The configuration is shown in figure 5.

Paper ID: NOV163563 1576

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The reconfiguration controller can choose filters from filter

library and deploy them to slots at run time. By this method

we can have larger number of available filters than normal

number which fit into the target device. If a video filter is

getting swapped then the remaining pre/post processing and

audio processing block become optional. In the same way

audio processing can be swapped without stopping video

processing.

Signal pre/post

processing

Signal pre/post

processing

Filter Filter

Reconfiguration

Controller

F1 F2 F1 F2 F3 F4

FPGA

Video input from

Codec

Filtered video to

VGA

Audio Signal to/

From Codec

Figure 5: Overview of the dynamic partial reconfigurable

audio/video signal processing system.

Here parallelism is exploited in FPGA’s by making video

and audio processing blocks running in parallel on the device

and in the process changing the functionalities of the system

without stopping the working ones.

The reconfiguration controller should be fast enough to

achieve filtering without losing data. In video processing the

filters should be swapped after the completion of first frame

processing and before the arrival of the second frame.

The other technique for partial reconfiguration

3
 is use of

Internal Configuration Access Port (ICAP). ICAP is Xilinx

primitive which provides internal access to the configuration

logic of the FPGA from within FPGA fabric. The ICAP

interface is where the configuration data can be dynamically

loaded into the configuration memory of FPGA at runtime. It

is possible to read back of the configuration data from

configuration memory orto read the status registers of the

configuration logic with the ICAP interface.

ICAP

FPGA

Configuration

Memory

I(31:0)

WRITE

CE

Clock

O(31:0)

BUSY

Figure 6: Xilinx ICAP Primitive

ICAP interface consists of separate data ports for reading

(output) and writing (input) configuration data. For Virtex 4

the configuration data ports are 8 or 32 bits wide, for Virtex

5 or Virtex 6 the configuration data ports are 8,16 or 32 bits

wide. The chip enable (CE), write enable (WRITE) signals

are the inputs along with the Clock. The output signal is

busy/ready (BUSY). The BUSY signal is low during WRITE

operations and high during read operations. The WRITE

signal writes when it is low and reads when high. At rising

edge of the clock the configuration data is written to the

device, if ICAP port is enabled. So the controlling of writing

configuration data is done by use of clock or enable input.

Partial reconfiguration when need to be done for various

combinations then we cannot use the above techniques so the

next type is LUT based partial reconfiguration
4
.

Xilinx FPGA’s allow some LUTs to function as Shift

Registers at the same time have LUT functionality, referred

to as SRL’s. This dual functionality allows shifting the

configuration bits, defining the LUT content and the

behavior without going for normal FPGA procedure like

ICAP.

SRL16E

SR/LUT

SRL16E

SR/LUT

SRLC32E

SR/LUT

D CE

 Result reg

Input Element

Address

5..2

1..0

Config

Output

Figure 7: SRL based FU implementation

The block diagram shown in figure 7 has SRL based

Functional Unit (FU). For the address comparator part which

is 6 input one, we need to implement two 4-input SRL

named SRL16E. Both the LUTs check for the equality of the

Most Significant Bits (MSB) and Least Significant Bits

(LSB) of the input and the configured bit. The first of the

LUTs check for LSB other for MSBs. The second LUT

implements the AND gate to combine the results and then

enable register to load the result from the function part. The

implementation of the function part is done using one single

5 input LUT called SRLC32E as its data width is tailored to

its size. The configuration lines are needed for serial shifting

of configuration data into LUTs. This type of partial

reconfiguration is fast but has communication overhead, the

latency is dependent on the largest SRL size (i.e 32 cycles.).

3. Conclusion

The various partial reconfigurations are learnt and various

techniques employed in dynamic partial reconfiguration is

discussed with each technique used for specific application

or purpose. The partial reconfiguration plays an important

role in the field of technology based on FPGA.

References

[1] Dynamic Partial Reconfiguration in FPGAs by Wang

Lie, Wu Feng-yan, Dept. of Computer Science

＆Electronic Information ,Guangxi University

Nanning,China in Third International Symposium on

Paper ID: NOV163563 1577

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Intelligent Information Technology Application IEEE

,2009

[2] High Speed Dynamic Partial Reconfiguration for Real

Time Multimedia Signal Processing by S. Bhandari, S.

Subbaraman, S. Pujari, F. Cancare, F. Bruschi, M. D.

Santambrogioand P. R. Grassi in 15th Euromicro

Conference on Digital System Design IEEE, 2012.

[3] High Speed Partial Run-Time Reconfiguration Using

Enhanced ICAP Hard Macro by SimenGimle Hansen,

Dirk Koch and Jim Torresen in IEEE International

Parallel & Distributed Processing Symposium,2011.

[4] Lookup Table Partial Reconfiguration for an Evolvable

Hardware Classifier System by KyrreGlette, Paul

Kaufmann in IEEE Congress on Evolutionary

Computation (CEC), 2014.

[5] Performance Evaluation of Hybrid Reconfigurable

Computing Architecture over Symmetrical FPGA by

Sunil Kr. Singh, R. K. Singh, M. P. S. Bhatia, in

International Journal of Embedded Systems and

Applications (IJESA),2012.

[6] Reconfigurable Computing ArchitectureSurvey and

introduction by Ali Azarian,MahmoodAhmadi in

IEEE,2009.

[7] Partial and Dynamic Reconfiguration of FPGAs: a top

down design methodologyfor an automatic

implementation byFlorent Berthelot, FabienneNouvel in

Emerging VLSI Technologies and Architectures, IEEE,

2006.

[8] A Physical Resource Management Approach to

Minimizing FPGA Partial Reconfiguration Overhead by

Heng Tan and Ronald F. DeMara in IEEE, 2006.

[9] Dynamic Fault Recovery UsingPartial Reconfiguration

for Highly Reliable FPGAs by Gehad I. Alkady, Nahla

A. El-Araby, M.B. Abdelhalim, H.H. Amer,A.H.

Madian in 4th Mediterranean Conference on Embedded

Computing, 2015.

[10] Modern Fault Tolerant Architectures Based on Partial

Dynamic Reconfiguration in FPGAs by Martin Straka,

Jan Kastil, ZdenekKotasek in IEEE, 2010.

Paper ID: NOV163563 1578

