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Abstract: Large-scale sensor networks are deployed in numerous application domains, and the data they collect are used in decision 

making for critical infrastructures. Data are streamed from multiple sources through intermediate processing nodes that aggregate 

information. A malicious adversary may introduce additional nodes in the network or compromise existing ones. In this paper, we 

propose a novel lightweight scheme to securely transmit provenance for sensor data. The proposed technique relies on in-packet Bloom 

filters to encode provenance. We introduce efficient mechanisms for provenance verification and reconstruction at the base station. In 

addition, we extend the secure provenance scheme with functionality to detect packet drop attacks staged by malicious data forwarding 

nodes. We evaluate the proposed technique both analytically and empirically, and the results prove the effectiveness and efficiency of the 

lightweight secure provenance scheme in detecting packet forgery and loss attacks. 
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1. Introduction 
 

SENSOR networks are used in numerous application 

domains, such as cyberphysical infrastructure systems, 

environmental monitoring, power grids, etc. Data are 

produced at a large number of sensor node sources and 

processed in-network at intermediate hops on their way to a 

base station (BS) that performs decision-making. The 

diversity of data sources creates the need to assure the 

trustworthiness of data, such that only trustworthy 

information is considered in the decision process. Data 

provenance is an effective method to assess data 

trustworthiness, since it summarizes the history of 

ownership and the actions performed on the data.  

 

Recent research highlighted the key contribution of 

provenance in systems where the use of untrustworthy data 

may lead to catastrophic failures (e. g., SCADA systems). 

Although provenance modelling, collection, and querying 

have been studied extensively for workflows and curated 

databases provenance in sensor networks has not been 

properly addressed. We investigate the problem of secure 

and efficient provenance transmission and processing for 

sensor networks, andprovenance to detect packet loss attacks 

staged by malicious sensor nodes. 

 

In a multi-hop sensor network, data provenance allows the 

BS to trace the source and forwarding path of an individual 

data packet. Provenance must be recorded for each packet, 

but important challenges arise due to the tight storage, 

energy and bandwidth constraints of sensor nodes. 

Therefore, it is necessary to devise a light-weight 

provenance solution with low overhead. Furthermore, 

sensors often operate in an untrusted environment, where 

they may be subject to attacks.  

 

Hence, it is necessary to address security requirements such 

as confidentiality, integrity and freshness of provenance. 

Our goal is to design a provenance encoding and decoding 

mechanism that satisfies such security and performance 

needs. We propose a provenance encoding strategy whereby 

each node on the path of a data packet securely embeds 

provenance information within a Bloom filter (BF) that is 

transmitted along with the data. Upon receiving the packet, 

the BS extracts and verifies the provenance information. We 

also devise an extension of the provenance encoding scheme 

that allows the BS to detect if a packet drop attack was 

staged by a malicious node. 

 

2. Background and System Model 
 

In this section, we introduce the network, data and 

provenance models used. We also present the threat model 

and security requirements. Finally, we provide a brief primer 

on Bloom filters, their fundamental properties and 

operations. 

 

2.1 Network Model 
 

We consider a multichip wireless sensor network, consisting 

of a number of sensor nodes and a base station that collects 

data from the network. The network is modelled as a graph 

G (N, L) where N ¼ the set of nodes, and L is the set of 

links, containing an element li;j for each pair of nodes ni and 

nj that are communicating directly with each other. Sensor 

nodes are stationary after deployment, but routing paths may 

change over time, e.g., due to node failure. Each node 

reports its neighboring (i.e., one hop) node information to 

the BS after deployment. The BS assigns each node a unique 

identifier node ID and a symmetric cryptographic key Ki. In 

addition, a set of hash functions H ¼ fh1; h2; . . . ; hkg are 

broadcast to the nodes for use during provenance 

embedding. 
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2.2 Data Model 
 

We assume a multiple-round process of data collection. 

Each sensor generates data periodically, and individual 

values are aggregated towards the BS using any existing 

hierarchical (i.e., tree-based) dissemination scheme.  

 

A data path of D hops is represented as <nl; n1; n2; . . . ; nD 

>, where nl is a leaf node representing thedata source, and 

node ni is i hops away from nl. Each non-leaf node in the 

path aggregates the received data and provenance with its 

own locally-generated data and provenance. 

 
 

Each data packet contains 1) a unique packet sequence 

number, 2) a data value, and 3) provenance. The sequence 

number is attached to the packet by the data source, and all 

nodes use the same sequence number for a given round. The 

sequence number integrity is ensured through MACs, as 

discussed in Section 3.  

 

2.3 Provenance Model 
 

We consider node-level provenance, which encodes the 

nodes at each step of data processing. This representation 

has been used in previous research for trust management and 

for detecting selective forwarding attacks. Given packet d, 

its provenance is modelled as a directed acyclic graph GðV; 

EÞ where each vertex v 2 V is attributed to a specific node 

HOSTðvÞ ¼ n and represents the provenance record  

 

2.4 Threat Model and Security Objectives  

 

We assume that the BS is trusted, but any other arbitrary 

node may be malicious. An adversary can eavesdrop and  

 
 

Perform traffic analysis anywhere on the path. In addition, 

the adversary is able to deploy a few malicious nodes, as 

well as compromise a few legitimate nodes by capturing 

them and physically overwriting their memory. If an 

adversary compromises a node, it can extract all key 

materials, data, and codes stored on that node. The adversary 

may drop, inject or alter packets on the links that are under 

its control. We do not consider denial of service attacks such 

as the complete removal of provenance, since a data packet 

with no provenance records will make the data highly 

suspicious and hence generate an alarm at the BS.  

 

3. Secure Provenance Encoding 
 

We propose a distributed mechanism to encode provenance 

at the nodes and a centralized algorithm to decode it at the 

BS. The technical core of our proposal is the notion of 

inpacket Bloom filter. Each packet consists of a unique 

sequence number, data value, and an iBF which holds the 

provenance. We emphasize that our focus is on securely 

transmitting provenance to the BS. In an aggregation 

infrastructure, securing the data values is also an important 

aspect, but that has been already addressed in previous work 

(e.g.). Our secure provenance technique can be used in 

conjunction with such work to obtain a complete solution 

that provides security for data, provenance and data-

provenance binding, as shown in Section 3.3. 

3.1 Provenance Encoding 

For a data packet, provenance encoding refers to 

generating the vertices in the provenance graph and inserting 

them into the iBF. Each vertex originates at a node in the 

data Path and represents the provenance record of the host 

node. A vertex is uniquely identified by the vertex ID. The 

VID is generated per-packet based on the packet sequence 

number (Seq) and the secret key Ki of the host node. We use 

a block cipher function to produce this VID in a secure 

manner. Thus for a given data packet, the VID of a vertex 

representing the node ni is computed as  

 
Where E is a secure block cipher such as AES, etc. When a 

source node generates a packet, it also creates a BF (referred 

to as ibf0), initialized to 0. The source then generates a 

vertex according to Eq. (1), inserts the VID into ibf0 and 

transmits the BF as a part of the packet. Upon receiving the 

packet, each intermediate node nj performs data as well as 

provenance aggregation. If nj receives data from a single 

child nj_1, it aggregates the Partial provenance contained in 

the packet with its own provenance record. In this case, the 

iBF ibfj_1 belonging to the received packet represents a 

partial provenance, i.e., the provenance graph of the sub-

path from the source up to nj_1. On the other hand, if nj has 

more than one child, it generates an aggregated provenance 

from its own provenance record  

 

At first, nj computes a BF ibfj_1 by bitwise-ORing the iBFs 

from its children. Ibfj1 represents a partial 
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Aggregated provenance from all of the children. In either 

case, the ultimate aggregated provenance is generated by 

encoding the provenance record of nj into ibfj_1. 

  

3.2 Provenance Decoding 

 

When the BS receives a data packet, it executes the 

provenance verification process, which assumes that the BS 

knows what the data path should be, and checks the iBF to 

see whether the correct path has been followed. However, 

right after network deployment, as well as when the 

topology changes (e.g., due to node failure), the path of a 

packet sent 

by a source may not be known to the BS. In this case, a 

provenance collection process is necessary, which retrieves 

provenance from the received iBF and thus the BS learns the 

data path from a source node. Afterwards, upon receiving a 

packet, it is sufficient for the BS to verify its knowledge of 

provenance with that encoded in the packet. Below we 

discuss these processes in detail: 

 

Provenance verification. The BS conducts the verification 

process not only to verify its knowledge of provenance but 

also to check the integrity of the transmitted provenance. 

Algorithm 1 shows the steps to verify provenance for a 

given packet. We assume that the knowledge of the BS 

about this packet’s path is P0. At first, the BS initializes a 

Bloom filter BFc with all 0’s. The BF is then updated by 

generating the VID for each node in the path P0 and 

inserting this ID into the BF.  

 

 Provenance collection. As illustrated in Algorithm 2, the 

provenance collection scheme makes a list of potential 

vertices in the provenance graph through the ibf membership 

testingover all the nodes. For each node ni in the network, 

the BS creates the corresponding vertex (i.e., vi with VID 

vidi) using Eq. (1). The BS then performs the membership 

query of vidi within ibf. If the algorithm returns true, the 

vertex is very likely present in the provenance, i.e., the host 

node ni is in the data path. Such an inference might 

introduce errors because of false positives (a node not on the 

route is inferred to be on the route). However, as we show 

later in Section 6, the false positive probability obtained is 

very low. 

 

Once the BS finalizes the set of potential candidate nodes S 

¼ <n0l1; . . . ; n01; n02; . . . ; n>, it executes the provenance 

verification algorithm on this set. This step is required to 

distinguish between the cases of a legitimate route change 

and that of malicious activity. If the verification succeeds, 

we decide that there was a natural change in the data path 

and we have been able to determine the path correctly. 

Otherwise, an attack has occurred. 

A possible attack is the all-one attack where all bits in the 

provenance are set to 1, which implies the presence of all 

nodes in the provenance.  

First, the algorithm computes the AMs and bucket 

levels for individual sensors(2) Next, these manifests are 

unioned up the aggregation topology, only keeping elements 

at the maximum level max (L1, L2) with every PSR merge. 

To keep the sketch size under control, the sampling rate 

drops by a factor of 2 

 

When the sample size grows beyond 2pð1 þ _Þ, where _ < 1 

denotes an error parameter  
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The AM-Sample proof sketches protect against the 

adversarial inflation of the collected random sample in two 

ways. First, through the use of authentication manifests. For 

data tuples, the sketch prevents aggregators from forging 

new data, since all tuples are signed by a sensor. Second, 

AM signatures also prevent aggregators from migrating 

tuples across bucket levels (thereby biasing random 

sampling choices) since the level is determined. Through 

hashing by the signed tuple and sensor identifier.  

 

4. Detecting Packet Drop Attacks 
 

We extend the secure provenance encoding scheme to detect 

packet drop attacks and to identify malicious node (s). We 

assume the links on the path exhibit natural packet loss and 

several adversarial nodes may exist on the path. For 

simplicity, we consider only linear data flow paths (i.e., as 

illustrated in Fig. 1a). Also,  

 

We do not address the issue of recovery once a malicious 

node is detected. Existing techniques that are orthogonal to 

our detection scheme can be used, which may initiate 

multipath routing or build a dissemination tree around the 

compromised nodes. 

 

We augment provenance encoding to use a packet 

acknowledgement that requires the sensors to transmit more 

meta-data. For a data packet, the provenance record 

generated by a node will now consist of the node ID and an 

acknowledgement in the form of a sequence number of the 

lastly seen (processed/forwarded) packet belonging to that  

 
Data flow. If there is an intermediate packet drop, some 

nodes on the path do not receive the packet. Hence, during 

the next round of packet transmission, there will be a 

mismatch 

 

4.1 Data Packet Representation 

 

To enable packet loss detection, a packet header must 

securely propagate the packet sequence number generated 

by the data source in the previous round. In addition, as in 

the basic scheme, the packet must be marked with a unique 

sequence number to facilitate per-packet provenance 

generation and verification. Thus, in the extended 

provenance scheme, any jth data packet contains  

 1) The unique packet sequence number (seq½j_), 

 2) The previous packet sequence number (pSeq),  

3) A data value, and  

4) Provenance. 

 

4.2 Provenance Encoding 

 

Fig. 4 depicts the extended provenance encoding process. 

 

The provenance record of a node includes  

1) The node ID, 

2) An acknowledgement of the lastly observed packet in the 

flow. The acknowledgement can be generated in various 

ways to serve this purpose. In our solution, a node ni creates 

a vertex vi for every jth packet it generates/forwards. The 

vertex ID vidi is generated as 

 
(3) Where pSeqi is the knowledge of Ni about the sequence 

number of the previous packet in the flow. Ni updates the 

provenance of the packet by inserting vidi into the iBF.  

 

For the remainder of the discussion, we assume that a data 

packet d½j_ has been dropped by an intermediate node ni. 

Thus, the nodes nl; n1; . . . ; ni received d½j_ and updated 

their lastly seen packet sequences to seq½j_. On the 

contrary, nodes niþ1; . . . ; np as well as the BS did not 

observe d½j_, They have no information to update the 

preceding packet sequence, and they retain the same old 

identifier 

 
 

Upon receiving the next packet in the flow, NL; n1; . . . ; 

ni_1 include seq½j_ in the provenance metadata, whereas 

niþ1; . . . ; np use seq½j _ 1_ for this purpose when 

computing 
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Their VIDs. However, the malicious node Ni may either 1) 

use seq½j_, or ii) use seq½j _ 1_. Without any loss of 

generality, we assume that the malicious node encodes 

seq½j _ 1_ in 

 

5. Security Discussion 
 

In this section, we discuss the security properties of the 

proposed provenance scheme. Confidentiality. Claim 1. It is 

computationally infeasible for an attacker to gain 

information about the sensor nodes included in the 

provenance by observing data packets. Justification. The 

confidentiality of the scheme is achieved through two 

factors: the use of BF and the use of encryption keys. When 

one-way hash functions are used to insert elements in the 

BF, the identities of the inserted elements cannot be 

reconstructed from the BF representation. An attacker may 

collect a large sample of iBFs to infer some common 

patterns of the inserted elements.  

 

If the attacker has the knowledge of the complete element 

space (i.e., provenance records of all the nodes) and the 

hashing schemes, it can try a dictionary attack by testing for 

the presence of every element and obtain a probabilistic 

answer to what elements are carried in a given iBF. 

However, the elements inserted in the iBF, i.e., provenance 

records of the nodes, depend on a per-packet variable - 

sequence number, and also there is a secret key that is used 

in deriving the node VIDs that are inserted in the iBF.  

 

For legitimate nodes, these secrets are unknown to the 

attacker, as each key Ki is shared only between the node and 

the BS. To increase the level of security, we can use pseudo-

random functions (PRFs) seeded with the secret key and 

produce a different key instance at each epoch. Therefore, 

the shared key is not directly exposed, and each instance key 

is used only once. Thus, even if an adversary obtains 

plaintexts and corresponding cipher texts for one epoch, the 

confidentiality at other time epochs is preserved. To 

conclude, an attacker cannot gain any information through 

the observation of packets and the encoded provenance. 

 

6. Performance Analysis 
 

We present an analysis of the space and energy overhead of 

our scheme. We use the following benchmarks: 

1) We adapt the generic secure provenance framework 

SProve to sensor networks. In this lightweight version of 

the scheme, referred to as SSP, we simplify the 

provenance record at a node ni as Pi ¼ <n i; hashðDiÞ; C 

i >, where hashðDiÞ is a cryptographic hash of the 

updated data, and Ci contains an integrity checksum as 

 
2) We also consider a MAC-based provenance scheme, 

referred to as MP, where a node transmits the nodeID 

and a MAC computed on it as the prove- nance record. 

 

6.1 Space Complexity  

 

To implement SSP, we use SHA-1 (160 bit) for 

cryptographic hash operations and the TinyECC library to 

generate 160-bit digital signatures (ECDSA). The nodeID 

has length 2 bytes, thus the length of each provenance record 

is 42 bytes. For MP, we use Tiny Seclibrary to compute a 4-

byte CBC-MAC. Hence, a provenance record has 6 bytes in 

this case. 

  

Let m be the BF size, k the number of hash functions and D 

the maximum number of nodes in any path. The false 

positive probability is equal to that of getting 1 in all the k 

array positions computed by the hash functions while 

querying the membership of an element that was not inserted 

in the BF. The probability is  

 
Given D and a desired false positive probability Pfp, the 

required number of bits m can be computed by substituting 

the optimal value of k in Eq. (4) and then simplifying it to  

 
This means that to maintain a fixed false positive 

probability, the length of a BF should grow with the number 

of elements. For example, if we consider Pfp ¼ 0:02 and a 

14-hop path, the BF size m is computed as 114 bits and kopt 

¼ 6. Thus, a 120-bit (15 byte) BF is sufficient to encode 

provenance while maintaining low false positives. In 

practice, we bound Pfp by a small constant d> 0Þsuch that 

Pfp < d. To find the appropriate value of m we have  

 
 

7. Simulation Results 
 

We implemented and tested the proposed techniques using 

the TinyOS simulator have used the micas energy model and 

PowerTOSSIM z plug-in to TOSSIM to measure the energy 

consumption.  

 

We consider a network of 100 nodes and vary the network 

diameter from 2 to 14. All results are averaged over 100 

runs. First, we look at how effective the secure provenance 

encoding scheme (introduced in Section 3) is in detecting 

provenance forgery and path changes. Next, we investigate 

the accuracy of the proposed method for detecting packet 

loss (which was presented in Section 4). Finally, we measure 

the energy consumption overhead of securing provenance. 

 

7.1 Provenance Decoding Error  

 

Provenance decoding retrieves the provenance from the in- 

packet BF and consists of verification and collection phases. 

To quantify the accuracy and efficiency of our provenance 
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scheme, we measure the decoding error in both the above 

phases, i.e., verification and collection error. Algorithm 1 

shows that the verification fails when the provenance graph 

in the packet does not match the local knowledge at the BS.  

 

This may happen when there is a data flow path change or 

upon a BF modification attack. Prove- nance verification 

failure rate (VFR) measures the ratio of packets for which 

verification fails. Fig. 6a shows the VFR for paths of 2 to 12 

hops with various BF sizes. For each path length, the VFR is 

averaged over 1,000 distinct paths.  

 

The results show that the provenance verification process 

fails only for a very small fraction of packets. Thus, for most 

packets the lightweight verification process is sufficient to 

retrieve the provenance. The more costly provenance 

collection process is executed only for a very few packets 

when verification fails. As expected, VFR increases linearly 

with the increase of the path length.  

 

8. Related Work 
 

Pedigree captures provenance for network packets in the 

form of per packet tags that store a history of all nodes and 

processes that manipulated the packet. However, the scheme 

assumes a trusted environment which is not realistic in 

sensor networks. ExSPAN describes the history and 

derivations of network state that result from the execution of 

a distributed protocol. This system also does not address 

security concerns and is specific to some network use cases. 

SNP extends network provenance to adversarial 

environments. Since all of these systems are general purpose 

network provenance systems, they are not optimized for the 

resource constrained sensor networks.  

  

 
 

To grow very fast, transmission of a large amount of prove- 

nance information along with data will incur significant 

bandwidth overhead, hence low efficiency and scalability. 

Vijayakumar and Plale propose an application specific 

system for near-real time provenance collection in data 

streams. Nevertheless, this system traces the source of a 

stream long after the process has completed. Closer to our 

work, Chong et al. embed the provenance of data source 

within the data set.  
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9. Conclusion  
 

We addressed the problem of securely transmitting prove- 

nance for sensor networks, and proposed a light-weight 

provenance encoding and decoding scheme based on Bloom 

filters. The scheme ensures confidentiality, integrity and 

freshness of provenance. We extended the scheme to 

incorporate data-provenance binding, and to include packet 

sequence information that supports detection of packet loss 

attacks.  

 

Experimental and analytical evaluation results show that the 

proposed scheme is effective, light-weight and scalable. In 

future work, we plan to implement a real system prototype 

of our secure provenance scheme, and to improve the 

accuracy of packet loss detection, especially in the case of 

multiple consecutive malicious sensor nodes. 
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