
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Designing of Secure Privacy Preserving Algorithm

for Detecting Packet Loss and Provenance

Verification in Wireless Ad-Hoc Networks

K. Anil Kumar
1
, Sumithra R

2

1Assistant Professor, Computer Science Department, New Horizon College of Engineering

2M. Tech, Student, Computer Network Engineering, New Horizon College of Engineering

Abstract: Large-scale sensor networks are deployed in numerous application domains, and the data they collect are used in decision

making for critical infrastructures. Data are streamed from multiple sources through intermediate processing nodes that aggregate

information. A malicious adversary may introduce additional nodes in the network or compromise existing ones. In this paper, we

propose a novel lightweight scheme to securely transmit provenance for sensor data. The proposed technique relies on in-packet Bloom

filters to encode provenance. We introduce efficient mechanisms for provenance verification and reconstruction at the base station. In

addition, we extend the secure provenance scheme with functionality to detect packet drop attacks staged by malicious data forwarding

nodes. We evaluate the proposed technique both analytically and empirically, and the results prove the effectiveness and efficiency of the

lightweight secure provenance scheme in detecting packet forgery and loss attacks.

Keywords: Wireless Sensor Network, Secure Transmission, Sensor Network, lightweight, verification and packet forgery.

1. Introduction

SENSOR networks are used in numerous application

domains, such as cyberphysical infrastructure systems,

environmental monitoring, power grids, etc. Data are

produced at a large number of sensor node sources and

processed in-network at intermediate hops on their way to a

base station (BS) that performs decision-making. The

diversity of data sources creates the need to assure the

trustworthiness of data, such that only trustworthy

information is considered in the decision process. Data

provenance is an effective method to assess data

trustworthiness, since it summarizes the history of

ownership and the actions performed on the data.

Recent research highlighted the key contribution of

provenance in systems where the use of untrustworthy data

may lead to catastrophic failures (e. g., SCADA systems).

Although provenance modelling, collection, and querying

have been studied extensively for workflows and curated

databases provenance in sensor networks has not been

properly addressed. We investigate the problem of secure

and efficient provenance transmission and processing for

sensor networks, andprovenance to detect packet loss attacks

staged by malicious sensor nodes.

In a multi-hop sensor network, data provenance allows the

BS to trace the source and forwarding path of an individual

data packet. Provenance must be recorded for each packet,

but important challenges arise due to the tight storage,

energy and bandwidth constraints of sensor nodes.

Therefore, it is necessary to devise a light-weight

provenance solution with low overhead. Furthermore,

sensors often operate in an untrusted environment, where

they may be subject to attacks.

Hence, it is necessary to address security requirements such

as confidentiality, integrity and freshness of provenance.

Our goal is to design a provenance encoding and decoding

mechanism that satisfies such security and performance

needs. We propose a provenance encoding strategy whereby

each node on the path of a data packet securely embeds

provenance information within a Bloom filter (BF) that is

transmitted along with the data. Upon receiving the packet,

the BS extracts and verifies the provenance information. We

also devise an extension of the provenance encoding scheme

that allows the BS to detect if a packet drop attack was

staged by a malicious node.

2. Background and System Model

In this section, we introduce the network, data and

provenance models used. We also present the threat model

and security requirements. Finally, we provide a brief primer

on Bloom filters, their fundamental properties and

operations.

2.1 Network Model

We consider a multichip wireless sensor network, consisting

of a number of sensor nodes and a base station that collects

data from the network. The network is modelled as a graph

G (N, L) where N ¼ the set of nodes, and L is the set of

links, containing an element li;j for each pair of nodes ni and

nj that are communicating directly with each other. Sensor

nodes are stationary after deployment, but routing paths may

change over time, e.g., due to node failure. Each node

reports its neighboring (i.e., one hop) node information to

the BS after deployment. The BS assigns each node a unique

identifier node ID and a symmetric cryptographic key Ki. In

addition, a set of hash functions H ¼ fh1; h2; . . . ; hkg are

broadcast to the nodes for use during provenance

embedding.

Paper ID: NOV163548 1132

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2.2 Data Model

We assume a multiple-round process of data collection.

Each sensor generates data periodically, and individual

values are aggregated towards the BS using any existing

hierarchical (i.e., tree-based) dissemination scheme.

A data path of D hops is represented as <nl; n1; n2; . . . ; nD

>, where nl is a leaf node representing thedata source, and

node ni is i hops away from nl. Each non-leaf node in the

path aggregates the received data and provenance with its

own locally-generated data and provenance.

Each data packet contains 1) a unique packet sequence

number, 2) a data value, and 3) provenance. The sequence

number is attached to the packet by the data source, and all

nodes use the same sequence number for a given round. The

sequence number integrity is ensured through MACs, as

discussed in Section 3.

2.3 Provenance Model

We consider node-level provenance, which encodes the

nodes at each step of data processing. This representation

has been used in previous research for trust management and

for detecting selective forwarding attacks. Given packet d,

its provenance is modelled as a directed acyclic graph GðV;

EÞ where each vertex v 2 V is attributed to a specific node

HOSTðvÞ ¼ n and represents the provenance record

2.4 Threat Model and Security Objectives

We assume that the BS is trusted, but any other arbitrary

node may be malicious. An adversary can eavesdrop and

Perform traffic analysis anywhere on the path. In addition,

the adversary is able to deploy a few malicious nodes, as

well as compromise a few legitimate nodes by capturing

them and physically overwriting their memory. If an

adversary compromises a node, it can extract all key

materials, data, and codes stored on that node. The adversary

may drop, inject or alter packets on the links that are under

its control. We do not consider denial of service attacks such

as the complete removal of provenance, since a data packet

with no provenance records will make the data highly

suspicious and hence generate an alarm at the BS.

3. Secure Provenance Encoding

We propose a distributed mechanism to encode provenance

at the nodes and a centralized algorithm to decode it at the

BS. The technical core of our proposal is the notion of

inpacket Bloom filter. Each packet consists of a unique

sequence number, data value, and an iBF which holds the

provenance. We emphasize that our focus is on securely

transmitting provenance to the BS. In an aggregation

infrastructure, securing the data values is also an important

aspect, but that has been already addressed in previous work

(e.g.). Our secure provenance technique can be used in

conjunction with such work to obtain a complete solution

that provides security for data, provenance and data-

provenance binding, as shown in Section 3.3.

3.1 Provenance Encoding

For a data packet, provenance encoding refers to

generating the vertices in the provenance graph and inserting

them into the iBF. Each vertex originates at a node in the

data Path and represents the provenance record of the host

node. A vertex is uniquely identified by the vertex ID. The

VID is generated per-packet based on the packet sequence

number (Seq) and the secret key Ki of the host node. We use

a block cipher function to produce this VID in a secure

manner. Thus for a given data packet, the VID of a vertex

representing the node ni is computed as

Where E is a secure block cipher such as AES, etc. When a

source node generates a packet, it also creates a BF (referred

to as ibf0), initialized to 0. The source then generates a

vertex according to Eq. (1), inserts the VID into ibf0 and

transmits the BF as a part of the packet. Upon receiving the

packet, each intermediate node nj performs data as well as

provenance aggregation. If nj receives data from a single

child nj_1, it aggregates the Partial provenance contained in

the packet with its own provenance record. In this case, the

iBF ibfj_1 belonging to the received packet represents a

partial provenance, i.e., the provenance graph of the sub-

path from the source up to nj_1. On the other hand, if nj has

more than one child, it generates an aggregated provenance

from its own provenance record

At first, nj computes a BF ibfj_1 by bitwise-ORing the iBFs

from its children. Ibfj1 represents a partial

Paper ID: NOV163548 1133

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Aggregated provenance from all of the children. In either

case, the ultimate aggregated provenance is generated by

encoding the provenance record of nj into ibfj_1.

3.2 Provenance Decoding

When the BS receives a data packet, it executes the

provenance verification process, which assumes that the BS

knows what the data path should be, and checks the iBF to

see whether the correct path has been followed. However,

right after network deployment, as well as when the

topology changes (e.g., due to node failure), the path of a

packet sent

by a source may not be known to the BS. In this case, a

provenance collection process is necessary, which retrieves

provenance from the received iBF and thus the BS learns the

data path from a source node. Afterwards, upon receiving a

packet, it is sufficient for the BS to verify its knowledge of

provenance with that encoded in the packet. Below we

discuss these processes in detail:

Provenance verification. The BS conducts the verification

process not only to verify its knowledge of provenance but

also to check the integrity of the transmitted provenance.

Algorithm 1 shows the steps to verify provenance for a

given packet. We assume that the knowledge of the BS

about this packet’s path is P0. At first, the BS initializes a

Bloom filter BFc with all 0’s. The BF is then updated by

generating the VID for each node in the path P0 and

inserting this ID into the BF.

 Provenance collection. As illustrated in Algorithm 2, the

provenance collection scheme makes a list of potential

vertices in the provenance graph through the ibf membership

testingover all the nodes. For each node ni in the network,

the BS creates the corresponding vertex (i.e., vi with VID

vidi) using Eq. (1). The BS then performs the membership

query of vidi within ibf. If the algorithm returns true, the

vertex is very likely present in the provenance, i.e., the host

node ni is in the data path. Such an inference might

introduce errors because of false positives (a node not on the

route is inferred to be on the route). However, as we show

later in Section 6, the false positive probability obtained is

very low.

Once the BS finalizes the set of potential candidate nodes S

¼ <n0l1; . . . ; n01; n02; . . . ; n>, it executes the provenance

verification algorithm on this set. This step is required to

distinguish between the cases of a legitimate route change

and that of malicious activity. If the verification succeeds,

we decide that there was a natural change in the data path

and we have been able to determine the path correctly.

Otherwise, an attack has occurred.

A possible attack is the all-one attack where all bits in the

provenance are set to 1, which implies the presence of all

nodes in the provenance.

First, the algorithm computes the AMs and bucket

levels for individual sensors(2) Next, these manifests are

unioned up the aggregation topology, only keeping elements

at the maximum level max (L1, L2) with every PSR merge.

To keep the sketch size under control, the sampling rate

drops by a factor of 2

When the sample size grows beyond 2pð1 þ _Þ, where _ < 1

denotes an error parameter

Paper ID: NOV163548 1134

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The AM-Sample proof sketches protect against the

adversarial inflation of the collected random sample in two

ways. First, through the use of authentication manifests. For

data tuples, the sketch prevents aggregators from forging

new data, since all tuples are signed by a sensor. Second,

AM signatures also prevent aggregators from migrating

tuples across bucket levels (thereby biasing random

sampling choices) since the level is determined. Through

hashing by the signed tuple and sensor identifier.

4. Detecting Packet Drop Attacks

We extend the secure provenance encoding scheme to detect

packet drop attacks and to identify malicious node (s). We

assume the links on the path exhibit natural packet loss and

several adversarial nodes may exist on the path. For

simplicity, we consider only linear data flow paths (i.e., as

illustrated in Fig. 1a). Also,

We do not address the issue of recovery once a malicious

node is detected. Existing techniques that are orthogonal to

our detection scheme can be used, which may initiate

multipath routing or build a dissemination tree around the

compromised nodes.

We augment provenance encoding to use a packet

acknowledgement that requires the sensors to transmit more

meta-data. For a data packet, the provenance record

generated by a node will now consist of the node ID and an

acknowledgement in the form of a sequence number of the

lastly seen (processed/forwarded) packet belonging to that

Data flow. If there is an intermediate packet drop, some

nodes on the path do not receive the packet. Hence, during

the next round of packet transmission, there will be a

mismatch

4.1 Data Packet Representation

To enable packet loss detection, a packet header must

securely propagate the packet sequence number generated

by the data source in the previous round. In addition, as in

the basic scheme, the packet must be marked with a unique

sequence number to facilitate per-packet provenance

generation and verification. Thus, in the extended

provenance scheme, any jth data packet contains

 1) The unique packet sequence number (seq½j_),

 2) The previous packet sequence number (pSeq),

3) A data value, and

4) Provenance.

4.2 Provenance Encoding

Fig. 4 depicts the extended provenance encoding process.

The provenance record of a node includes

1) The node ID,

2) An acknowledgement of the lastly observed packet in the

flow. The acknowledgement can be generated in various

ways to serve this purpose. In our solution, a node ni creates

a vertex vi for every jth packet it generates/forwards. The

vertex ID vidi is generated as

(3) Where pSeqi is the knowledge of Ni about the sequence

number of the previous packet in the flow. Ni updates the

provenance of the packet by inserting vidi into the iBF.

For the remainder of the discussion, we assume that a data

packet d½j_ has been dropped by an intermediate node ni.

Thus, the nodes nl; n1; . . . ; ni received d½j_ and updated

their lastly seen packet sequences to seq½j_. On the

contrary, nodes niþ1; . . . ; np as well as the BS did not

observe d½j_, They have no information to update the

preceding packet sequence, and they retain the same old

identifier

Upon receiving the next packet in the flow, NL; n1; . . . ;

ni_1 include seq½j_ in the provenance metadata, whereas

niþ1; . . . ; np use seq½j _ 1_ for this purpose when

computing

Paper ID: NOV163548 1135

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Their VIDs. However, the malicious node Ni may either 1)

use seq½j_, or ii) use seq½j _ 1_. Without any loss of

generality, we assume that the malicious node encodes

seq½j _ 1_ in

5. Security Discussion

In this section, we discuss the security properties of the

proposed provenance scheme. Confidentiality. Claim 1. It is

computationally infeasible for an attacker to gain

information about the sensor nodes included in the

provenance by observing data packets. Justification. The

confidentiality of the scheme is achieved through two

factors: the use of BF and the use of encryption keys. When

one-way hash functions are used to insert elements in the

BF, the identities of the inserted elements cannot be

reconstructed from the BF representation. An attacker may

collect a large sample of iBFs to infer some common

patterns of the inserted elements.

If the attacker has the knowledge of the complete element

space (i.e., provenance records of all the nodes) and the

hashing schemes, it can try a dictionary attack by testing for

the presence of every element and obtain a probabilistic

answer to what elements are carried in a given iBF.

However, the elements inserted in the iBF, i.e., provenance

records of the nodes, depend on a per-packet variable -

sequence number, and also there is a secret key that is used

in deriving the node VIDs that are inserted in the iBF.

For legitimate nodes, these secrets are unknown to the

attacker, as each key Ki is shared only between the node and

the BS. To increase the level of security, we can use pseudo-

random functions (PRFs) seeded with the secret key and

produce a different key instance at each epoch. Therefore,

the shared key is not directly exposed, and each instance key

is used only once. Thus, even if an adversary obtains

plaintexts and corresponding cipher texts for one epoch, the

confidentiality at other time epochs is preserved. To

conclude, an attacker cannot gain any information through

the observation of packets and the encoded provenance.

6. Performance Analysis

We present an analysis of the space and energy overhead of

our scheme. We use the following benchmarks:

1) We adapt the generic secure provenance framework

SProve to sensor networks. In this lightweight version of

the scheme, referred to as SSP, we simplify the

provenance record at a node ni as Pi ¼ <n i; hashðDiÞ; C

i >, where hashðDiÞ is a cryptographic hash of the

updated data, and Ci contains an integrity checksum as

2) We also consider a MAC-based provenance scheme,

referred to as MP, where a node transmits the nodeID

and a MAC computed on it as the prove- nance record.

6.1 Space Complexity

To implement SSP, we use SHA-1 (160 bit) for

cryptographic hash operations and the TinyECC library to

generate 160-bit digital signatures (ECDSA). The nodeID

has length 2 bytes, thus the length of each provenance record

is 42 bytes. For MP, we use Tiny Seclibrary to compute a 4-

byte CBC-MAC. Hence, a provenance record has 6 bytes in

this case.

Let m be the BF size, k the number of hash functions and D

the maximum number of nodes in any path. The false

positive probability is equal to that of getting 1 in all the k

array positions computed by the hash functions while

querying the membership of an element that was not inserted

in the BF. The probability is

Given D and a desired false positive probability Pfp, the

required number of bits m can be computed by substituting

the optimal value of k in Eq. (4) and then simplifying it to

This means that to maintain a fixed false positive

probability, the length of a BF should grow with the number

of elements. For example, if we consider Pfp ¼ 0:02 and a

14-hop path, the BF size m is computed as 114 bits and kopt

¼ 6. Thus, a 120-bit (15 byte) BF is sufficient to encode

provenance while maintaining low false positives. In

practice, we bound Pfp by a small constant d> 0Þsuch that

Pfp < d. To find the appropriate value of m we have

7. Simulation Results

We implemented and tested the proposed techniques using

the TinyOS simulator have used the micas energy model and

PowerTOSSIM z plug-in to TOSSIM to measure the energy

consumption.

We consider a network of 100 nodes and vary the network

diameter from 2 to 14. All results are averaged over 100

runs. First, we look at how effective the secure provenance

encoding scheme (introduced in Section 3) is in detecting

provenance forgery and path changes. Next, we investigate

the accuracy of the proposed method for detecting packet

loss (which was presented in Section 4). Finally, we measure

the energy consumption overhead of securing provenance.

7.1 Provenance Decoding Error

Provenance decoding retrieves the provenance from the in-

packet BF and consists of verification and collection phases.

To quantify the accuracy and efficiency of our provenance

Paper ID: NOV163548 1136

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

scheme, we measure the decoding error in both the above

phases, i.e., verification and collection error. Algorithm 1

shows that the verification fails when the provenance graph

in the packet does not match the local knowledge at the BS.

This may happen when there is a data flow path change or

upon a BF modification attack. Prove- nance verification

failure rate (VFR) measures the ratio of packets for which

verification fails. Fig. 6a shows the VFR for paths of 2 to 12

hops with various BF sizes. For each path length, the VFR is

averaged over 1,000 distinct paths.

The results show that the provenance verification process

fails only for a very small fraction of packets. Thus, for most

packets the lightweight verification process is sufficient to

retrieve the provenance. The more costly provenance

collection process is executed only for a very few packets

when verification fails. As expected, VFR increases linearly

with the increase of the path length.

8. Related Work

Pedigree captures provenance for network packets in the

form of per packet tags that store a history of all nodes and

processes that manipulated the packet. However, the scheme

assumes a trusted environment which is not realistic in

sensor networks. ExSPAN describes the history and

derivations of network state that result from the execution of

a distributed protocol. This system also does not address

security concerns and is specific to some network use cases.

SNP extends network provenance to adversarial

environments. Since all of these systems are general purpose

network provenance systems, they are not optimized for the

resource constrained sensor networks.

To grow very fast, transmission of a large amount of prove-

nance information along with data will incur significant

bandwidth overhead, hence low efficiency and scalability.

Vijayakumar and Plale propose an application specific

system for near-real time provenance collection in data

streams. Nevertheless, this system traces the source of a

stream long after the process has completed. Closer to our

work, Chong et al. embed the provenance of data source

within the data set.

Paper ID: NOV163548 1137

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

9. Conclusion

We addressed the problem of securely transmitting prove-

nance for sensor networks, and proposed a light-weight

provenance encoding and decoding scheme based on Bloom

filters. The scheme ensures confidentiality, integrity and

freshness of provenance. We extended the scheme to

incorporate data-provenance binding, and to include packet

sequence information that supports detection of packet loss

attacks.

Experimental and analytical evaluation results show that the

proposed scheme is effective, light-weight and scalable. In

future work, we plan to implement a real system prototype

of our secure provenance scheme, and to improve the

accuracy of packet loss detection, especially in the case of

multiple consecutive malicious sensor nodes.

References

[1] H. Lim, Y. Moon, and E. Bettino, “Provenance-Based

Trustworthi- ness Assessment in Sensor Networks,”

Proc. Seventh Int’l Workshop Data Management for

Sensor Networks, pp. 2-7, 2010.

[2] I. Foster, J. Vockler, M. Wilde, and Y. Zhao, “Chimera:

A Virtual Data System for Representing, Querying, and

Automating Data Derivation,” Proc. Conf. Scientific

and Statistical Database Management, pp. 37-46, 2002.

[3] K. Muniswamy-Reddy, D. Holland, U. Braun, and M.

Seltzer, “Provenance-Aware Storage systems,” Proc.

USENIX Ann. Technical Conf., pp. 4-4, 2006.

[4] Y. Simmhan, B. Plale, and D. Gannon, “A Survey of

Data Prove- nanceinE-

Science,”ACMSIGMODRecord,vol.34, pp.31-36,2005.

[5] R. Hasan, R. Sion, and M. Winslett, “The Case of the

Fake Picasso: Preventing History Forgery with Secure

Provenance,” Proc. Seventh Conf. File and Storage

Technologies (FAST), pp. 1-14, 2009.

[6] S. Madden, J. Franklin, J. Hellerstein, and W. Hong,

“TAG: A Tiny Aggregation Service for Ad-Hoc Sensor

Networks,” ACM SIGOPS Operating Systems Rev.,

vol. 36, no. SI, pp. 131-146, Dec. 2002.

[7] K. Dasgupta, K. Kalpakis, and P. Namjoshi, “An

Efficient Clustering Based Heuristic for Data Gathering

and Aggregation in Sensor Networks,” Proc. Wireless

Comm. and Networking Conf., pp. 1948- 1953, 2003.

[8] S. Sultana, E. Bertino, and M. Shehab, “A Provenance

Based Mechanism to Identify Malicious Packet

Dropping Adversaries in Sensor Networks,” Proc. Int’l

Conf. Distributed Computing Systems (ICDCS)

Workshops, pp. 332-338, 2011.

[9] L. Fan, P. Cao, J. Almeida, and A.Z. Broder, “Summary

Cache: A Scalable Wide-Area Web Cache Sharing

Protocol,” IEEE/ACM Trans. Networking, vol. 8, no. 3,

pp. 281-293, June 2000.

[10] A.KirschandM.Mitzenmacher,“Distance-

SensitiveBloomFilters,”

Proc.WorkshopAlgorithmEng.andExperiments,pp.41-

50,2006.

[11] C. Rothenberg, C. Macapuna, M. Magalhaes, F. Verdi,

and A. Wies- maier, “In-Packet Bloom Filters: Design

NetworkingApplications,”ComputerNetworks,vol.55,no

.6,pp.1364

[12] M. Garofalakis, J. Hellerstein, and P. Maniatis, “Proof

Sketches: Verifiable In-Netwok Aggregation,” Proc.

IEEE 23rd Int’l Conf. Data Eng. (ICDE), pp. 84-89,

2007.

[13] T. Wolf, “Data Path Credentials for High-Performance

Capabilities-Based Networks,” Proc. ACM/IEEE Symp.

Architectures for Net- working and Comm. Systems,

pp. 129-130,

Paper ID: NOV163548 1138

