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1. Introduction 
 

In recent year’s fractional calculus have been given 

considerable popularity due mainly to its various 

applications in fluid mechanics, visco-elasticity, biology, 

electrical network, optics and signal processing and so on. 

Except in a limited number of these problems, we have 

difficulty to find their exact analytic solutions. An effective 

an easy to use method for solving such equations is needed. 

Various powerful methods such as differential transform 

method [1-3], Adomian decomposition method [4-8], 

Variational iteration method [9-11], homotopy perturbation 

method [12-16], homotopy perturbation transforms method 

[17-18] etc., have been proposed to obtain the exact and 

approximate analytic solutions of fractional differential 

equations. Another analytical approach that can be applied 

to solve many types of nonlinear fractional differential 

equation is Homotopy analysis method (HAM)[19-27). A 

systematic and clear exposition on HAM is given in [23-24]. 

 

The objective of present paper is to apply the homotopy 

analysis Sumudu transform method, which is an elegant 

combination of Sumudu transform method and homotopy 

analysis method, to find the solution of time-fractional 

biological population model [28], a representative biological 

population diffusion equation is 
2 2 ( )t xx yyu u u f u    , 

where u(x, y, t) denotes the population density and f(u) 

represents the population supply due to birth and death. In 

this paper, we propose a generalized time-fractional 

nonlinear biological population diffusion equation as 

follows: 

 

2 2 2 2

2 2
( )

u u u
f u

t x y





  
  

  
 , 0, ,t x y R     (1.1) 

with given initial conditions ( , ,0)u x y , and according to 

Malthusian law and Verhulst law, we consider a more 

general form of ( ) (1 )a bf x hu ru   , where h, a, b ,r 

are real numbers. When choose special values, they change 

to Malthusian law and Verhulst law. 

 

The derivatives in Eq. (1.1) are the Caputo derivative. Linear 

and Nonlinear population systems were solved by using 

Variational iteration method [28], Adomian Decomposition 

method [29], and Homotopy perturbation method [30]. 

However, one of the disadvantages ADM is the inherent 

difficulty in calculating the Adomian polynomial. This paper 

considers the effectiveness of the homotopy analysis 

Sumudu transform method (HASTM) in solving fractional 

biological population system. 

 

2. Basic Definitions 
 

For the concept of fractional derivatives, we will adopt 

Caputo’s definition which is a modification of the 

Riemann-Liouville definition and has the advantage of 

dealing properly with initial value problems in which the 

initial conditions are given in terms of the field variable 

and their integral order which is the case in most physical 

processes. Some basic definitions and properties of 

fractional calculus theory which we have used in this paper 

are given in this section. 

 

Definition 2.1 A real function f(x), x > 0 is said to be in 

the space C,   R, if there exist a real number p (>) 

such that f(x) = x
p
f1(x), where f1(x)  C [0,), and it is 

said to be in the space 

{0}. N mCf iff C (m)m 
  

Definition 2.2.The Riemann-Liouville fractional integral 

operator of order   0 of a function f  C,    1 is 

defined as 

0 x  0   ,dt   f(t)t)x
1

  f(x) J 1
x

0




 


 (2.1) 

 f(x)  f(x) J0                                     (2.2) 

Properties of the operator 
J can be found in [31], we 

mention only the following: 

(i) f(x)J  f(x)JJ    

(ii) f(x)JJ  f(x)JJ    
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(iii) 





 x

1

1
xJ  

For 


1 and 01C f  

Definition 2.3.The fractional derivative of f(x) in the 

Caputo sense is defined as [31] 
x

0

m m m 1 (m)

*

1
D  f(x)  J D  f(x)  (x t) f (t) dt

(m )
t

  



    
    

(2.3) 

For 


m

1
C f  0,    x  N,  m  m,1m  

Also, we need here three basic properties 

(i) D  J  f(x)  f(x)t

    

(ii) 
km 1

(k)

k 0

x
J  D f(x)  f(x)  f (0 ) , x  0

k !
t

 






  
 

(iii) 
( 1)

D  x x ; x  0, 0.
( 1)

t

   


 

 
  
  

 

For 


mC f and 1 N, m m,1m  

Lemma 2.1.If N, m m,1m  then the 

Laplace transform of the fractional derivative D  f(t)t


is 

m 1
(k) k 1

k 0

L (D  f(t))  s  f (s) f (0 ) s , t  0t

  


  



  

 (2.4) 

Where (s)f is the Laplace transform of f (t). 

 

3. Sumudu Transform 
 

In early 90’s Watugala [32], introduced a new integral 

transform, named the Sumudu transform and applied it to the 

solution of ordinary differential equation in control 

engineering problems. The Sumudu transform is defined 

over the set of functions 
| |/

1 2{ ( )| , , 0,| ( ) , ( ) [0, )}jt jA f t M f t Me if t i


        

 (3.1) 

by the following formula 

1 2
0

( ) [ ( )] ( ) , ( , )tG u S F t F ut e dt u  


     

(3.2) 

The existence and uniqueness of this transformation is 

discussed in [33]. For further details and properties of this 

transformation, see [34-36]. 

 

4. Basic Idea of Homotopy Analysis Method 
 

To give the basic idea of Homotopy Analysis Method [23], 

let us consider a nonlinear differential equation in the form: 

 [ ( , )] 0 0u x t t            (4.1) 

Where  is a fractional differential operator and u(x,t) is 

unknown function of the independent variable x and t. For 

the simplicity we ignore all boundary or initial conditions, 

which can be treated in the similar way. 

In the frame of HAM [22-23], we can construct the 

following zeroth-order deformation equation: 

0(1 ) [ ( , ; ) ( , )] ( ) [ ( , ; )]q L x t q u x t q H t x t q     
 

(4.2)
 

Where [0,1]q  is an embedding parameter, 0h  is an 

auxiliary parameter, ( ) 0H t   is an auxiliary function, L is 

an auxiliary linear operator,   is fractional differential 

operator, ( , ; )x t q  is an unknown function, and 0 ( )u t is 

an initial guess of u(x,t), which satisfies the initial 

conditions. It should be emphasized that one has great 

freedom to choose the initial guess 0 ( )u t , the auxiliary 

linear operator L, the auxiliary parameter   and the 

auxiliary function H (t). Obviously, when the embedding 

parameter q=0 and q=1, it holds 

 0( , ;0) ( , )x t u x t   , ( , ;1) ( , )x t u x t    

respectively. Thus as q increases from 0 to 1, the solution 

( , ; )x t q  varies from the initial guess 0 ( , )u x t  to ( , )u x t  

. Expending ( , ; )x t q  in Taylor series with respect to q, we 

have 

 0

1

( , ; ) ( , ) ( , ) m

m

m

x t q u x t u x t q




              
(4.3)

 

where 

 0

1 ( , ; )
( , ) |

!

m

m qm

x t q
u x t

m q








                 (4.4) 

Assume that the auxiliary parameter, the auxiliary function 

H(t), the initial approximation and the auxiliary linear 

operator L are properly chosen, the series (4.3 ) converges at 

q=1,then we have 

 0

1

( , ) ( , ) ( , )m

m

u x t u x t u x t




                  (4.5) 

which must be one of the solution of the original nonlinear 

equations. According to the definition (4.5), the governing 

equation can be deduced from the zero-order deformation 

(4.2). Define the vectors 

 0 1 2{ ( , ), ( , ), ( , ),..., ( , )}m nu u x t u x t u x t u x t


    (4.6) 

Differentiating equation (4.2), m-times with respect to 

embedding parameter q, then setting q=0 and dividing them 

by m! , we get the so-called mth-order deformation equation 

 11[ ( , ) ( , )] ( ) ( )mm m m mL u x t u x t H t u   



 (4.7) 

Where 

 

1

1 01

1 [ ( , ; )]
( ) |

( 1)!

m

mm qm

x t q
u

m q



 


 

 

 
 (4.8) 

and 

 

0, 1

1, 1
m

m

m



 


                                (4.9) 

The so-called mth-order deformation equation (4.7) is linear 

which can be easily solved using Mathematica package. 
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5. Homotopy Analysis Sumudu Transform 

Method 
 

To illustrate the basic idea of this method, let us consider a 

general fractional nonlinear non homogeneous differential 

equation  

( , ) ( , ) ( , ) ( , )tD u x t Ru x t Nu x t g x t     , 0 1   

(5.1) 

Subject to the initial conditions 

( ,0) ( )u x f x                            (5.2) 

Where g(x, t) is the source term, N represent the general 

nonlinear differential operator and R is the linear differential 

operator, 
tD

 is the Caputo fractional derivative of the 

function u(x , t) . 

Now taking the Sumudu transform of both sides of (5.1), we 

get 

[ ( , , )] [ ( , )] [ ( , )] [ ( )]tS D u x y t S R u t S Nu x t S g x     

(5.3) 

 

 

Using the differentiation properties of the Sumudu transform and above initial condition, we have 
( )1

0

[ ] (0)
[ ( , )] [ ( , )] [ ( )]

kn

n k
k

S u u
S Ru x t S Nu x t S g x

u u






     (5.4)
 

( )1

0

(0)
[ ( , )] [ [ ( , )] [ ( , )] [ ( )]]

kn

n k
k

u
S u x t u u S Ru x t S Nu x t S g x

u

 





     (5.5) 

We define the nonlinear operator 
( )1

0

(0)
[ ( , ; )] [ ( , ; )] [ [ ( , ; )] [ ( , ; )] [ ( )]]

kn

n k
k

N x t q S x t q u u S R x t q S N x t q S g x
u

 
   






      (5.6) 

Where [0,1]q  and ( , ; )x t q  is a real function of x, t, q.  

The so-called zero-order deformation equation of the Eq. (5.6) has the form 

0(1 ) [ ( , ; ) ( , )] ( , ) [ ( , ; )] ( ) [ ( , ; ) ( , ; ) ( , )]q S x t q u x t q H x t S x t q f x u S R x t q N x t q g x t           
 (5.7) 

 

Where S is the Sumudu transform, [0,1]q  is the 

embedding parameter, H(x, t) denotes a nonzero auxiliary 

function, 0  is an auxiliary parameter, 0 ( , )u x t  is an 

initial guess of ( , )u x t and ( , ; )x t q  is an unknown 

function. Obviously, when the parameter q=0 and q=1, it 

holds 

0( , ;0) ( , ) , ( , ;1) ( , )x t u x t x t u x t    (5.8) 

respectively. Thus as q increases from 0 to 1, the solution 

( , ; )x t q  varies from the initial guess 0 ( , )u x t  to the 

solution ( , )u x t  . Expanding ( , ; )x t q  in Taylor series 

with respect to q, we have 

0

1

( , ; ) ( , ) ( , ) m

m

x t q u x t u x t q




   (5.9) 

Where 

0

1 ( , ; )
( , ) |

!

m

m qm

x t q
u x t

m q








 (5.10) 

If the auxiliary linear operator, the initial guess, the auxiliary 

parameter   , and the auxiliary function are properly 

chosen, the series (5.9) converges at q=1, then we has 

0

1

( , ) ( , ) ( , )m

m

u x t u x t u x t




   (5.11) 

Which must be one of the solution of the original nonlinear 

equations. According to the definition (5.11), the governing 

equation can be deduced from the zero- order deformation 

(5.7). Define the vectors 

 0 1 2( , ) ( , ), ( , ), ( , ),..., ( , )mu x t u x t u x t u x t u x t


 (5.12) 

Differentiating the zero- order deformation equation (5.7) m- 

times with respect to q and then dividing by !m  and finally 

setting q=0 we get the following m
th

- order deformation 

equation: 

11[ ( , ) ( , )] ( , ) ( ( , ))mm m m mS u x t u x t H x t u x t   


  

(5.13) 

Applying the inverse Sumudu transform, we have 
1

11( , ) ( , )] [ ( , ) ( ( , ))]mm m m mu x t u x t S H x t u x t 
  




 (5.14) 

where 
1

1 01

1 [ ( , ; )]
( ) |

( 1)!

m

mm qm

N x t q
u

m q



 


 

 


 (5.15) 

and 

0, 1

1, 1
m

m

m



 


                               (5.16)  

 

6. Numerical Results 
 

In this section we use the Homotopy Analysis Sumudu 

transform method to solve nonlinear fractional biological 

population equations: 

 

Example1. Consider the Eq.(1.1) with a=1, r=0, 

corresponding to Malthusian law, we have the following 

biological population equation 
2 2 2 2

2 2

u u u
hu

t x y





  
  

  
                       (6.1) 

Subject to the initial condition 
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 0u xy                                    (6.2) 

Taking the Sumudu transform of both sides of Eq. (6.1), and 

using (6.2) 

2 2 2 2

2 2
[ ] [ ] 0

u u
S u xy u S hu

x y

   
     

  
   (6.3) 

 

Then  

 
2 21 1

1 1 1 1 12 2
0 0

( ) [ ] (1 )
m m

m m m j m j j m j m

j j

u S u xy u S u u S u u S hu
x y


 

      

 

     
          

      
 

         

(6.4) 

The m
th

- order deformation is given by 

11[ ( , ) ( , )] ( )mm m m mS u x t u x t u   



                                                       

 (6.5) 

Applying the inverse Sumudu transform, we have 

1
11( , ) ( , ) [ ( )]mm m m mu x t u x t S u 
  


                                                       (6.6) 

Solving eq. (6.6) for m=1, 2, 3, … we have 

1( , , )
(1 )

t
u x y t h xy




 

 
   

2
2 2

2 ( , , ) (1 )
(1 ) (1 2 )

t t
u x y t h xy h xy

 

 
   

   
     

2 3
2 2 2 3 3

3 ( , , ) (1 ) 2 (1 )
(1 ) (1 2 ) (1 3 )

t t t
u x y t h xy h xy h xy

  

  
     

     
       

2
3 2 2 2

4

3 4
3 3 4 4

( , , ) (1 ) 3 (1 )
(1 ) (1 2 )

3 (1 )
(1 3 ) (1 4 )

t t
u x y t h xy h xy

t t
h xy h xy

 

 

 

 

    
   

  
   

   

  

  

 
 

. 

 substituting u0, u1, u2, u3, u4, …, into Eq. (5.11) gives the solution in series form by:

2 3

2 3 4
2 2 2 3 3 4 4

( , , ) [1 {1 (1 ) (1 ) (1 ) ...}
(1 )

{1 2(1 ) 3(1 ) ...} {1 3(1 ) ...} {1 ...} ...]
(1 2 ) (1 3 ) (1 4 )

t
u x y t xy h

t t t
h h h



  



  

         
 

           
     

   

     

 (6.7) 

Setting 1   , 

 

2 3 4
2 3 4( , , ) [1 ...]

(1 ) (1 2 ) (1 3 ) (1 4 )

t t t t
u x y t xy h h h h

   

   
     

       
                  (6.8) 

as 1   , we have 
2 2 3 3 4 4

( , , ) [1 ...]
2! 3! 4!

h t h t h t
u x y t xy ht     

                                                

 (6.9) 

( , , ) htu x y t xye                                                                               (6.10)

 

which is an exact solution to the standard form biological 

population equation. The evolution result for the exact 

solution (6.10) and the approximate solution (6.9) for the 

case α=1, are shown in Fig.(1). It can be seen from Fig.1 that 

the solutions obtained by the HASTM is nearly identical 

with the exact solution. Fig.2 show the approximate 

solutions. It also be concluded that the approximate solution 

of fractional biological model is continuous with the 

parameter α. 
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Figure 1: The surface shows the solution u(x, y, t) for (6.8): 

(i) exact solution (6.10); (ii) numerical solution (6.9) when 

h=0.1, t=10 

 
Figure 2: The surface shows the solution u(x, y, t) for (6.7): 

(i) 1.4, 0.5    (ii) 1, 0.9    when h=0.1, 

t=10 

 

Example2. Consider the Eq. (1.1) with a=1, b=1, this leads 

to Verhulst law, and we have the following fractional 

biological population equation 

 

2 2 2 2

2 2
(1 )

u u u
hu hu

t x y





  
   

  
      (6.11) 

subject to the initial condition  

( )
8

0

hr
x y

u e



                              

 (6.12) 

Taking the Sumudu transform of Eq. (6.11) and using the 

Eq. (6.12), we have 

2 2 2 2( )
28

2 2
[ ] [ ( )] 0

hr
x y u u

S u e u S hu hru
x y


   

      
                                       (6.13) 

( )
8

1 1

2 21 1 1

1 1 1 12 2
0 0 0

( ) [ ] (1 )

hr
x y

m m m

m m m

j m j j m j m j m j

j j j

u S u e

u S u u S u u S hu hr u u
x y






 

  

      

  

   

       
         

        
  

                    (6.14) 

The m
th

- order deformation is given by 

11[ ( , ) ( , )] ( )mm m m mS u x t u x t u   


                                                       (6.15) 

Applying the inverse Sumudu transform, we have 
1

11( , ) ( , ) [ ( )]mm m m mu x t u x t S u 
  


                                                      (6.16) 

Solving eq. (6.16) for m=1, 2, 3,…, we have 

( )
8

1
(1 )

hr
x y t

u h e






 
 

   

2( ) ( )
2 28 8

2 (1 )
(1 ) (1 2 )

hr hr
x y x yt t

u h e h e
 

 

 

   
   

     

2 3( ) ( ) ( )
2 2 2 3 38 8 8

3 (1 ) 2 (1 )
(1 ) (1 2 ) (1 3 )

hr hr hr
x y x y x yt t t

u h e h e h e
  

  

  

     
     

      
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2( ) ( )
3 2 2 28 8

4

3 4( ) ( )
3 3 4 48 8

(1 ) 3 (1 )
(1 ) (1 2 )

3 (1 )
(1 3 ) (1 4 )

hr hr
x y x y

hr hr
x y x y

t t
u h e h e

t t
h e h e

 

 

 

 

 

 

    
   

  
   

   

  

   

substituting u0, u1, u2, u3, u4, …, into Eq. (5.11 ) gives the solution in series form by: 

2( )
2 3 2 2 28

3 4
3 3 4 4

[1 {1 (1 ) (1 ) (1 ) ...} {1 2(1 ) 3(1 ) ...}
(1 ) (1 2 )

{1 3(1 ) ...} {1 ...} ..] (6.17)
(1 3 ) (1 4 )

hr
x y t t

u e h h

t t
h h

 

 

 

 



               
   

     
   

      

    

Set 1   , 

2 3 4( )
2 3 48( , , ) [1 ...]

(1 ) (1 2 ) (1 3 ) (1 4 )

hr
x y t t t t

u x y t e h h h h
   

   



     
       

 (6.18) 

as 1   , we have 

2 2 3 3 4 4( )
8( , , ) [1 ...]

2! 3! 4!

hr
x y h t h t h t

u x y t e ht


       (6.19) 

( )

( , , )

hr
x y ht

tu x y t e
 

  (6.20) 

which is an exact solution to the standard form biological 

model [6.11] 

 
Figure 3: The surface shows the solution u(x, y, t) for 

(6.18): (i) exact solution (6.20);(ii) numerical solution (6.19) 

when h=0.01, t=10, r=48 

 
Figure 4: The surface shows the solution u(x, y, t) for 

(6.17): (i) 1.4, 0.95    (ii) 1, 0.95    

when h=0.01, t=10, r=48 

 

Example3. Consider the Eq. (1.1) with h=1, r=0, a=1, we 

have the following fractional biological population equation 
2 2 2 2

2 2

u u u
u

t x y





  
  

  
                    (6.21) 

subject to the initial conditions 

0u Sinx Sinhy                               (6.22) 

now taking the Sumudu transform of both sides of 

(6.21),and using (6.22) we have 
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2 2 2 2

2 2
[ ] { } 0

u u
S u Sinx Sinhy u S u

x y

   
     

  
                                              (6.23) 

1 1

2 21 1

1 1 12 2
0 0

( ) [ ] (1 )

[ ]

m m m

m m

j m j j m j m

j j

u S u Sinx Sinhy

u S u u S u u S u
x y



 

 

    

 

   

     
      

      
 

                                   

 (6.24) 

The m
th

- order deformation is given by 

11[ ( , ) ( , )] ( )mm m m mS u x t u x t u   


                                                     (6.25) 

Applying the inverse Sumudu transform of above equation, we have 

1
11( , ) ( , ) [ ( )]mm m m mu x t u x t S u 
  


                                                    (6.26) 

Solving eq. (6.26) for m=1, 2, 3, … we have 

1
(1 )

t
u h Sinx Sinhy




 

 
  

2
2 2

2 (1 )
(1 ) (1 2 )

t t
u h Sinx Sinhy h Sinx Sinhy

 

 
   

   
    

2 3
2 2 2 3 3

3 (1 ) 2 (1 )
(1 ) (1 2 ) (1 3 )

t t t
u h Sinx Sinhy h Sinx Sinhy h Sinx Sinhy

  

  
     

     
      

2
3 2 2 2

4

3 4
3 3 4 4

(1 ) 3 (1 )
(1 ) (1 2 )

3 (1 )
(1 3 ) (1 4 )

t t
u h Sinx Sinhy h Sinx Sinhy

t t
h Sinx Sinhy h Sinx Sinhy

 

 

 

 

    
   

  
   

   

  

 

substituting u0, u1, u2, u3, u4, …, into Eq. (5.11 ) gives the solution in series form by, 1   , we have 
2 3 4

2 3 4( , , ) [1 ...]
(1 ) (1 2 ) (1 3 ) (1 4 )

t t t t
u x y t Sinx Sinhy h h h h

   

   
     

       
 (6.27) 

as 1   , we have 
2 2 3 3 4 4

( , , ) [1 ...]
2! 3! 4!

h t h t h t
u x y t Sinx Sinhy ht       (6.28) 

( , , ) tu x y t Sinx Sinhy e  (6.29) 

which is an exact solution. 

 

Example4. Consider the Eq. (1.1) with a=-1, b=1, we have the following fractional biological population equation 
2 2 2 2

1

2 2

u u u
hu hr

t x y





  
   

  
 (6.30) 

subject to the initial conditions 

2 2

0 5
4 4

hr hr
u x y y     (6.31) 

now taking the Sumudu transform of both sides of (26),and using (27) we have 

2 2 2 2
2 2

2 2

1

[ ] 5 [ ( )] 0
4 4 m

hr hr u u h
S u x y y u S hr

ux y





  
         

  
 (6.32) 

2 2
1 1

2 21 1

1 12 2
0 0 1

( ) [ ] (1 ) 5
4 4

m m m

m m

j m j j m j

j j m

hr hr
u S u x y y

h
u S u u S u u S hr

ux y



 

 

   

  

      

       
         

       
 

 (6.33) 

The m
th

- order deformation is given by 
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11[ ( , ) ( , )] ( )mm m m mS u x t u x t u   


  (6.34) 

Applying the inverse Sumudu transform of above equation, we have 
1

11( , ) ( , ) [ ( )]mm m m mu x t u x t S u 
  


  (6.35) 

Solving eq. (6.35) for m=1, 2, 3,…, we have 

2 2

1 5
4 4 (1 )

hr hr t
u h x y y




    

 
  

2
2 2 2 2 2 2 1/2

2 (1 ) 5 ( 5)
4 4 (1 ) 4 4 (1 2 )

hr hr t hr hr t
u h x y y h x y y

 

 

         
   

    

2
2 2 2 2 2 2 2 1/2

3

3
3 3 2 2 3/2

(1 ) 5 2 (1 )( 5)
4 4 (1 ) 4 4 (1 2 )

( 5)
4 4 (1 3 )

hr hr t hr hr t
u h x y y h x y y

hr hr t
h x y y

 



 







           
   

  
 

   



 … 

 

substituting u0, u1, u2, u3, …, into Eq. (5.11 ) gives the 

solution in series form by, 1   , Then the approximate 

solution in series form is 

0 2
00 0

1
( , , )

(1 ( 1)

n

n

ht n ht
u x y t u

u n u

 







  
   

    
  

(6.36) 

as 1   , we have 

0 2

0 0

( , , ) exp
ht ht

u x y t u
u u

   
    

   
 (6.37) 

which is an exact solution of the integer order biological 

population.  

 

 
Figure 5: The surface shows the solution u(x, y, t) for 

(6.30): (i) exact solution (6.37); (ii) numerical solution 

(6.36) when h=0.01, t=10, r=48 

 
Figure 6: The surface shows the solution u(x, y, t) for 

(6.30): (i) 1, 0.9    (ii) 1, 0.5    when 

h=0.01, t=10, r=48 

 

7. Conclusion 
 

We employ the homotopy analysis Sumudu transform 

method (HASTM) for finding the approximate analytical 

solutions of time fractional degenerate parabolic equations 

arising in the spatial diffusion of biological populations 

subject to the some initial conditions. The results obtained 

by using this method agree well with the results obtained by 

ADM [29], VIM [28], HPM [30]. The reliability of HASTM 

and reduction in computation gives this method a wider 

applicability. Finally we can conclude that the HASTM is 

very powerful and efficient in finding analytic as well as 

numerical solutions for wider classes of linear and nonlinear 

fractional differential equations. Mathematica has been used 

for calculation and plot 3D graphs. 
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