
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 5, May 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Data Hopping in Malicious Environment 
 

S Mohammed Ghouse
1
, Sheethal R

2 
 

1Assistant Professor, Department of Computer Science and Engineering, SEACET, Bangalore, India 

 
2M. Tech, Computer Science and Engineering, SEACET, Bangalore, India 

 

 

Abstract: Deliberate or inadvertent spillage of private information is without a doubt a standout amongst the most serious security 

dangers that associations face in the computerized period. The risk now stretches out to our own lives: a plenty of individual data is 

accessible to informal organizations and Smartphone suppliers and is in a roundabout way exchanged to deceitful outsider and fourth 

gathering applications. In this work, we show a non specific information ancestry structure LIME for information stream over various 

elements that take two trademark, important parts (i.e., proprietor and buyer). We characterize the definite security ensures required by 

such an information ancestry instrument toward distinguishing proof of a blameworthy element, and recognize the improving non-

disavowal and genuineness suppositions. We then create and examine a novel responsible information exchange convention between 

two elements inside a pernicious domain by expanding upon unmindful exchange, strong watermarking, and mark primitives. At long 

last, we perform an exploratory assessment to show the reasonableness of our convention and apply our system to the critical 

information spillage situations of information outsourcing and interpersonal organizations. As a rule, we consider LIME, our ancestry 

system for information exchange, to be a key step towards accomplishing responsibility by outline 
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1. Introduction 
 

In the digital era, information leakage through unintentional 

exposures, or intentional sabotage by disgruntled employees 

and malicious external entities, present one of the most 

serious threats to organizations. According to an interesting 

chronology of data breaches maintained by the Privacy 

Rights Clearinghouse (PRC), in the United States alone, 

868, 045, 823 records have been breached from 4, 355 data 

breaches made public since 2005. It is not hard to believe 

that this is just the tip of the iceberg, as most cases of 

information leakage go unreported due to fear of loss of 

customer confidence or regulatory penalties: it costs 

companies on average $214 per compromised record. Large 

amounts of digital data can be copied at almost no cost and 

can be spread through the internet in very short time. 

Additionally, the risk of getting caught for data leakage is 

very low, as there are currently almost no accountability 

mechanisms. For these reasons, the problem of data leakage 

has reached a new dimension nowadays. 

 

Even with access control mechanisms, where access to 

sensitive data is limited, a malicious authorized user can 

publish sensitive data as soon as he receives it. Primitives 

like encryption offer protection only as long as the 

information of interest is encrypted, but once the recipient 

decrypts a message, nothing can prevent him from 

publishing the decrypted content. Thus it seems impossible 

to prevent data leakage proactively. Privacy, consumer 

rights, and advocacy organizations such as PRC and EPIC 

try to address the problem of information leakages through 

policies and awareness. However, as seen in the following 

scenarios the effectiveness of policies is questionable as long 

as it is not possible to provably associate the guilty parties to 

the leakages. 

 

Scenario 1: Social Networking. It was reported that third 

party applications of the widely used online social network 

Face book leak sensitive private information about the users 

or even their friends to advertising companies. In this case, it 

was possible to determine that several applications were 

leaking data by analyzing their behavior and so these 

applications could be disabled by Face book. However, it is 

not possible to make a particular application responsible for 

leakages that already happened, as many different 

applications had access to the private data. 

 

Scenario 2: Outsourcing. Up to 108, 000 Florida state 

employees were informed that their personal information has 

been compromised due to improper outsourcing. The 

outsourcing company that was handed sensitive data hired a 

further subcontractor that hired another subcontractor in 

India itself. Although the offshore subcontractor is 

suspected, it is not possible to provably associate one of the 

three companies to the leakage, as each of them had access 

to the data and could have possibly leaked it. 

 

In some cases, identification of the leaker is made possible 

by forensic techniques, but these are usually expensive and 

do not always generate the desired results. Therefore, we 

point out the need for a general accountability mechanism in 

data transfers. This accountability can be directly associated 

with provably detecting a 

 

2. Our Contributions 
 

In this paper, we formalize this problem of provably 

associating the guilty party to the leakages, and work on the 

data lineage methodologies to solve the problem of 

information leakage in various leakage scenarios. 

 

As our first contribution, we define LIME, a generic data 

lineage framework for data flow across multiple entities in 

the malicious environment. We observe that entities in data 

flows assume one of two roles: owner or consumer. We 

introduce an additional role in the form of auditor, whose 

task is to determine a guilty party for any data leak, and 

define the exact properties for communication between these 

roles. In the process, we identify an optional non-repudiation 

assumption made between two owners, and an optional trust 
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(honesty) assumption made by the auditor about the owners. 

 

As our second contribution, we present an accountable data 

transfer protocol to verifiably transfer data between two 

entities. To deal with an untrusted sender and an untrusted 

receiver scenario associated with data transfer between two 

consumers; our protocols employ an interesting combination 

of the robust watermarking, oblivious transfer, and signature 

primitives. 

 

3.  The Lime Framework 
 

As we want to address a general case of data leakage in data 

trans-fer settings, we propose the simplifying model LIME 

(Lineage in the malicious environment). With LIME we 

assign a clearly de-fined role to each involved party and 

define the inter-relationships between these roles. This 

allows us to define the exact properties that our transfer 

protocol has to fulfill in order to allow a provable 

identification of the guilty party in case of data leakage. 

 

Model 
As LIME is a general model and should be applicable to all 

cases, we abstract the data type and call every data item 

document. There are three different roles that can be 

assigned to the involved parties in LIME: data owner, data 

consumer and auditor. The data owner is responsible for the 

management of documents and the consumer receives 

documents and can carry out some task using them. The 

auditor is not involved in the transfer of documents, he is 

only invoked when a leakage occurs and then performs all 

steps that are necessary to identify the leaker. All of the 

mentioned roles can have multiple instantiations when our 

model is applied to a concrete setting. We refer to a concrete 

instantiation of our model as scenario. 

 

In typical scenarios the owner transfers documents to 

consumers. However, it is also possible that consumers pass 

on documents to other consumers or that owners exchange 

documents with each other. In the outsourcing scenario the 

employees and their employer are owners, while the 

outsourcing companies are untrusted consumers. 

 

In the following we show relations between the different 

entities and introduce optional trust assumptions. We only 

use these trust assumptions because we find that they are 

realistic in a real world scenario and because it allows us to 

have a more efficient data transfer in our framework. At the 

end of this section we explain how our framework can be 

applied without any trust assumptions. 

 

When documents are transferred from one owner to another 

one, we can assume that the transfer is governed by a non-

repudiation assumption. This means that the sending owner 

trusts the receiving owner to take responsibility if he should 

leak the document. As we consider consumers as untrusted 

participants in our model, a transfer involving a consumer 

cannot be based on a non-repudiation assumption. 

Therefore, whenever a document is transferred to a 

consumer, the sender embeds information that uniquely 

identifies the recipient. We call this fingerprinting. If the 

consumer leaks this document, it is possible to identify him 

with the help of the embedded information. 

As presented, LIME relies on a technique for embedding 

identifiers into documents, as this provides an instrument to 

identify consumers that are responsible for data leakage. We 

require that the embedding does not affect the utility of the 

document. Furthermore, it should not be possible for a 

malicious consumer to remove the embedded information 

without rendering the document useless. A technique that 

can offer these properties is robust watermarking.  

 

A key position in LIME is taken by the auditor. He is not 

involved in the transfer, but he takes action once a leakage 

occurs. He is invoked by an owner and provided with the 

leaked data. If the leaked data was transferred using our 

model, there is identifying information embedded for each 

consumer who received it. 

 
 

Threat Model and Design Goals 
Although we try to address the problem of data leakage, 

LIME cannot guarantee that data leakage does not occur in 

the first place; once a consumer has received a document, 

nothing can prevent him from publishing it. We offer a 

method to provably identify the guilty party once a leakage 

has been detected. By introducing this reactive 

accountability, we expect that leakage is going to occur less 

often, since the identification of the guilty party will in most 

cases lead to negative consequences. As our only goal is to 

identify guilty parties, the attacks we are concerned about 

are those that disable the auditor from provably identifying 

the guilty party. 

 

Therefore, we consider attackers in our model as consumers 

that take every possible step to publish a document without 

being held accountable for their actions. As the owner does 

not trust the consumer, he uses fingerprinting every time he 

passes a document to a consumer. However, we assume that 

the consumer tries to remove this identifying information in 

order to be able to publish the document safely. As already 

mentioned previously, consumers might transfer a document 

to another consumer, so we also have to consider the case of 

an untrusted sender. This is problematic because a sending 

consumer who embeds an identifier and sends the marked 

version to the receiving consumer could keep a copy of this 

version, publish it and so frame the receiving consumer. 

Another possibility to frame other consumers is to use 

fingerprinting on a document without even performing a 

transfer and publish the resulting document. 

 

A different problem that arises with the possibility of false 

accusation is denial. If false accusation is possible, then 

every guilty receiving consumer can claim that he is 

innocent and was framed by the sending consumer. The 

crucial phase in our model is the transfer of a document 
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involving untrusted entities, so we clearly define which 

properties we require our protocol to fulfill. We call the two 

parties sender and recipient. We expect a transfer protocol to 

fulfill the following properties and only tolerate failures with 

negligible probabilities. 
 

1) Correctness: When both parties follow the protocol 

steps correctly and only publish their version of the 

document, the guilty party can be found.  

2) No framing: The sender cannot frame recipients for the 

sender’s leakages.  

3) No denial: If the recipient leaks a document, he can be 

provably associated with it.  
 

We also require our model to be collusion resistant, i.e. it 

should be able to tolerate a small number of colluding 

attackers. We also assume that the communication links 

between parties are reliable Non Goals. We do not aim at 

proactively stopping data leakage; we only provide means to 

provably identify the guilty party in case a leak should 

occur, so that further steps can be taken. We also do not aim 

for integrity, as at any point an entity can decide to exchange 

the document to be sent with another one. However, in our 

settings, the sender wants the receiver to have the correct 

document, as he expects the recipient to perform a task using 

the document so that he eventually obtains a meaningful 

result. 
 

4. Primitives 
 

A function f is negligible if for all c > 0 there is a nc so that 

for all n ≥ nc f (n) ≤ n
1

C . In our scheme we make use of 

digital signatures. More precisely, we use a CMA-secure 

signature [12], i.e., no polynomial-time adversary is able to 

forge a signature with non-negligible probability. For a 

message m that has been signed with party A’s signing key, 

we write [m]skA . We use a symmetric encryption scheme 

that offers security under chosen plaintext attacks, writing c 

= enc(m, ek) for encryption of a message m and m = dec(c, 

ek) for decryption of a cipher text c with symmetric key ek. 

 

Robust Watermarking 
We use the definition of watermarking by Adelsbach et al. 

To argue about watermarking, we need a so-called similarity 

function sim(D, D
′
) that returns ⊤ if the two documents D 

and D
′
 are considered similar in the used context and ⊥ 

otherwise. The similarity function is a different one for each 

data type used and we assume it is given. For example, two 

images could be considerered similar, if a human observer 

can extract the same information from them. 

 

Let D be the set of all possible documents, WM ⊆ {0, 1}
+
 

the set of all possible watermarks, K the set of keys and κ 

the security parameter of the watermarking scheme. A 

symmetric, detecting watermarking scheme is defined by 

three polynomial-time algorithms: 

 

Probabilistic Key Generation Algorithm: 

GenKey
W M

 (1
κ
) outputs a key k ∈ K for a given security 

parameter κ. 

• The probabilistic Embedding Algorithm generates a water-

marked document D
′
 = W(D, w, k) on input of the original 

document D ∈ D, the watermark w ∈ WM and the key k ∈ 

K.  

• The Detection Algorithm Detect(D
′
, w, D, k) outputs ⊤ or  

 

⊥ on input of a (potentially watermarked) document D
′
 ∈ D, 

a watermark w ∈ WM, the original document D ∈ D and a 

key k ∈ K. ⊤ means that the watermark is detectable; ⊥ 

means, that it is not.  

 

We require the following properties: 

• Imperceptibility: ∀D ∈ D, ∀w ∈ WM, ∀k ∈ K.D
′
 ← 

W(D, w, k) ⇒ sim(D, D
′
) = ⊤, i.e., the original document 

and the watermarked document are similar.  

• Effectiveness: ∀D ∈ D, ∀w ∈ WM, ∀k ∈ K.D
′
 ← W(D, 

w, k) ⇒ Detect(D
′
, w, D, k) = ⊤, i.e., if a watermark is 

embedded using a key k, the same watermark should be 

detectable using the same key k.  

 

Detect (D
′′
, w, D, k) = ⊥ with non-negligible probability. 

This means that no adversary can efficiently remove or 

change a watermark without rendering the document unus-

able (i.e., breaking the similarity). 

 

Additionally, we require our watermarking scheme to sup-

port multiple re-watermarking, i.e., it should allow for 

multiple (bounded by the dataflow path length) watermarks 

to be embedded successively without influencing their 

individual delectability. This property can also be considered 

as a special kind of robustness, as it prevents adversaries 

from making a watermark undetectable simply by adding 

more watermarks using the same algorithm. More 

information and some experimental results about this 

property can be found in. 

 

It is shown that the scheme is robust against many common 

attacks such as scaling, JPEG compression, printing, 

Xeroxing and scanning, multiple re-watermarking and 

others. 

 

1-out-of-2 Oblivious Transfer 
1-out-of-2 Oblivious Transfer (OT1

2
) involves two parties, 

the sender and the chooser. The sender offers two items M0 

and M1 and the chooser chooses a bit σ. The chooser obtains 

Mσ but no information about M1−σ and the sender learns 

anything regarding σ. In this context, when speaking of 

learning nothing, we actually mean nothing can be learned 

with non-negligible probability. When we use OT1
2
 in our 

protocols to send messages, the sender actually encrypts the 

messages, sends both cipher texts to the chooser and 

performs OT1
2
 just on the decryption keys. This allows us to 

use the OT1
2
 protocol with a fixed message size 
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While actually sending messages of arbitrary size. Note that 

this could only be a security risk if the chooser was able to 

break the encryption scheme. There are different concrete 

instantiations of this primitive. As an example 

implementation of OT1
2
 we show a protocol by Naor and 

Pinkas in the Appendix. 

 

5. Accountable Data Transfer 
 

In this section we specify how one party transfers a 

document to another one, what information is embedded and 

which steps the auditor performs to find the guilty party in 

case of data leakage. We assume a public key infrastructure 

to be present, i.e. both parties know each other’s signature 

verification key. 

 

Trusted Sender 
In the case of a trusted sender it is sufficient for the sender to 

embed identifying information, so that the guilty party can 

be found. As the sender is trusted, there is no need for 

further security mechanisms. In Fig. 2, we present a transfer 

protocol that fulfills the properties of correctness and no 

denial as defined in Section 2.2. As the sender is trusted to 

be honest, we do not need the any framing property. 

 

The sender, who is in possession of some document D, 

creates a watermarking key k, embeds a triple σ = (CS , CR, τ 

) consisting of the two parties’ identifiers and a timestamp τ 

into D to create Dw = W(D, σ, k). He then sends Dw to the 

recipient, who will be held accountable for this version of 

the document. As the sender also knows Dw, this very simple 

protocol is only applicable if the sender is completely 

trusted; otherwise the sender could publish Dw and blame the 

recipient. 

 

Untrusted Sender 
In the case of an untrusted sender we have to take additional 

actions to prevent the sender from cheating, i.e. we have to 

fulfill the no framing property. To achieve this property, the 

sender divides the original document into n parts and for 

each part he creates two differently watermarked versions. 

He then transfers one of each of these two versions to the 

recipient via OT1
2
. The recipient is held accountable only for 

the document with the parts that he received, but the sender 

does not know which versions that is. The probability for the 

sender to cheat is therefore 2
1

N .  

 

Remark. It would also be possible to include the signed 

statement σ in every single part of the document, but as the 

maximum size of a watermark is limited by the document’s 

size, this might be problematic for scenarios where the parts 

are small. Therefore, we embed σ in the complete original 

document and only embed single bits to the (possibly small) 

parts of the document.  

 

 
Figure 3: Protocol for untrusted senders: The sender splits a 

watermarked document into n parts and creates two different 

versions of each part by embedding another watermark. The 

recipient via OT receives one of two versions of each part as 

well as a signed statement as proof of his choice. The 

recipient joins the individual parts to create his version of 

the document. 

  

Timestamp τ to uniquely identify a specific transfer between 

two parties, and thus assume that no two transfers between 

the same two parties take place at the same time. However, 

it would be possible to use a counter that is incremented on 

each transfer to allow multiple transfers at the exact same 

time. 

 

Analysis of the Protocol 
We now show that the protocol presented in Fig. 3 fulfills 

the required properties of correctness, no framing and no 

denial as presented in Section 2.2 : 

 

1) Correctness: Assume that both parties follow the 

protocol steps correctly. Assuming the correctness of the 

encryption, watermarking, signature and oblivious 

transfer scheme, we show that for all possible scenarios 

the guilty party can be determined correctly:  

a) the sender publishes D or D
′
: The auditor does not 

detect  

σ (in the case of D) or the bi values (in the case of D
′
) and 

correctly blames the sender, because both watermarks 

have to be present in order to blame the recipient.  

b) the recipient publishes Dw: The auditor successfully 

detects σ and b
′
 in the leaked document and verifies that 

is of the correct form. The recipient is able to provide the 

proof of his choice of b; the auditor verifies b
′
 = b and 

suspects the recipient. As there are no further watermarks 

embedded, the auditor correctly blames the recipient.  

 

False positives in the watermark detection (i.e., a watermark 

is detected, although it is actually not present) is not a big 

issue, as the probability that the correct bit string of length n 

is spuriously detected is negligible. False negatives (i.e., a 

watermark is not detected, although it is embedded in the 

document) can be problematic, because if watermarks are 

not detected the auditor blames the sender. Nevertheless, as 

included timestamp τ is the same, too. As the auditor asks 

the recipient to prove his choice of b for this τ , the recipient 

is able to provide a correct proof, as a valid transfer with 

timestamp τ actually happened. Analogous to the previous 

case, the sender can only chose b∗ ∈ {0, 1}
n
 randomly and 

therefore he can only succeed with negligible probability. 
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From these two steps it follows that the sender is not able 

to frame a recipient. 

The recipient could also create a watermarked version with a 

different bit string embedded, if he is able to get Di,1−bI for 

some i, but this is only possible if he breaks the OT2
1
 scheme 

or the encryption scheme, which is only possible with 

negligible probability. We now show that a recipient cannot 

cheat during the auditing process, when he proves which 

version of the document he asked for during the transfer 

protocol: In order to prove another choice of b he would 

again have to break the OT2
1
 scheme or the encryption 

scheme in order to learn the mi,1−bI for some i or he would 

need to forge the sender’s signature to create mi,1−bI for some 

i. As all of this is only possible with negligible probability, 

the overall probability for the recipient to succeed is 

negligible. From these two steps it follows that the recipient 

is not able to publish a document without being caught.  

 

6. Implementation and Microbenchmarking 
 

We implemented the protocol in Fig. 3 as a proof-of-concept 

and to analyze its performance. For the oblivious transfer 

sub protocol we implemented the protocol by Naor and 

Pinkas using the PBC library, which itself makes use of the 

GMP library. For signatures we implemented the BLS 

scheme, also using the PBC library. For symmetric 

encryption we used an implementation of AES from the 

Crypto++ library. For watermarking we used an 

implementation of the Cox algorithm for robust image 

watermarking from Peter Meerwald’s watermarking toolbox. 

We set the α-factor, which determines the strength of the 

watermark, to a value of 0.1. 

 

We executed the experiment with different parameters to 

analyze the performance. The sender and recipient part of 

the protocol are both executed in the same program, i.e., we 

do not analyze network sending, but only computational 

performance. The executing machine is a Lenovo ThinkPad 

model T430 with 8 GB RAM and 4 × 2.6GHz cores, but all 

executions were performed sequentially. We measured 

execution times for different phases of the protocol: 

watermarking, signature creation, encryption, oblivious 

transfer and detection. We executed each experiment 250 

times and determined the average computation time and the 

standard deviation. 

 

 
In the first experiment we used an image of size 512 × 512 

pixels and changed the number of parts the image was split 

into. We show the results in Fig. 4(a). We can see that the 

execution time of watermarking, signatures, oblivious 

transfer and detection is linear in the number of document 

parts. The execution time of encryption is also increasing 

slowly, but it is still insignificant compared to the other 

phases. 

 

 

We find that latencies of a few seconds are acceptable in the 

scenarios that we considered. Additionally, as we show in 

our experiments in Fig. 4(a), one can easily perform a 

tradeoff between performance and security. It is also 

possible to use the OT extension technique presented in [20] 

to increase the efficiency of oblivious transfer. Although we 

use only image files as documents in our experimental 

implementation, we stress that the same mechanism can be 

used for all types of data for which robust watermarking 

schemes exist.  

 

Communication Overhead 
Assuming 128-bit security level for encryptions and 

signatures, and splitting the document of size s into n parts, 

we can compute the communication overhead as follows: 

First the recipient sends σ consisting of two identifiers (8 

bytes), one Unix timestamp (8 bytes) and one BLS signature 

(32 bytes). The sender in return sends 2n times a document 

part of size n
s
 and a message consisting of one timestamp (8 

bytes), one single bit, one integer (4 bytes) together with the 

according BLS signature (32 bytes). This totals to 2 · (s + n · 

(8 + 1 + 4 + 32)) = 2 · (s + 45n) bytes. Additionally, sender 

and recipient run n parallel instances of an oblivious transfer 

protocol (in our case the one by Naor and Pinkas [15]). In 

each protocol run, the sender sends two group elements (64 

bytes) in the initialization phase. In the transfer phase the 

chooser sends one group element (32 bytes) and the sender 

sends two encryptions of messages (which are AES keys in 

our case) (64 bytes). In total the sender sends 2s + 218n 

bytes and the recipient sends 32n + 48 bytes. For our 

example with an image of  
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size s = 1MB and n = 64 we have a communication overhead 

of 2.008MB for the sender and 2.05KB for the recipient, 

which we find to be practical. 

 

The auditor to one of the outsourcing companies. This 

outsourcing company can in turn reveal additional 

fingerprints in the leaked document in order to point to the 

next outsourcing company and to prove its own innocence. 

Finally, the auditor creates the complete lineage and is able 

to determine the guilty party. In the example given in the 

introduction, there were three outsourcing companies 

involved and a data leakage could not be clearly associated 

with one of these. The responsible party can be clearly found 

using LIME. 

 

Storage Overhead 
Both parties need to store some data so that they can provide 

the necessary information to the auditor during the process 

of lineage generation. The sender needs to store the first 

watermark σ (48 bytes) and 2 watermarking keys. For a non-

blind watermarking scheme like the Cox algorithm used in 

our implementation the sender also needs to store the 

original document.  

Multiple Iterations 
Fig. 5(a2) shows an image that was transferred  

 

Outsourcing 
The first diagram in Fig. 6 shows a typical outsourcing 

scenario. An organization acts as owner and can outsource 

tasks to outsourcing companies which act as consumers in 

our model. It is possible that the outsourcing companies 

receive sensitive data to work on and as the outsourcing 

companies are not necessarily trusted by the organization, 

fingerprinting is used on transferred documents. The 

outsourcing company itself can outsource tasks to other 

outsourcing companies and thus relay the documents, again 

using fingerprinting. It is important to notice that a single 

organization can outsource to may different outsourcing 

companies in parallel, thus creating a tree-shaped transfer 

diagram. If now at any point one of the involved outsourcing 

companies leaks a confidential document, the organization 

can invoke the auditor to find the responsible party. The 

auditor then asks the organization to reveal the first set of 

fingerprints in the leaked document, which leads the second 

diagram in Fig. 6 shows an online social networking 

scenario. The users of the network are the owners, as they 

enter their personal information, post messages, etc. The 

online social network (OSN) uses all this information as a 

consumer in this scenario. Third party applications that have 

access to this information in return for some service act as 

further consumers in this scenario. The users give their 

information to the OSN which can relay that information to 

third party applications using fingerprinting. In case of a 

leakage the auditor can create the lineage of the leaked 

document and thereby provably determine the responsible 

party. 

 

Collusion Resistance 
The collusion resistance of our scheme depends on the 

collusion resistance of the underlying watermarking scheme. 

Assume several consumers are working together in order to 

create an untraceable version of a document. Then their 

approach is to merge the versions they rightfully obtained to 

create a new version where the watermarks cannot be 

detected.  

 

 

As the detection of σ is just a detection of a watermark in the 

complete document, we obviously have the same collusion 

resistance as the watermarking scheme for this case. The 

case of the detection of a bit bi in a part Di is again just a 

detection of a watermark, so the collusion resistance is again 

the same as for the watermarking scheme. However, we 

have to know which detected bit belongs to which 

consumer; so that we can still guarantee that the sender 

cannot frame the receiving consumers. Linking the detected 

bits to the responsible consumers is possible, as for each 

consumer a different embedding key was used. As for each 

part multiple bits might be detectable, the probability for a 

sender to successfully frame the receiving consumers is less 

than or equal to the probability of framing a single recipient 

successfully, as he still would have to guess all the bits 

correctly. However, we have to note that in order to 

successfully mount collusion attack against our scheme, it is 

sufficient to mount a collusion attack against 1 of the n + 1 

watermarks that are used, where n is the number of parts the 

document was split into. 

We can conclude that our scheme tolerates collusions to a 

certain extent, when it is used with a collusion resistant 

watermark, without losing its key properties. 

 

Error Tolerance 
Depending on the quality of the underlying watermarking 

scheme, it may be too strong to require that all bits bi are 

detected correctly. Therefore, it could be a good idea to 

introduce some error tolerance. However, we have to keep in 

mind that this will increase the probability of the sender 

successfully framing an innocent recipient. There are two 

different kinds of errors that can occur: the first one is that 

no bit can be detected, and the second one is that a wrong bit 

is detected. Assume the document is split into n parts. 

Tolerating a non-detectable bit increases the probability of 

successful framing by a factor of 2. Instead of guessing a bit 

string b ∈ {0, 1}
n
, it is sufficient to guess b ∈ {0, 1}

n−1
. 

Tolerating a wrong bit is worse, as it increases this 

probability by a factor of (n + 1). Instead of accepting just 

the correct bit string, we also accept all bi strings that are 

changed at exactly one position. As there are n positions, we 

additionally accept n bit strings; hence the number of 

accepted bit strings and thus the probability of guessing one 

of these is higher by a factor of: 

 

n + 1. If we want to allow some error tolerance while 

keeping the probability of successful framing to be small, we 

Paper ID: NOV163404 1258



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 5, May 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

have to choose a larger n; e.g., to tolerate 128 non-detectable 

bits, we choose  

n = 256 and have the same framing probability as with n = 

128 and no tolerance.  

 

Possible Data Distortion 
In our experiment, we used a simple splitting algorithm: We 

split the image into n equally sized squares. However, when 

we used a strong watermark for the small parts (that is the α-

factor used by the Cox algorithm is 0.5), differences 

between adjacent parts became visible even though the 

single watermarks are imperceptible. The resulting image 

can be seen in Fig. 5(b1). This effect becomes even stronger 

after multiple iterations as observed in Fig.5(b2). In some 

cases, this distortion might affect the usability of the 

document. We stress however, that we were still able to 

obtain good results with our approach. In  

 

7. Related Work 
 

A preliminary shorter version of this paper appeared at the 

STM workshop. This version constitutes a significant 

extension by including the following contributions: We give 

a more detailed description of our model, a formal 

specification of the used primitives, an analysis of the 

introduced protocol, a discussion of implementation results, 

an application of our framework to example scenarios, a 

discussion of additional features and an extended discussion 

of related work. 

 

Other Models 
Hasan, Sion and Winslett present a system that enforces 

logging of read and write actions in a tamper-proof 

provenance chain. This creates the possibility of verifying 

the origin of information in a document. However, as an 

attacker is able to strip of the provenance information of a 

file, the problem of data leakage in malicious environments 

is not tackled by their approach. 

 

The model introduced in intends to help the data distributor 

to identify the malicious agent which leaked the information. 

In addition, they argue that current watermarking techniques 

are not practical, as they may embed extra information 

which could affect agents’ work and their level of robustness 

may be inadequate. In LIME the relationship of data 

distributor and agents corresponds to the relationship 

between data owner and consumer and the model could be 

used as an alternative method to trace the information given 

to the consumers. 

 

Controlled data disclosure is a well-studied problem in the 

security literature, where it is addressed using access control 

mechanisms. Although these mechanisms can control 

release of confidential information and also prevent 

accidental or malicious destruction of information, they do 

not cover propagation of information by a recipient that is 

supposed to keep the information private. For example, once 

an individual allows a third party app to access her 

information from a social network, she can no longer control 

how that app may redistribute the information. In the authors 

present the problem of an insider attack, where the data 

generator consists of multiple single entities and one of these 

publishes a version of the document. Usually methods for 

proof-of-ownership or fingerprinting are only applied after 

completion of the generating process, so all entities involved 

in the generation process have access to the original 

document and could possibly publish it without giving credit 

to the other authors, or also leak the document without being 

tracked. As presented in the paper, this problem can be 

solved by the usage of watermarking and possibly even by 

using complete fingerprinting protocols during the 

generating phase of the document. 

 

Other Fingerprinting Protocols 
In Poh addresses the problem of accountable data transfer 

with untrusted senders using the term fair content tracing. 

He presents a general framework to compare different 

approaches and splits protocols into four categories 

depending on their utilization of trusted third parties, i.e., no 

trusted third parties; offline trusted third parties, online 

trusted third parties and trusted hardware. Furthermore, he 

introduces the additional properties of recipient anonymity 

and fairness in association with payment. All presented 

schemes use watermarking to trace the guilty party and most 

presented protocols make use of watermarking in the 

encrypted domain, where encrypted watermarks are 

embedded in encrypted documents. A major advantage of 

our scheme is that it can be used with every existing 

watermarking scheme without any modification. The 

schemes relying on watermarking in the encrypted domain 

only work with watermarking schemes that are designed for 

this technique. A new scheme presented is based on 

chameleon encryption. In Sadeghi also examines several 

fingerprinting schemes and presents new constructions for 

symmetric, asymmetric and anonymous fingerprinting 

schemes. The asymmetric scheme uses a homomorphism 

commitment scheme to compute the fingerprinted version of 

the document. 

 

Domingo-Ferrer presents the first fingerprinting protocol 

that makes use of oblivious transfer in. In the scheme, 

documents are split into smaller parts and for each part two 

different versions are created. Then the recipient receives 

one version of each part via oblivious transfer and in return 

sends a commitment on the received part. The recipient can 

now be identified by the unique combinations of versions he 

received. The protocol has several flaws, as discussed. The 

main problem is that a malicious sender can offer the same 

version twice in the oblivious transfer, so that he will know 

which version the recipient receives. 

 

Sadeghi and Hanaoka et al. propose different solutions; the 

former lets the sender open some pairs to validate that they 

are not equal and the latter uses oblivious transfer with a 

two-lock cryptosystem where the recipient can compare both 

versions in encrypted form. However, both proposed 

solutions have some flaws themselves. The problem is that it 

is possible to create two different versions with the same 

watermark, so even if the equality test fails, the two offered 

versions can still have the same watermark and the sender 

will know which watermark the recipient received. Also, the 

fix proposed in ruins the negligible probability of failure, as 

it does not split the document into parts, but creates n 

different versions and sends them via 1-out-of-n oblivious 

transfer. 
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Domingo-Ferrer presents another protocol based on 

oblivious transfer, but again the sender can cheat during 

oblivious transfer. Presents another protocol using oblivious 

transfer. The protocol uses an approach similar to the 

chameleon encryption, and using 1-out-of-n oblivious 

transfer a decryption key is transmitted so that the sender 

does not know it. The protocol suffers from the same 

problems as the one presented in; namely, the sender can 

guess the key used by the recipient with non-negligible 

probability n
1
 and the sender can even cheat in the oblivious 

transfer by offering the same key n times, so that he will 

know the key used by the recipient. 

 

We see that all asymmetric fingerprinting protocols based on 

oblivious transfer that have been proposed so far suffer from 

the same weakness. We circumvent this problem in our 

protocol by additionally sending a signed message including 

the watermark’s content, so that the recipient is able to prove 

what he asked for. In contrast to the watermark, this message 

can be read by the recipient, so he can notice if the sender 

cheats.  

 

Broadcasting 
Parviainen and Parnes present an approach for distributing 

data in a multicast system, so that every recipient holds a 

differently watermarked version. The sender splits the file 

into blocks and for each block he creates two different 

versions by water-marking them with different watermarks 

and encrypting them with different keys. Each recipient is 

assigned a set of keys, so that he can decrypt exactly one 

version of each part. The resulting combination of parts can 

uniquely identify the recipient. In Adelsbach, Huber and 

Sadeghi show another approach for a broadcasting system 

that allows identification of recipients by their received files. 

With a technique called fingercasting, recipients 

automatically embed a watermark in files during the 

decryption process. The process is based on the chameleon 

cipher [29], which allows one to decrypt an encrypted file 

with different decryption keys, to introduce some noise that 

can be used as a means of identification. In [38] 

Katzenbeisser et al. use the technique of fingercasting 

together with a randomized fingerprinting code in order to 

provide better security against colluding attackers. However, 

in these broadcasting approaches the problem of an 

untrusted sender is not addressed. 

 

Watermarking 
LIME can be used with any type of data for which 

watermarking schemes exist. Therefore, we briefly describe 

different water-marking techniques for different data types. 

Most watermarking schemes are designed for multimedia 

files such as images, videos, and audio files. In these 

multimedia files, water-marks are usually embedded by 

using a transformed representation (e.g. discrete cosine, 

wavelet or Fourier transform) and modifying transform 

domain coefficients. 

 

Watermarking techniques have also been developed for 

other data types such as relational databases, text files and 

even Android apps. The first two are especially interesting, 

as they allow us to apply LIME to user databases or medical 

records. Watermarking relational databases can be done in 

different ways. The most common solutions are to embed 

information in noise-tolerant attributes of the entries or to 

create fake database entries. For watermarking of texts, there 

are two main approaches. The first one embeds information 

by changing the text’s appearance (e.g. changing distance 

between words and lines) in a way that is imperceptible to 

humans. The second approach is also referred to as language 

watermarking and works on the semantic level of the text 

rather than on its appearance. A mechanism also has been 

proposed to insert watermarks to Android apps. This 

mechanism encodes a watermark in a permutation graph and 

hides the graph as a linked list in the application. Due to the 

list representation, watermarks are encoded in the execution 

state of the application rather than in its syntax, which 

makes it robust against attacks.  

 

Suchanek et al. propose an interesting approach for 

watermarking ontologies. In this approach the authors 

propose to rather remove existing information than adding 

new information or modifying existing information. Thereby 

the wa-termarking scheme guarantees that no false entries 

are introduced. The above schemes can be employed in our 

framework to create data lineage for documents of the 

respective formats. The only modification that might be 

necessary when applying our scheme to a different 

document type is the splitting algorithm. For example for 

images it makes more sense to take small rectangles of the 

original image instead of simply taking the consecutive 

bytes from the pixel array. 

 

 

Embedding multiple watermarks into a single document has 

been discussed in literature and there are different tech-

niques available. In they discuss multiple re-watermarking 

and in the focus is on segmented watermarking. Both papers 

show in experimental results that multiple watermark-ing is 

possible which is very important for our scheme, as it allows 

us to create a lineage over multiple levels. 

 

It would be desirable not to reveal the private watermarking 

key to the auditor during the auditor’s investigation, so that 

it can be safely reused, but as discussed in current public key 

watermarking schemes are not secure and it is doubtful if it 

is possible to design one that is secure. In Sadeghi presents 

approaches to zero-knowledge watermark detection. With 

this technology it is possible to convince another party of the 

presence of a watermark in a document without giving any 

information about the detection key or the watermark itself. 

However, the scheme discussed in also hides the content of 

the watermark itself and are therefore unfit for our case, as 

the auditor has to know the watermark to identify the guilty 

person. Furthermore, using a technology like this would 

come with additional constraints for the chosen 

watermarking scheme. 

 

8. Conclusion and Future Directions 
 

We present LIME, a model for accountable data transfer 

across multiple entities. We define participating parties, their 

inter-relationships and give a concrete instantiation for a 

data transfer protocol using a novel combination of oblivious 

transfer, robust watermarking and digital signatures. We 

prove its correctness and show that it is realizable by giving 

micro benchmarking results. By presenting a general 
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applicable framework, we introduce accountability as early 

as in the design phase of a data transfer infrastructure. 

 

Although LIME does not actively prevent data leakage, it 

introduces reactive accountability. Thus, it will deter 

malicious parties from leaking private documents and will 

encourage honest (but careless) parties to provide the 

required protection for sensitive data. LIME is flexible as we 

differentiate between trusted senders (usually owners) and 

untrusted senders (usually consumers). In the case of the 

trusted sender, a very simple protocol with little overhead is 

possible. The untrusted sender requires a more complicated 

protocol, but the results are not based on trust assumptions 

and therefore they should be able to convince a neutral entity 

(e.g. a judge). 

 

Our work also motivates further research on data leakage 

detection techniques for various document types and 

scenarios. For example, it will be an interesting future 

research direction to design a verifiable lineage protocol for 

derived data. 
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