
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Data Hopping in Malicious Environment

S Mohammed Ghouse
1
, Sheethal R

2

1Assistant Professor, Department of Computer Science and Engineering, SEACET, Bangalore, India

2M. Tech, Computer Science and Engineering, SEACET, Bangalore, India

Abstract: Deliberate or inadvertent spillage of private information is without a doubt a standout amongst the most serious security

dangers that associations face in the computerized period. The risk now stretches out to our own lives: a plenty of individual data is

accessible to informal organizations and Smartphone suppliers and is in a roundabout way exchanged to deceitful outsider and fourth

gathering applications. In this work, we show a non specific information ancestry structure LIME for information stream over various

elements that take two trademark, important parts (i.e., proprietor and buyer). We characterize the definite security ensures required by

such an information ancestry instrument toward distinguishing proof of a blameworthy element, and recognize the improving non-

disavowal and genuineness suppositions. We then create and examine a novel responsible information exchange convention between

two elements inside a pernicious domain by expanding upon unmindful exchange, strong watermarking, and mark primitives. At long

last, we perform an exploratory assessment to show the reasonableness of our convention and apply our system to the critical

information spillage situations of information outsourcing and interpersonal organizations. As a rule, we consider LIME, our ancestry

system for information exchange, to be a key step towards accomplishing responsibility by outline

Keywords: Smartphone, security threats, data lineage, LIME, robust watermarking, signature primitives and accountability

1. Introduction

In the digital era, information leakage through unintentional

exposures, or intentional sabotage by disgruntled employees

and malicious external entities, present one of the most

serious threats to organizations. According to an interesting

chronology of data breaches maintained by the Privacy

Rights Clearinghouse (PRC), in the United States alone,

868, 045, 823 records have been breached from 4, 355 data

breaches made public since 2005. It is not hard to believe

that this is just the tip of the iceberg, as most cases of

information leakage go unreported due to fear of loss of

customer confidence or regulatory penalties: it costs

companies on average $214 per compromised record. Large

amounts of digital data can be copied at almost no cost and

can be spread through the internet in very short time.

Additionally, the risk of getting caught for data leakage is

very low, as there are currently almost no accountability

mechanisms. For these reasons, the problem of data leakage

has reached a new dimension nowadays.

Even with access control mechanisms, where access to

sensitive data is limited, a malicious authorized user can

publish sensitive data as soon as he receives it. Primitives

like encryption offer protection only as long as the

information of interest is encrypted, but once the recipient

decrypts a message, nothing can prevent him from

publishing the decrypted content. Thus it seems impossible

to prevent data leakage proactively. Privacy, consumer

rights, and advocacy organizations such as PRC and EPIC

try to address the problem of information leakages through

policies and awareness. However, as seen in the following

scenarios the effectiveness of policies is questionable as long

as it is not possible to provably associate the guilty parties to

the leakages.

Scenario 1: Social Networking. It was reported that third

party applications of the widely used online social network

Face book leak sensitive private information about the users

or even their friends to advertising companies. In this case, it

was possible to determine that several applications were

leaking data by analyzing their behavior and so these

applications could be disabled by Face book. However, it is

not possible to make a particular application responsible for

leakages that already happened, as many different

applications had access to the private data.

Scenario 2: Outsourcing. Up to 108, 000 Florida state

employees were informed that their personal information has

been compromised due to improper outsourcing. The

outsourcing company that was handed sensitive data hired a

further subcontractor that hired another subcontractor in

India itself. Although the offshore subcontractor is

suspected, it is not possible to provably associate one of the

three companies to the leakage, as each of them had access

to the data and could have possibly leaked it.

In some cases, identification of the leaker is made possible

by forensic techniques, but these are usually expensive and

do not always generate the desired results. Therefore, we

point out the need for a general accountability mechanism in

data transfers. This accountability can be directly associated

with provably detecting a

2. Our Contributions

In this paper, we formalize this problem of provably

associating the guilty party to the leakages, and work on the

data lineage methodologies to solve the problem of

information leakage in various leakage scenarios.

As our first contribution, we define LIME, a generic data

lineage framework for data flow across multiple entities in

the malicious environment. We observe that entities in data

flows assume one of two roles: owner or consumer. We

introduce an additional role in the form of auditor, whose

task is to determine a guilty party for any data leak, and

define the exact properties for communication between these

roles. In the process, we identify an optional non-repudiation

assumption made between two owners, and an optional trust

Paper ID: NOV163404 1253

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

(honesty) assumption made by the auditor about the owners.

As our second contribution, we present an accountable data

transfer protocol to verifiably transfer data between two

entities. To deal with an untrusted sender and an untrusted

receiver scenario associated with data transfer between two

consumers; our protocols employ an interesting combination

of the robust watermarking, oblivious transfer, and signature

primitives.

3. The Lime Framework

As we want to address a general case of data leakage in data

trans-fer settings, we propose the simplifying model LIME

(Lineage in the malicious environment). With LIME we

assign a clearly de-fined role to each involved party and

define the inter-relationships between these roles. This

allows us to define the exact properties that our transfer

protocol has to fulfill in order to allow a provable

identification of the guilty party in case of data leakage.

Model
As LIME is a general model and should be applicable to all

cases, we abstract the data type and call every data item

document. There are three different roles that can be

assigned to the involved parties in LIME: data owner, data

consumer and auditor. The data owner is responsible for the

management of documents and the consumer receives

documents and can carry out some task using them. The

auditor is not involved in the transfer of documents, he is

only invoked when a leakage occurs and then performs all

steps that are necessary to identify the leaker. All of the

mentioned roles can have multiple instantiations when our

model is applied to a concrete setting. We refer to a concrete

instantiation of our model as scenario.

In typical scenarios the owner transfers documents to

consumers. However, it is also possible that consumers pass

on documents to other consumers or that owners exchange

documents with each other. In the outsourcing scenario the

employees and their employer are owners, while the

outsourcing companies are untrusted consumers.

In the following we show relations between the different

entities and introduce optional trust assumptions. We only

use these trust assumptions because we find that they are

realistic in a real world scenario and because it allows us to

have a more efficient data transfer in our framework. At the

end of this section we explain how our framework can be

applied without any trust assumptions.

When documents are transferred from one owner to another

one, we can assume that the transfer is governed by a non-

repudiation assumption. This means that the sending owner

trusts the receiving owner to take responsibility if he should

leak the document. As we consider consumers as untrusted

participants in our model, a transfer involving a consumer

cannot be based on a non-repudiation assumption.

Therefore, whenever a document is transferred to a

consumer, the sender embeds information that uniquely

identifies the recipient. We call this fingerprinting. If the

consumer leaks this document, it is possible to identify him

with the help of the embedded information.

As presented, LIME relies on a technique for embedding

identifiers into documents, as this provides an instrument to

identify consumers that are responsible for data leakage. We

require that the embedding does not affect the utility of the

document. Furthermore, it should not be possible for a

malicious consumer to remove the embedded information

without rendering the document useless. A technique that

can offer these properties is robust watermarking.

A key position in LIME is taken by the auditor. He is not

involved in the transfer, but he takes action once a leakage

occurs. He is invoked by an owner and provided with the

leaked data. If the leaked data was transferred using our

model, there is identifying information embedded for each

consumer who received it.

Threat Model and Design Goals
Although we try to address the problem of data leakage,

LIME cannot guarantee that data leakage does not occur in

the first place; once a consumer has received a document,

nothing can prevent him from publishing it. We offer a

method to provably identify the guilty party once a leakage

has been detected. By introducing this reactive

accountability, we expect that leakage is going to occur less

often, since the identification of the guilty party will in most

cases lead to negative consequences. As our only goal is to

identify guilty parties, the attacks we are concerned about

are those that disable the auditor from provably identifying

the guilty party.

Therefore, we consider attackers in our model as consumers

that take every possible step to publish a document without

being held accountable for their actions. As the owner does

not trust the consumer, he uses fingerprinting every time he

passes a document to a consumer. However, we assume that

the consumer tries to remove this identifying information in

order to be able to publish the document safely. As already

mentioned previously, consumers might transfer a document

to another consumer, so we also have to consider the case of

an untrusted sender. This is problematic because a sending

consumer who embeds an identifier and sends the marked

version to the receiving consumer could keep a copy of this

version, publish it and so frame the receiving consumer.

Another possibility to frame other consumers is to use

fingerprinting on a document without even performing a

transfer and publish the resulting document.

A different problem that arises with the possibility of false

accusation is denial. If false accusation is possible, then

every guilty receiving consumer can claim that he is

innocent and was framed by the sending consumer. The

crucial phase in our model is the transfer of a document

Paper ID: NOV163404 1254

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

involving untrusted entities, so we clearly define which

properties we require our protocol to fulfill. We call the two

parties sender and recipient. We expect a transfer protocol to

fulfill the following properties and only tolerate failures with

negligible probabilities.

1) Correctness: When both parties follow the protocol

steps correctly and only publish their version of the

document, the guilty party can be found.

2) No framing: The sender cannot frame recipients for the

sender’s leakages.

3) No denial: If the recipient leaks a document, he can be

provably associated with it.

We also require our model to be collusion resistant, i.e. it

should be able to tolerate a small number of colluding

attackers. We also assume that the communication links

between parties are reliable Non Goals. We do not aim at

proactively stopping data leakage; we only provide means to

provably identify the guilty party in case a leak should

occur, so that further steps can be taken. We also do not aim

for integrity, as at any point an entity can decide to exchange

the document to be sent with another one. However, in our

settings, the sender wants the receiver to have the correct

document, as he expects the recipient to perform a task using

the document so that he eventually obtains a meaningful

result.

4. Primitives

A function f is negligible if for all c > 0 there is a nc so that

for all n ≥ nc f (n) ≤ n
1

C . In our scheme we make use of

digital signatures. More precisely, we use a CMA-secure

signature [12], i.e., no polynomial-time adversary is able to

forge a signature with non-negligible probability. For a

message m that has been signed with party A’s signing key,

we write [m]skA . We use a symmetric encryption scheme

that offers security under chosen plaintext attacks, writing c

= enc(m, ek) for encryption of a message m and m = dec(c,

ek) for decryption of a cipher text c with symmetric key ek.

Robust Watermarking
We use the definition of watermarking by Adelsbach et al.

To argue about watermarking, we need a so-called similarity

function sim(D, D
′
) that returns ⊤ if the two documents D

and D
′
 are considered similar in the used context and ⊥

otherwise. The similarity function is a different one for each

data type used and we assume it is given. For example, two

images could be considerered similar, if a human observer

can extract the same information from them.

Let D be the set of all possible documents, WM ⊆ {0, 1}
+

the set of all possible watermarks, K the set of keys and κ

the security parameter of the watermarking scheme. A

symmetric, detecting watermarking scheme is defined by

three polynomial-time algorithms:

Probabilistic Key Generation Algorithm:

GenKey
W M

 (1
κ
) outputs a key k ∈ K for a given security

parameter κ.

• The probabilistic Embedding Algorithm generates a water-

marked document D
′
 = W(D, w, k) on input of the original

document D ∈ D, the watermark w ∈ WM and the key k ∈

K.

• The Detection Algorithm Detect(D
′
, w, D, k) outputs ⊤ or

⊥ on input of a (potentially watermarked) document D
′
 ∈ D,

a watermark w ∈ WM, the original document D ∈ D and a

key k ∈ K. ⊤ means that the watermark is detectable; ⊥

means, that it is not.

We require the following properties:

• Imperceptibility: ∀D ∈ D, ∀w ∈ WM, ∀k ∈ K.D
′
 ←

W(D, w, k) ⇒ sim(D, D
′
) = ⊤, i.e., the original document

and the watermarked document are similar.

• Effectiveness: ∀D ∈ D, ∀w ∈ WM, ∀k ∈ K.D
′
 ← W(D,

w, k) ⇒ Detect(D
′
, w, D, k) = ⊤, i.e., if a watermark is

embedded using a key k, the same watermark should be

detectable using the same key k.

Detect (D
′′
, w, D, k) = ⊥ with non-negligible probability.

This means that no adversary can efficiently remove or

change a watermark without rendering the document unus-

able (i.e., breaking the similarity).

Additionally, we require our watermarking scheme to sup-

port multiple re-watermarking, i.e., it should allow for

multiple (bounded by the dataflow path length) watermarks

to be embedded successively without influencing their

individual delectability. This property can also be considered

as a special kind of robustness, as it prevents adversaries

from making a watermark undetectable simply by adding

more watermarks using the same algorithm. More

information and some experimental results about this

property can be found in.

It is shown that the scheme is robust against many common

attacks such as scaling, JPEG compression, printing,

Xeroxing and scanning, multiple re-watermarking and

others.

1-out-of-2 Oblivious Transfer
1-out-of-2 Oblivious Transfer (OT1

2
) involves two parties,

the sender and the chooser. The sender offers two items M0

and M1 and the chooser chooses a bit σ. The chooser obtains

Mσ but no information about M1−σ and the sender learns

anything regarding σ. In this context, when speaking of

learning nothing, we actually mean nothing can be learned

with non-negligible probability. When we use OT1
2
 in our

protocols to send messages, the sender actually encrypts the

messages, sends both cipher texts to the chooser and

performs OT1
2
 just on the decryption keys. This allows us to

use the OT1
2
 protocol with a fixed message size

Paper ID: NOV163404 1255

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

While actually sending messages of arbitrary size. Note that

this could only be a security risk if the chooser was able to

break the encryption scheme. There are different concrete

instantiations of this primitive. As an example

implementation of OT1
2
 we show a protocol by Naor and

Pinkas in the Appendix.

5. Accountable Data Transfer

In this section we specify how one party transfers a

document to another one, what information is embedded and

which steps the auditor performs to find the guilty party in

case of data leakage. We assume a public key infrastructure

to be present, i.e. both parties know each other’s signature

verification key.

Trusted Sender
In the case of a trusted sender it is sufficient for the sender to

embed identifying information, so that the guilty party can

be found. As the sender is trusted, there is no need for

further security mechanisms. In Fig. 2, we present a transfer

protocol that fulfills the properties of correctness and no

denial as defined in Section 2.2. As the sender is trusted to

be honest, we do not need the any framing property.

The sender, who is in possession of some document D,

creates a watermarking key k, embeds a triple σ = (CS , CR, τ

) consisting of the two parties’ identifiers and a timestamp τ

into D to create Dw = W(D, σ, k). He then sends Dw to the

recipient, who will be held accountable for this version of

the document. As the sender also knows Dw, this very simple

protocol is only applicable if the sender is completely

trusted; otherwise the sender could publish Dw and blame the

recipient.

Untrusted Sender
In the case of an untrusted sender we have to take additional

actions to prevent the sender from cheating, i.e. we have to

fulfill the no framing property. To achieve this property, the

sender divides the original document into n parts and for

each part he creates two differently watermarked versions.

He then transfers one of each of these two versions to the

recipient via OT1
2
. The recipient is held accountable only for

the document with the parts that he received, but the sender

does not know which versions that is. The probability for the

sender to cheat is therefore 2
1

N .

Remark. It would also be possible to include the signed

statement σ in every single part of the document, but as the

maximum size of a watermark is limited by the document’s

size, this might be problematic for scenarios where the parts

are small. Therefore, we embed σ in the complete original

document and only embed single bits to the (possibly small)

parts of the document.

Figure 3: Protocol for untrusted senders: The sender splits a

watermarked document into n parts and creates two different

versions of each part by embedding another watermark. The

recipient via OT receives one of two versions of each part as

well as a signed statement as proof of his choice. The

recipient joins the individual parts to create his version of

the document.

Timestamp τ to uniquely identify a specific transfer between

two parties, and thus assume that no two transfers between

the same two parties take place at the same time. However,

it would be possible to use a counter that is incremented on

each transfer to allow multiple transfers at the exact same

time.

Analysis of the Protocol
We now show that the protocol presented in Fig. 3 fulfills

the required properties of correctness, no framing and no

denial as presented in Section 2.2 :

1) Correctness: Assume that both parties follow the

protocol steps correctly. Assuming the correctness of the

encryption, watermarking, signature and oblivious

transfer scheme, we show that for all possible scenarios

the guilty party can be determined correctly:

a) the sender publishes D or D
′
: The auditor does not

detect

σ (in the case of D) or the bi values (in the case of D
′
) and

correctly blames the sender, because both watermarks

have to be present in order to blame the recipient.

b) the recipient publishes Dw: The auditor successfully

detects σ and b
′
 in the leaked document and verifies that

is of the correct form. The recipient is able to provide the

proof of his choice of b; the auditor verifies b
′
 = b and

suspects the recipient. As there are no further watermarks

embedded, the auditor correctly blames the recipient.

False positives in the watermark detection (i.e., a watermark

is detected, although it is actually not present) is not a big

issue, as the probability that the correct bit string of length n

is spuriously detected is negligible. False negatives (i.e., a

watermark is not detected, although it is embedded in the

document) can be problematic, because if watermarks are

not detected the auditor blames the sender. Nevertheless, as

included timestamp τ is the same, too. As the auditor asks

the recipient to prove his choice of b for this τ , the recipient

is able to provide a correct proof, as a valid transfer with

timestamp τ actually happened. Analogous to the previous

case, the sender can only chose b∗ ∈ {0, 1}
n
 randomly and

therefore he can only succeed with negligible probability.

Paper ID: NOV163404 1256

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

From these two steps it follows that the sender is not able

to frame a recipient.

The recipient could also create a watermarked version with a

different bit string embedded, if he is able to get Di,1−bI for

some i, but this is only possible if he breaks the OT2
1
 scheme

or the encryption scheme, which is only possible with

negligible probability. We now show that a recipient cannot

cheat during the auditing process, when he proves which

version of the document he asked for during the transfer

protocol: In order to prove another choice of b he would

again have to break the OT2
1
 scheme or the encryption

scheme in order to learn the mi,1−bI for some i or he would

need to forge the sender’s signature to create mi,1−bI for some

i. As all of this is only possible with negligible probability,

the overall probability for the recipient to succeed is

negligible. From these two steps it follows that the recipient

is not able to publish a document without being caught.

6. Implementation and Microbenchmarking

We implemented the protocol in Fig. 3 as a proof-of-concept

and to analyze its performance. For the oblivious transfer

sub protocol we implemented the protocol by Naor and

Pinkas using the PBC library, which itself makes use of the

GMP library. For signatures we implemented the BLS

scheme, also using the PBC library. For symmetric

encryption we used an implementation of AES from the

Crypto++ library. For watermarking we used an

implementation of the Cox algorithm for robust image

watermarking from Peter Meerwald’s watermarking toolbox.

We set the α-factor, which determines the strength of the

watermark, to a value of 0.1.

We executed the experiment with different parameters to

analyze the performance. The sender and recipient part of

the protocol are both executed in the same program, i.e., we

do not analyze network sending, but only computational

performance. The executing machine is a Lenovo ThinkPad

model T430 with 8 GB RAM and 4 × 2.6GHz cores, but all

executions were performed sequentially. We measured

execution times for different phases of the protocol:

watermarking, signature creation, encryption, oblivious

transfer and detection. We executed each experiment 250

times and determined the average computation time and the

standard deviation.

In the first experiment we used an image of size 512 × 512

pixels and changed the number of parts the image was split

into. We show the results in Fig. 4(a). We can see that the

execution time of watermarking, signatures, oblivious

transfer and detection is linear in the number of document

parts. The execution time of encryption is also increasing

slowly, but it is still insignificant compared to the other

phases.

We find that latencies of a few seconds are acceptable in the

scenarios that we considered. Additionally, as we show in

our experiments in Fig. 4(a), one can easily perform a

tradeoff between performance and security. It is also

possible to use the OT extension technique presented in [20]

to increase the efficiency of oblivious transfer. Although we

use only image files as documents in our experimental

implementation, we stress that the same mechanism can be

used for all types of data for which robust watermarking

schemes exist.

Communication Overhead
Assuming 128-bit security level for encryptions and

signatures, and splitting the document of size s into n parts,

we can compute the communication overhead as follows:

First the recipient sends σ consisting of two identifiers (8

bytes), one Unix timestamp (8 bytes) and one BLS signature

(32 bytes). The sender in return sends 2n times a document

part of size n
s
 and a message consisting of one timestamp (8

bytes), one single bit, one integer (4 bytes) together with the

according BLS signature (32 bytes). This totals to 2 · (s + n ·

(8 + 1 + 4 + 32)) = 2 · (s + 45n) bytes. Additionally, sender

and recipient run n parallel instances of an oblivious transfer

protocol (in our case the one by Naor and Pinkas [15]). In

each protocol run, the sender sends two group elements (64

bytes) in the initialization phase. In the transfer phase the

chooser sends one group element (32 bytes) and the sender

sends two encryptions of messages (which are AES keys in

our case) (64 bytes). In total the sender sends 2s + 218n

bytes and the recipient sends 32n + 48 bytes. For our

example with an image of

Paper ID: NOV163404 1257

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

size s = 1MB and n = 64 we have a communication overhead

of 2.008MB for the sender and 2.05KB for the recipient,

which we find to be practical.

The auditor to one of the outsourcing companies. This

outsourcing company can in turn reveal additional

fingerprints in the leaked document in order to point to the

next outsourcing company and to prove its own innocence.

Finally, the auditor creates the complete lineage and is able

to determine the guilty party. In the example given in the

introduction, there were three outsourcing companies

involved and a data leakage could not be clearly associated

with one of these. The responsible party can be clearly found

using LIME.

Storage Overhead
Both parties need to store some data so that they can provide

the necessary information to the auditor during the process

of lineage generation. The sender needs to store the first

watermark σ (48 bytes) and 2 watermarking keys. For a non-

blind watermarking scheme like the Cox algorithm used in

our implementation the sender also needs to store the

original document.

Multiple Iterations
Fig. 5(a2) shows an image that was transferred

Outsourcing
The first diagram in Fig. 6 shows a typical outsourcing

scenario. An organization acts as owner and can outsource

tasks to outsourcing companies which act as consumers in

our model. It is possible that the outsourcing companies

receive sensitive data to work on and as the outsourcing

companies are not necessarily trusted by the organization,

fingerprinting is used on transferred documents. The

outsourcing company itself can outsource tasks to other

outsourcing companies and thus relay the documents, again

using fingerprinting. It is important to notice that a single

organization can outsource to may different outsourcing

companies in parallel, thus creating a tree-shaped transfer

diagram. If now at any point one of the involved outsourcing

companies leaks a confidential document, the organization

can invoke the auditor to find the responsible party. The

auditor then asks the organization to reveal the first set of

fingerprints in the leaked document, which leads the second

diagram in Fig. 6 shows an online social networking

scenario. The users of the network are the owners, as they

enter their personal information, post messages, etc. The

online social network (OSN) uses all this information as a

consumer in this scenario. Third party applications that have

access to this information in return for some service act as

further consumers in this scenario. The users give their

information to the OSN which can relay that information to

third party applications using fingerprinting. In case of a

leakage the auditor can create the lineage of the leaked

document and thereby provably determine the responsible

party.

Collusion Resistance
The collusion resistance of our scheme depends on the

collusion resistance of the underlying watermarking scheme.

Assume several consumers are working together in order to

create an untraceable version of a document. Then their

approach is to merge the versions they rightfully obtained to

create a new version where the watermarks cannot be

detected.

As the detection of σ is just a detection of a watermark in the

complete document, we obviously have the same collusion

resistance as the watermarking scheme for this case. The

case of the detection of a bit bi in a part Di is again just a

detection of a watermark, so the collusion resistance is again

the same as for the watermarking scheme. However, we

have to know which detected bit belongs to which

consumer; so that we can still guarantee that the sender

cannot frame the receiving consumers. Linking the detected

bits to the responsible consumers is possible, as for each

consumer a different embedding key was used. As for each

part multiple bits might be detectable, the probability for a

sender to successfully frame the receiving consumers is less

than or equal to the probability of framing a single recipient

successfully, as he still would have to guess all the bits

correctly. However, we have to note that in order to

successfully mount collusion attack against our scheme, it is

sufficient to mount a collusion attack against 1 of the n + 1

watermarks that are used, where n is the number of parts the

document was split into.

We can conclude that our scheme tolerates collusions to a

certain extent, when it is used with a collusion resistant

watermark, without losing its key properties.

Error Tolerance
Depending on the quality of the underlying watermarking

scheme, it may be too strong to require that all bits bi are

detected correctly. Therefore, it could be a good idea to

introduce some error tolerance. However, we have to keep in

mind that this will increase the probability of the sender

successfully framing an innocent recipient. There are two

different kinds of errors that can occur: the first one is that

no bit can be detected, and the second one is that a wrong bit

is detected. Assume the document is split into n parts.

Tolerating a non-detectable bit increases the probability of

successful framing by a factor of 2. Instead of guessing a bit

string b ∈ {0, 1}
n
, it is sufficient to guess b ∈ {0, 1}

n−1
.

Tolerating a wrong bit is worse, as it increases this

probability by a factor of (n + 1). Instead of accepting just

the correct bit string, we also accept all bi strings that are

changed at exactly one position. As there are n positions, we

additionally accept n bit strings; hence the number of

accepted bit strings and thus the probability of guessing one

of these is higher by a factor of:

n + 1. If we want to allow some error tolerance while

keeping the probability of successful framing to be small, we

Paper ID: NOV163404 1258

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

have to choose a larger n; e.g., to tolerate 128 non-detectable

bits, we choose

n = 256 and have the same framing probability as with n =

128 and no tolerance.

Possible Data Distortion
In our experiment, we used a simple splitting algorithm: We

split the image into n equally sized squares. However, when

we used a strong watermark for the small parts (that is the α-

factor used by the Cox algorithm is 0.5), differences

between adjacent parts became visible even though the

single watermarks are imperceptible. The resulting image

can be seen in Fig. 5(b1). This effect becomes even stronger

after multiple iterations as observed in Fig.5(b2). In some

cases, this distortion might affect the usability of the

document. We stress however, that we were still able to

obtain good results with our approach. In

7. Related Work

A preliminary shorter version of this paper appeared at the

STM workshop. This version constitutes a significant

extension by including the following contributions: We give

a more detailed description of our model, a formal

specification of the used primitives, an analysis of the

introduced protocol, a discussion of implementation results,

an application of our framework to example scenarios, a

discussion of additional features and an extended discussion

of related work.

Other Models
Hasan, Sion and Winslett present a system that enforces

logging of read and write actions in a tamper-proof

provenance chain. This creates the possibility of verifying

the origin of information in a document. However, as an

attacker is able to strip of the provenance information of a

file, the problem of data leakage in malicious environments

is not tackled by their approach.

The model introduced in intends to help the data distributor

to identify the malicious agent which leaked the information.

In addition, they argue that current watermarking techniques

are not practical, as they may embed extra information

which could affect agents’ work and their level of robustness

may be inadequate. In LIME the relationship of data

distributor and agents corresponds to the relationship

between data owner and consumer and the model could be

used as an alternative method to trace the information given

to the consumers.

Controlled data disclosure is a well-studied problem in the

security literature, where it is addressed using access control

mechanisms. Although these mechanisms can control

release of confidential information and also prevent

accidental or malicious destruction of information, they do

not cover propagation of information by a recipient that is

supposed to keep the information private. For example, once

an individual allows a third party app to access her

information from a social network, she can no longer control

how that app may redistribute the information. In the authors

present the problem of an insider attack, where the data

generator consists of multiple single entities and one of these

publishes a version of the document. Usually methods for

proof-of-ownership or fingerprinting are only applied after

completion of the generating process, so all entities involved

in the generation process have access to the original

document and could possibly publish it without giving credit

to the other authors, or also leak the document without being

tracked. As presented in the paper, this problem can be

solved by the usage of watermarking and possibly even by

using complete fingerprinting protocols during the

generating phase of the document.

Other Fingerprinting Protocols
In Poh addresses the problem of accountable data transfer

with untrusted senders using the term fair content tracing.

He presents a general framework to compare different

approaches and splits protocols into four categories

depending on their utilization of trusted third parties, i.e., no

trusted third parties; offline trusted third parties, online

trusted third parties and trusted hardware. Furthermore, he

introduces the additional properties of recipient anonymity

and fairness in association with payment. All presented

schemes use watermarking to trace the guilty party and most

presented protocols make use of watermarking in the

encrypted domain, where encrypted watermarks are

embedded in encrypted documents. A major advantage of

our scheme is that it can be used with every existing

watermarking scheme without any modification. The

schemes relying on watermarking in the encrypted domain

only work with watermarking schemes that are designed for

this technique. A new scheme presented is based on

chameleon encryption. In Sadeghi also examines several

fingerprinting schemes and presents new constructions for

symmetric, asymmetric and anonymous fingerprinting

schemes. The asymmetric scheme uses a homomorphism

commitment scheme to compute the fingerprinted version of

the document.

Domingo-Ferrer presents the first fingerprinting protocol

that makes use of oblivious transfer in. In the scheme,

documents are split into smaller parts and for each part two

different versions are created. Then the recipient receives

one version of each part via oblivious transfer and in return

sends a commitment on the received part. The recipient can

now be identified by the unique combinations of versions he

received. The protocol has several flaws, as discussed. The

main problem is that a malicious sender can offer the same

version twice in the oblivious transfer, so that he will know

which version the recipient receives.

Sadeghi and Hanaoka et al. propose different solutions; the

former lets the sender open some pairs to validate that they

are not equal and the latter uses oblivious transfer with a

two-lock cryptosystem where the recipient can compare both

versions in encrypted form. However, both proposed

solutions have some flaws themselves. The problem is that it

is possible to create two different versions with the same

watermark, so even if the equality test fails, the two offered

versions can still have the same watermark and the sender

will know which watermark the recipient received. Also, the

fix proposed in ruins the negligible probability of failure, as

it does not split the document into parts, but creates n

different versions and sends them via 1-out-of-n oblivious

transfer.

Paper ID: NOV163404 1259

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Domingo-Ferrer presents another protocol based on

oblivious transfer, but again the sender can cheat during

oblivious transfer. Presents another protocol using oblivious

transfer. The protocol uses an approach similar to the

chameleon encryption, and using 1-out-of-n oblivious

transfer a decryption key is transmitted so that the sender

does not know it. The protocol suffers from the same

problems as the one presented in; namely, the sender can

guess the key used by the recipient with non-negligible

probability n
1
 and the sender can even cheat in the oblivious

transfer by offering the same key n times, so that he will

know the key used by the recipient.

We see that all asymmetric fingerprinting protocols based on

oblivious transfer that have been proposed so far suffer from

the same weakness. We circumvent this problem in our

protocol by additionally sending a signed message including

the watermark’s content, so that the recipient is able to prove

what he asked for. In contrast to the watermark, this message

can be read by the recipient, so he can notice if the sender

cheats.

Broadcasting
Parviainen and Parnes present an approach for distributing

data in a multicast system, so that every recipient holds a

differently watermarked version. The sender splits the file

into blocks and for each block he creates two different

versions by water-marking them with different watermarks

and encrypting them with different keys. Each recipient is

assigned a set of keys, so that he can decrypt exactly one

version of each part. The resulting combination of parts can

uniquely identify the recipient. In Adelsbach, Huber and

Sadeghi show another approach for a broadcasting system

that allows identification of recipients by their received files.

With a technique called fingercasting, recipients

automatically embed a watermark in files during the

decryption process. The process is based on the chameleon

cipher [29], which allows one to decrypt an encrypted file

with different decryption keys, to introduce some noise that

can be used as a means of identification. In [38]

Katzenbeisser et al. use the technique of fingercasting

together with a randomized fingerprinting code in order to

provide better security against colluding attackers. However,

in these broadcasting approaches the problem of an

untrusted sender is not addressed.

Watermarking
LIME can be used with any type of data for which

watermarking schemes exist. Therefore, we briefly describe

different water-marking techniques for different data types.

Most watermarking schemes are designed for multimedia

files such as images, videos, and audio files. In these

multimedia files, water-marks are usually embedded by

using a transformed representation (e.g. discrete cosine,

wavelet or Fourier transform) and modifying transform

domain coefficients.

Watermarking techniques have also been developed for

other data types such as relational databases, text files and

even Android apps. The first two are especially interesting,

as they allow us to apply LIME to user databases or medical

records. Watermarking relational databases can be done in

different ways. The most common solutions are to embed

information in noise-tolerant attributes of the entries or to

create fake database entries. For watermarking of texts, there

are two main approaches. The first one embeds information

by changing the text’s appearance (e.g. changing distance

between words and lines) in a way that is imperceptible to

humans. The second approach is also referred to as language

watermarking and works on the semantic level of the text

rather than on its appearance. A mechanism also has been

proposed to insert watermarks to Android apps. This

mechanism encodes a watermark in a permutation graph and

hides the graph as a linked list in the application. Due to the

list representation, watermarks are encoded in the execution

state of the application rather than in its syntax, which

makes it robust against attacks.

Suchanek et al. propose an interesting approach for

watermarking ontologies. In this approach the authors

propose to rather remove existing information than adding

new information or modifying existing information. Thereby

the wa-termarking scheme guarantees that no false entries

are introduced. The above schemes can be employed in our

framework to create data lineage for documents of the

respective formats. The only modification that might be

necessary when applying our scheme to a different

document type is the splitting algorithm. For example for

images it makes more sense to take small rectangles of the

original image instead of simply taking the consecutive

bytes from the pixel array.

Embedding multiple watermarks into a single document has

been discussed in literature and there are different tech-

niques available. In they discuss multiple re-watermarking

and in the focus is on segmented watermarking. Both papers

show in experimental results that multiple watermark-ing is

possible which is very important for our scheme, as it allows

us to create a lineage over multiple levels.

It would be desirable not to reveal the private watermarking

key to the auditor during the auditor’s investigation, so that

it can be safely reused, but as discussed in current public key

watermarking schemes are not secure and it is doubtful if it

is possible to design one that is secure. In Sadeghi presents

approaches to zero-knowledge watermark detection. With

this technology it is possible to convince another party of the

presence of a watermark in a document without giving any

information about the detection key or the watermark itself.

However, the scheme discussed in also hides the content of

the watermark itself and are therefore unfit for our case, as

the auditor has to know the watermark to identify the guilty

person. Furthermore, using a technology like this would

come with additional constraints for the chosen

watermarking scheme.

8. Conclusion and Future Directions

We present LIME, a model for accountable data transfer

across multiple entities. We define participating parties, their

inter-relationships and give a concrete instantiation for a

data transfer protocol using a novel combination of oblivious

transfer, robust watermarking and digital signatures. We

prove its correctness and show that it is realizable by giving

micro benchmarking results. By presenting a general

Paper ID: NOV163404 1260

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

applicable framework, we introduce accountability as early

as in the design phase of a data transfer infrastructure.

Although LIME does not actively prevent data leakage, it

introduces reactive accountability. Thus, it will deter

malicious parties from leaking private documents and will

encourage honest (but careless) parties to provide the

required protection for sensitive data. LIME is flexible as we

differentiate between trusted senders (usually owners) and

untrusted senders (usually consumers). In the case of the

trusted sender, a very simple protocol with little overhead is

possible. The untrusted sender requires a more complicated

protocol, but the results are not based on trust assumptions

and therefore they should be able to convince a neutral entity

(e.g. a judge).

Our work also motivates further research on data leakage

detection techniques for various document types and

scenarios. For example, it will be an interesting future

research direction to design a verifiable lineage protocol for

derived data.

References

[1] “Chronology of data breaches,”

http://www.privacyrights.org/data-breach.

[2] “Data breach cost,” http:

//www.symantec.com/about/news/release/article.jsp?pri

d=20110308 01.

[3] “Privacy rights clearinghouse,”

http://www.privacyrights.org.

[4] “Electronic Privacy Information Center (EPIC),”

http://epic.org, 1994.

[5] “Facebook in Privacy Breach,”

http://online.wsj.com/article/

SB10001424052702304772804575558484075236968.h

tml.

[6] “Offshore outsourcing,”

http://www.computerworld.com/s/article/

109938/Offshore outsourcing cited in Florida data leak.

[7] A. Mascher-Kampfer, H. St ogner,¨ and A. Uhl,

“Multiple re-watermarking scenarios,” in Proceedings

of the 13th International Conference on Systems,

Signals, and Image Processing (IWSSIP 2006).

Citeseer, 2006, pp. 53–56.

[8] P. Papadimitriou and H. Garcia-Molina, “Data leakage

detection,”

[9] “Pairing-Based Cryptography Library (PBC),”

http://crypto.stanford.edu/pbc.

[10] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon,

“Secure spread spectrum watermarking for

multimedia,” Image Processing, IEEE Transactions on,

vol. 6, no. 12, pp. 1673–1687, 1997.

[11] B. Pfitzmann and M. Waidner, “Asymmetric

fingerprinting for larger collusions,” in Proceedings of

the 4th ACM conference on Computer and

communications security, ser. CCS ’97, 1997, pp. 151–

160.

[12] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital

signature scheme secure against adaptive chosen-

message attacks,” SIAM J. Comput., vol. 17, no. 2, pp.

281–308, 1988.

[13] A. Adelsbach, S. Katzenbeisser, and A.-R. Sadeghi, “A

computational model for watermark robustness,” in

Information Hiding. Springer, 2007, pp. 145–160.

[14] J. Kilian, F. T. Leighton, L. R. Matheson, T. G.

Shamoon, R. E. Tarjan, and F. Zane, “Resistance of

digital watermarks to collusive attacks,” in

Paper ID: NOV163404 1261

