
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Secure Distributed and Auditing Reliability for
Deduplication

Soumya S. M.

1
, Sarvamangala D. R.

2

1School of Computing and Information Technology, M. Tech, Reva University, Bangalore, India

2School of Computing and Information Technology, Asst. Professor, Reva University, Bangalore, India

Abstract: Data deduplication is a technique for eliminating duplicate copies of data, and has been widely used in cloud storage to

reduce storage space and upload bandwidth. However, there is only one copy for each file stored in cloud even if such a file is owned by

a huge number of users. As a result, deduplication system improves storage utilization while reducing reliability. Furthermore, the

challenge of privacy for sensitive data also arises when they are outsourced by users to cloud. Aiming to address the above security

challenges, this paper makes the first attempt to formalize the notion of distributed reliable deduplication system. We propose new

distributed deduplication systems with higher reliability in which the data chunks are distributed across multiple cloud servers. The

security requirements of data confidentiality and tag consistency are also achieved by introducing a deterministic secret sharing scheme

in distributed storage systems, instead of using convergent encryption as in previous deduplication systems. Security analysis

demonstrates that our deduplication systems are secure in terms of the definitions specified in the proposed security model. As a proof of

concept, we implement the proposed systems and demonstrate that the incurred overhead is very limited in realistic environments.

Keywords: Data deduplication, reliability, distributed deduplication, cloud servers, security requirements, data confidentiality, and tag.

1. Introduction

With the explosive growth of digital data, deduplication
techniques are widely employed to backup data and
minimize network and storage overhead by detecting and
eliminating redundancy among data. Instead of keeping
multiple data copies with the same content, deduplication
eliminates redundant data by keeping only one physical copy
and referring other redundant data to that copy.

Deduplication has received much attention from both
academia and industry because it can greatly improves
storage utilization and save storage space, especially for the
applications with high deduplication ratio such as archival
storage systems. A number of deduplication systems have
been proposed based on various deduplication strategies
such as client-side or server-side deduplications, file-level or
block-level deduplications.

A brief review is given in Section 6. Especially, with the
advent of cloud storage, data deduplication techniques
become more attractive and critical for the management of
ever-increasing volumes of data in cloud storage services
which motivates enterprises and organizations to outsource
data storage to third-party cloud providers, as evidenced by
many real-life case studies. According to the analysis report
of IDC, the volume of data in the world is expected to reach
40 trillion gigabytes in 2020. Today’s commercial cloud
storage services, such as Dropbox, Google Drive and Mozy,
have been applying deduplication to save the network
bandwidth and the storage cost with client-side
deduplication. There are two types of deduplication in terms
of the size: (i) file-level deduplication,

Which discovers redundancies between different files and
removes these redundancies to reduce capacity demands,
and (ii) blocklevel deduplication, which discovers and
removes redundancies between data blocks? The file can be
divided into smaller fixed-size or variable-size blocks. Using

fixed size blocks simplifies the computations of block
boundaries, while using variable-size blocks (e.g., based on
Rabin fingerprinting) provides better deduplication
efficiency. Though deduplication technique can save the
storage space for the cloud storage service providers, it
reduces the reliability of the system.

Data reliability is actually a very critical issue in a
deduplication storage system because there is only one copy
for each file stored in the server shared by all the owners. If
such a shared file/chunk was lost, a disproportionately large
amount of data becomes inaccessible because of the
unavailability of all the files that share this file/chunk. If the
value of a chunk were measured in terms of the amount of
file data that would be lost in case of losing a single chunk,
then the amount of user data lost when a chunk in the
storage system is corrupted grows with the number of the
commonality of the chunk. Thus, how to guarantee high data
reliability in deduplication system is a critical problem.

Most of the previous deduplication systems have only been
considered in a single-server setting. However, as lots of
deduplication systems and cloud storage systems are
intended by users and applications for higher reliability,
especially in archival storage systems where data are critical
and should be preserved over long time periods. This
requires that the deduplication storage systems provide
reliability comparable to other high-available systems.
Furthermore, the challenge for data privacy also arises as
more and more sensitive data are being outsourced by users
to cloud. Encryption mechanisms have usually been utilized
to protect the confidentiality before outsourcing data into
cloud.

Most commercial storage service provider is reluctant to
apply encryption over the data because it makes
deduplication impossible. The reason is that the traditional
encryption mechanisms, including public key encryption and
symmetric key encryption, require different users to encrypt

Paper ID: NOV163325 501

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

their data with their own keys. As a result, identical data
copies of different users will lead to different cipher texts.
To solve the problems of confidentiality and deduplication,
the notion of convergent encryption has been proposed and
widely adopted to enforce data confidentiality while
realizing deduplication. However, these systems achieved
confidentiality of outsourced data at the cost of decreased
error resilience. Therefore, how to protect both
confidentiality and reliability while achieving deduplication
in a cloud storage system is still a challenge.

2. Related Work

Side channels in cloud services: Deduplication in cloud
storage [1] Cloud storage services commonly use
deduplication, which eliminates redundant data by storing
only a single copy of each file or block. Deduplication
reduces the space and bandwidth requirements of data
storage services, and is most effective when applied across
multiple users, a common practice by cloud storage
offerings. We study the privacy implications of cross-user
deduplication. We demonstrate how deduplication can be
used as a side channel which reveals information about the
contents of files of other users. In a different scenario,
deduplication can be used as a covert channel by which
malicious software can communicate with its control center,
regardless of any firewall settings at the attacked machine.
Due to the high savings offered by cross-user deduplication,
cloud storage providers are unlikely to stop using this
technology. We therefore propose simple mechanisms that
enable cross-user deduplication while greatly reducing the
risk of data leakage.

IOPS [2] Offline Patching Scheme for the Images
Management in a Secure Cloud Environment Recent years
have witnessed the development of Cloud Computing. The
management of images is a big problem in virtualized
environment because there are quantities of Virtual Machine
images being stored in a Cloud and most of them are
outdated. How to detect the outdated images and patch them
efficiently? In this paper, we present a prototype called OPS-
Offline Patching Scheme for the Images Management in a
Secure Cloud Environment. In OPS, we can detect out the
outdated image quickly by a module called Collector. Then a
module called Patcher will patch the outdated images. In
order to patch an image efficiently, offline patching
technology is considered. For the large number of images in
the Cloud, parallel scheme is also used. Our experiment
results show that OPS can update numerous images
efficiently.

3. Contributions

We show how to design secure deduplication systems with
higher reliability in cloud computing. We introduce the
distributed cloud storage servers into deduplication systems
to provide better fault tolerance. To further protect data
confidentiality, the secret sharing technique is utilized,
which is also compatible with the distributed storage
systems. In more details, a file is first split and encoded into
fragments by using the technique of secret sharing, instead
of encryption mechanisms. These shares will be distributed
across multiple independent storage servers. Furthermore, to

support deduplication, a short cryptographic hash value of
the content will also be computed and sent to each storage
server as the fingerprint of the fragment stored at each
server. Only the data owner who first uploads the data is
required to compute and distribute such secret shares, while
all following users who own the same data copy do not need
to compute and store these shares any more. To recover data
copies, users must access a minimum number of storage
servers through authentication and obtain the secret shares to
reconstruct the data. In other words, the secret shares of data
will only be accessible by the authorized users who own the
corresponding data copy.

To achieve this, a deterministic secret sharing method has
been formalized and utilized. To our knowledge, no existing
work on secure deduplication can properly address the
reliability and tag consistency problem in distributed storage
systems. This paper makes the following contributions.
 Four new secure deduplication systems are proposed to

provide efficient deduplication with high reliability for
file-level and block-level deduplication, respectively. The
secret splitting technique, instead of traditional encryption
methods, is utilized to protect data confidentiality.
Specifically, data are split into fragments by using secure
secret sharing schemes and stored at different servers. Our
proposed constructions support both file-level and block-
level deduplications.

 Security analysis demonstrates that the proposed
deduplication systems are secure in terms of the
definitions specified in the proposed security model. In
more details, confidentiality, reliability and integrity can
be achieved in our proposed system. Two kinds of
collusion attacks are considered in our solutions. These
are the collusion attack on the data and the collusion
attack against servers. In particular, the data remains
secure even if the adversary controls a limited number of
storage servers.

 We implement our deduplication systems using the Ramp
secret sharing scheme that enables high reliability and
confidentiality levels. Our evaluation results demonstrate
that the new proposed constructions are efficient and the
redundancies are optimized and comparable with the other
storage system supporting the same level of reliability.

4. Problem Formulation

4.1 System Model

This section is devoted to the definitions of the system
model and security threats. Two kinds entities will be
involved in this deduplication system, including the user and
the storage cloud service provider (S-CSP). Both client-side
deduplication and server-side deduplication are supported in
our system to save the bandwidth for data uploading and
storage space for data storing.

 User. The user is an entity that wants to outsource data

storage to the S-CSP and access the data later. In a storage
system supporting deduplication, the user only uploads
unique data but does not upload any duplicate data to save
the upload bandwidth. Furthermore, the fault tolerance is
required by users in the system to provide higher
reliability.

Paper ID: NOV163325 502

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 S-CSP. The S-CSP is an entity that provides the
outsourcing data storage service for the users. In the
deduplication system, when users own and store the same
content, the S-CSP will only store a single copy of these
files and retain only unique data. A deduplication
technique, on the other hand, can, reduce the storage cost
at the server side and save the upload bandwidth at the
user side. For fault tolerance and confidentiality of data
storage, we consider a quorum of S-CSPs, each being an
independent entity. The user data is distributed across
multiple S-CSPs.

We deploy our deduplication mechanism in both file and
block levels. Specifically, to upload a file, a user first
performs the file-level duplicate check. If the file is a
duplicate, then all its blocks must be duplicates as well,
otherwise, the user further performs the block level duplicate
check and identifies the unique blocks to be uploaded. Each
data copy (i.e., a file or a block) is associated with a tag for
the duplicate check. All data copies and tags will be stored
in the S-CSP.

4.2 Threat Model and Security Goals

Two types of attackers are considered in our threat model:
(i) An outside attacker, who may obtain some knowledge of
the data copy of interest via public channels. An outside
attacker plays the role of a user that interacts with the S-
CSP; (ii) An inside attacker, who may have some knowledge
of partial data information such as the cipher text. An insider
attacker is assumed to be honest-but-curious and will follow
our protocol, which could refer to the S-CSPs in our system.
Their goal is to extract useful information from user data.
The following security requirements, including
confidentiality, integrity, and reliability are considered in
our security model.

Confidentiality: Here, we allow collusion among the
SCSPs. However, we require that the number of colluded S-
CSPs is not more than a predefined threshold. To this end,
we aim to achieve data confidentiality against collusion
attacks.

Integrity: Two kinds of integrity, including tag consistency
and message authentication, are involved in the security
model. Tag consistency check is run by the cloud storage
server during the file uploading phase, which is used to
prevent the duplicate/cipher text replacement attack.

Reliability: The security requirement of reliability in
deduplication means that the storage system can provide
fault tolerance by using the means of redundancy. In more
details, in our system, it can be tolerated even if a certain
number of nodes fail. The system is required to detect and
repair corrupted data and provide correct output for the
users.

5. The Distributed Deduplication Systems

The distributed deduplication systems’ proposed aim is to
reliably store data in the cloud while achieving
confidentiality and integrity. Its main goal is to enable
deduplication and distributed storage of the data across

multiple storage servers. Instead of encrypting the data to
keep the confidentiality of the data, our new constructions
utilize the secret splitting technique to split data into shards.
These shards will then be distributed across multiple storage
servers.

5.1 Building Blocks

5.1.1 Secret Sharing Scheme: There are two algorithms in
a secret sharing scheme, which are Share and Recover. The
secret is divided and shared by using Share. With enough
shares, the secret can be extracted and recovered with the
algorithm of Recover. In our implementation, we will use
the Ramp secret sharing scheme (RSSS) , to secretly split a
secret into shards. Specifically, the m(n, k, r)-RSSS (where n
> k > r ≥ 0) generates n shares from a secret so that (i) the
secret can be recovered from any k or more shares, and (ii)
no information about the secret can be deduced from any r
or less shares. Two algorithms, Share and Recover, are
defined in the (n, k, r)-RSSS.
 Share divides a secret S into (k −r) pieces of equal size,

generates r random pieces of the same size, and encodes
the k pieces using a non-systematic k-of-n erasure code
into n shares of the same size;

 Recover takes any k out of n shares as inputs and then
outputs the original secret S. It is known that when r = 0,
the (n, k, 0)-RSSS becomes the (n, k) Rabin’s Information
Dispersal Algorithm

 (IDA) . When r = k−1, the (n, k, k−1)-RSSS becomes the
(n,k) Shamir’s Secret Sharing Scheme (SSSS)

Tag Generation Algorithm. In our constructions below,
two kinds of tag generation algorithms are defined, that is,
TagGen and TagGen’. TagGen is the tag generation
algorithm that maps the original data copy F and outputs a
tag T(F). This tag will be generated by the user and applied
to perform the duplicate check with the server. Another tag
generation algorithm TagGen’ takes as input a file F and an
index j and outputs a tag. This tag, generated by users, is
used for the proof of ownership for F.

Message authentication code. A message authentication
code (MAC) is a short piece of information used to
authenticate a message and to provide integrity and
authenticity assurances on the message. In our construction,
the message authentication code is applied to achieve the
integrity of the outsourced stored files. It can be easily
constructed with a keyed (cryptographic) hash function,
which takes input as a secret key and an arbitrary-length file
that needs to be authenticated, and outputs a MAC. Only
users with the same key generating the MAC can verify the
correctness of the MAC value and detect whether the file has
been changed or not.

5.2 The File-level Distributed Deduplication System

To support efficient duplicate check, tags for each file will
be computed and are sent to S-CSPs. To prevent a collusion
attack launched by the S-CSPs, the tags stored at different
storage servers are computationally independent and
different. We now elaborate on the details of the
construction as follows.

Paper ID: NOV163325 503

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

System setup: In our construction, the number of storage
servers S-CSPs is assumed to be n with Identities denoted by
id1, id2, · · · , idn, respectively. Define the security
parameter as 1_ and initialize a secret sharing scheme SS =
(Share, Recover), and a tag generation algorithm TagGen.
The file storage system for the storage server is set to be ⊥ .

File Upload: To upload a file F, the user interacts with S-
CSPs to perform the deduplication. More precisely, the user
firstly computes and sends the file tag ϕF = TagGen (F) to
S-CSPs for the file duplicate check.

File Download: To download a file F, the user first
downloads the secret shares {cj} of the file from k out of n
storage servers. Specifically, the user sends the pointer of F
to k out of n S-CSPs. After gathering enough shares, the user
reconstructs file F by using the algorithm of Recover ({cj}).
This approach provides fault tolerance and allows the user to
remain accessible even if any limited subsets of storage
servers fail.

6. The Block-level Distributed Deduplication

System

In this section, we show how to achieve the fine-grained
block-level distributed deduplication. In a block-level
deduplication system, the user also needs to firstly perform
the file-level deduplication before uploading his file. If no
duplicate is found, the user divides this file into blocks and
performs block-level deduplication. The system setup is the
same as the file-level deduplication system, except the block
size parameter will be defined additionally. Next, we give
the details of the algorithms of File Upload and File
Download.

File Upload: To upload a file F, the user first performs the
file-level deduplication by sending ϕF to the storage servers.
If a duplicate is found, the user will perform the file-level
deduplication, such as that in Otherwise, if no duplicate is
found, the user performs the block-level deduplication as
follows. He firstly divides F into a set of fragments {Bi}
(where i = 1, 2, · · ·). For each fragment Bi, the user will
perform a block-level duplicate check by computing ϕBi =
TagGen(Bi), where the data processing and duplicate check
of block-level deduplication is the same as that of file-level
deduplication if the file F is replaced with block Bi.

File Download: To download a file F = {Bi}, the user first
downloads the secret shares {cij} of all the blocks Bi in F
from k out of n S-CSPs. Specifically, the user sends all the
pointers for Bi to k out of n servers. After gathering all the
shares, the user reconstructs all the fragments Bi using the
algorithm of Recover ({·}) and gets the file F = {Bi}.

7. Further Enhancement

7.1 Distributed Deduplication System with Tag

Consistency

In this section, we consider how to prevent a duplicate

faking or maliciously-generated cipher text replacement
attack. A security notion of tag consistency has been

formalized for this kind of attack. In a deduplication storage
system with tag consistency, it requires that no adversary is
able to obtain the same tag from a pair of different messages
with a non-negligible probability. This provides security
guarantees against the duplicate faking attacks in which a
message can be undetectably replaced by a fake one. In the
previous related work on reliable deduplication over
encrypted data, the tag consistency cannot be achieved as the
tag is computed by the data owner from underlying data
files, which cannot be verified by the storage server.

7.1.1 Deterministic Secret Sharing Schemes

We formalize and present two new techniques for the
construction of the deterministic secret sharing schemes. For
simplicity, we present an example based on traditional
Shamir’s Secret Sharing scheme. The description of (k, n)-
threshold in Shamir’s secret sharing scheme is as follows. In
the algorithm of Share, given a secret α ∈ Zp to be shared
among n users for a prime p, choose at random a (k − 1)-
degree polynomial function f(x) = a0 + a1x + a2x2 + · · · +
ak−1xk−1 ∈ Zp[X] such that α = f(0). The value of f(i) mod
p for 1 ≤ i ≤ n is computed as the i-th share. In the algorithm
of Recover, Lagrange interpolation is used to compute α
from any valid k shares.

7.1.2 The First Method

Share. To share a secret α ∈ Zp, it chooses at random a (k −
1)-degree polynomial function f(x) = a0 + a1x + a2x2 + · · ·
+ ak−1xk−1 ∈ Zp[X] such that α = f(0), ai = H(α∥ i) and p is
a prime, where H(·) is a hash function. The value of f(i) mod
p for 1 ≤ i ≤ n is computed as the i-th share and distributed to
the corresponding owner. Recover. The description of
algorithm Recover is the same with the traditional Shamir’s
secret sharing scheme by using Lagrange interpolation. The
secret α can be recovered from any valid k shares.

7.1.3 The Second Method

Obviously, the first method of deterministic secret sharing
cannot prevent brute-force attack if the file is predictable.
Thus, we show how to construct another deterministic secret
sharing construction method to prevent the brute-force
attack. Another entity, called key server, is introduced in this
method, who is assumed to be honest and will not collude
with the cloud storage server and other outside attackers.

8. Experiment

We describe the implementation details of the proposed
distributed deduplication systems in this section. The main
tool for our new deduplication systems is the Ramp secret
sharing scheme (RSSS). The shares of a file are shared
across multiple cloud storage servers in a secure way.

The efficiency of the proposed distributed systems are
mainly determined by the following three parameters of n, k,
and r in RSSS. In this experiment, we choose 4KB as the
default data block size, which has been widely adopted for
block-level deduplication systems. We choose the hash
function SHA-256 with an output size of 32 bytes. We
implement the RSSS based on the Jerasure Version 1.2. We
choose the erasure code in the (n, k, r)-RSSS whose
generator matrix is a Cauchy matrix for the data encoding
and decoding. The storage blowup is determined by the

Paper ID: NOV163325 504

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 5, May 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

parameters n, k, r. In more details, this value is n k−r in
theory.

• Case 1: r = 1, k = 2, and 3 ≤ n ≤ 8 (Figure 3(a));
• Case 2: r = 1, k = 3 and 4 ≤ n ≤ 8 (Figure 3(b));
• Case 3: r = 2, k = 3, and 4 ≤ n ≤ 8 (Figure 3(c));
• Case 4: r = 2, k = 4, and 5 ≤ n ≤ 8 (Figure 3(d)).

4KB data block) are always in the order of microseconds,
and hence are negligible compared to the data transfer
performance in the Internet setting. We can also observe that
the encoding time is higher than the decoding time. The
reason for this result is that the encoding operation always
involves all n shares, while the decoding operation only
involves a subset of k < n shares.

9. Related Work

Reliable Deduplication systems Data deduplication
techniques are very interesting techniques that are widely
employed for data backup in enterprise environments to
minimize network and storage overhead by detecting and
eliminating redundancy among data blocks. There are many
deduplication schemes proposed by the research community.

Convergent encryption: Convergent encryption ensures
data privacy in deduplication. Bellare et al. Formalized this
primitive as message-locked encryption, and explored its
application in space efficient secure outsourced storage.
There are also several implementations of convergent
implementations of different convergent encryption variants
for secure deduplication.

Proof of ownership: Harnik et al. Presented a number of
attacks that can lead to data leakage in a cloud storage
system supporting client-side deduplication. To prevent
these attacks, Halevi et al. proposed the notion of ―proofs of
ownership‖ (PoW) for deduplication systems, so that a client
can efficiently prove to the cloud storage server that he/she
owns a file without uploading the file itself. Several PoW
constructions based on the Merkle Hash Tree are proposed
[12] to enable client-side deduplication, which includes the
bounded leakage setting. Pietro and Sorniotti [23] proposed
another efficient PoW scheme by choosing the projection of
a file onto some randomly selected bit-positions as the file
proof. Note that all of the above schemes do not consider
data privacy.

PoR/PDP. Ateniese et al. Introduced the concept of proof of
data possession (PDP). This notion was introduced to allow
a cloud client to verify the integrity of its data outsourced to
the cloud in a very efficient way. Juels et al. Proposed the
concept of proof of irretrievability (PoR). Compared with
PDP, PoR allows the cloud client to recover his outsourced
data through the interactive proof with the server. This
scheme was later improved by Shacham and Waters [28].
The main difference between the two notions is that PoR
uses Error Correction/Erasure Codes to tolerate the damage
to portions of the outsourced data.

10. Conclusion

We proposed the distributed deduplication systems to
improve the reliability of data while achieving the
confidentiality of the users’ outsourced data without an
encryption mechanism. Four constructions were proposed to
support file-level and fine-grained block-level data
deduplication. The security of tag consistency and integrity
were achieved. We implemented our deduplication systems
using the Ramp secret sharing scheme and demonstrated that
it incurs small encoding/decoding overhead compared to the
network transmission overhead in regular upload/download
operations.

References

[1] Amazon, ―Case Studies,‖

https://aws.amazon.com/solutions/casestudies/# backup.
[2] J. Gantz and D. Reinsel, ―The digital universe in 2020:

Big data, bigger digi tal shadows, and biggest growth in
the far east,‖ http://www.emc.com/collateral/analyst-
reports/idcthe- digital-universe-in-2020.pdf, Dec 2012.

[3] M. O. Rabin, ―Fingerprinting by random polynomials,‖
Center for Research in Computing Technology, Harvard
University, Tech. Rep. Tech. Report TR-CSE-03-01,
1981.

[4] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and
M. Theimer, ―Reclaiming space from duplicate files in a
serverless distributed file system.‖ in ICDCS, 2002, pp.
617–624.

[5] M. Bellare, S. Keelveedhi, and T. Ristenpart, ―Dupless:
Serveraided encryption for deduplicated storage,‖ in
USENIX Security Symposium, 2013.

[6] ——, ―Message-locked encryption and secure
deduplication,‖ in EUROCRYPT, 2013, pp. 296–312.

[7] G. R. Blakley and C. Meadows, ―Security of ramp
schemes,‖ in Advances in Cryptology: Proceedings of
CRYPTO ’84, ser. Lecture Notes in Computer Science,
G. R. Blakley and D. Chaum, Eds. Springer-Verlag
Berlin/Heidelberg, 1985, vol. 196, pp. 242–268.

[8] A. D. Santis and B. Masucci, ―Multiple ramp schemes,‖
IEEE Transactions on Information Theory, vol. 45, no.
5, pp. 1720–1728, Jul. 1999.

[9] M. O. Rabin, ―Efficient dispersal of information for
security, load balancing, and fault tolerance,‖ Journal of
the ACM, vol. 36, no. 2, pp. 335–348, Apr. 1989.

[10] A. Shamir, ―How to share a secret,‖ Commun. ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[11] J. Li, X. Chen, M. Li, J. Li, P. Lee, and W. Lou, ―Secure
deduplication with efficient and reliable convergent key
management,‖ in IEEE Transactions on Parallel and
Distributed Systems, 2014, pp. vol. 25(6), pp. 1615–
1625.

[12] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg,
―Proofs of ownership in remote storage systems.‖ in
ACM Conference on Computer and Communications
Security, Y. Chen, G. Danezis, and V. Shmatikov, Eds.
ACM, 2011, pp. 491–500.

[13] J. S. Plank, S. Simmerman, and C. D. Schuman,
―Jerasure: A library in C/C++ facilitating erasure coding
for storage applications - Version 1.2,‖ University of
Tennessee, Tech. Rep. CS-08-627, August 2008.

Paper ID: NOV163325 505

https://aws.amazon.com/solutions/casestudies/
http://www.emc.com/collateral/analyst-reports/idcthe-
http://www.emc.com/collateral/analyst-reports/idcthe-

