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Abstract: As technology has increased and so has leaded the attacks in water bounders under national and international currents. 82% 

of world trade is dependent on water ways and thus monitoring and maintain of continues water vehicle is a challenge. In this paper 

have proposed a novel technique for ship monitoring under compressed domain for continues monitoring. The paper also focuses on 

mis-masking the actual location of ship with a difference of random allocation. 
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1. Introduction 
 
Ship detection and monitoring has become most important 
and focused agenda under water and navy management. 
International and national waters have increased cargo 
masking and mis-aligning of goods. Apart from monitoring, 
the proposed work has future scope towards trace 
monitoring of oil drops and fish illegal activities. Vessel 
monitoring from satellite images provides a wide visual field 
and covers large sea area and thus achieves a continuous 
monitoring of vessels’ locations and movements. With 
known that optical space borne images have higher 
resolution and more visualized contents than other remote 
sensing images, which is more suitable for ship detection or 
recognition in the aforementioned applications. 
 
However, optical space borne images usually suffer from 
two main issues: 1) weather conditions like clouds, mists, 
and ocean waves result in more pseudo targets for ship 
detection, and 2) optical spaceborne images with higher 
resolution naturally lead to larger data quantity than other 
remote sensing images, and thus, optical spaceborne images 
are more difficult to be tackled for real-time applications. 
 
The paper is organized with an introduction followed by a 
brief literature reviews on focusing towards previous version 
of work and architectures, section III consist of proposed 
methodology and section IV consist of Implementation and 
results. 
 
2. Proposed Method 
 
The typical JPEG 2000 compression is shown in Fig. 1.To 
clearly illustrate the proposed approach, it is necessary to 
define compressed domain in advance. According to the 
working  the compressed domain is anywhere in the 
compression or decompression procedure, after transform or 
before inverse transform. Therefore, object detection can be 
conducted in compressed domain from points 1 to 6 in Fig. 
1.Unlike the other points, entropy coding (points 3 and 4 in 
Fig. 1) will obviously change the spatial distribution of the 
object features and destroy the structure information. Hence, 
points 1, 2 and 5, 6 are more suitable for ship detection. 
Furthermore, as points 5, 6 are symmetry to points 1, 2 in 

code implementation, only points 1, 2 are discussed here in 
after. At the encoder side, DWT is first performed (point 1 
in Fig. 1). Then, the resulting coefficients are mapped to 
different bit planes by quantization (point 2 in Fig. 1). The 
bit-plane encoding will not obviously change the properties 
of wavelet features and thus, the detection accuracy will not 
be severely affected. Based on this analysis, point 1 is 
viewed as the ideal place for ship detection. 
 

 
 
The block diagram of the proposed framework is depicted in 
Fig. 2. It can be decomposed into two main steps: image 
preprocessing (for coarse ship locating), and feature 
representation and classification (for ship object detecting). 
In the preprocessing, CDF 9/7 wavelet coefficients are 
extracted from JPEG 2000 codec. The wavelet coefficients 
in different sub bands tend to reflect different properties of 
the original image . Generally speaking, the low frequency 
contains most of the global information, while the high 
frequency represents local or detail information. In the 
proposed model, the low-frequency sub band LL is exploited 
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for the extraction of the regions of ship candidates. On the 
other hand, the low-frequency coefficients and high 
frequency coefficients (HFCs) are individually processed for 
feature extraction by two DNNs, which are to be discussed 
in Section IV. Moreover, to fully exploit the information of 
the original image in wavelet domain, the resulting features 
from low and high sub bands are further fused by ELM, for 
more accurate feature classification (i.e., higher ship 
detection accuracy). The detailed implementations are listed 
as follows. 1) Wavelet singularities of LL are detected to 
train a stacked denoising auto encoder (SDA) 1. Note that 
SDA is one of the implementation strategies of DNN and 
will be introduced in Section IV-A. 2) The combination of 
the wavelet coefficients in high frequency sub bands (i.e., 
LH, HL, and HH) are used to train an SDA2. 3) The weight 
matrices of the trained SDAs are considered as feature 
extractors for low- and high-frequency sub bands, 
respectively. The obtained features are then combined to 
train an online sequential ELM (OS-ELM). It should be 
mentioned that the third step can be regarded as decision 
pooling of SDA1 and SDA2, or training a high performance 
classifier of ship features. Since we are to make our 
algorithm more robust to various environmental conditions, 
online training is adopted to further improve the network’s 
performance. The experiments in  and showed that ELM is 
fast and more accurate in large class training and the 
generalization performance of ELM turns out to be very 
stable.  
 
3. Coarse Ship Locating  
 
As shown in Fig. 2, fast ship locating (i.e., ship candidate 
extraction) is performed in LL sub band, which includes 
image enhancement, sea–land segmentation, and ship 
locating based on shape criteria. 
 

 

 

 
Figure 3: Coarse ship segmentation: (a) Input image (b) top-
hat-transformed image, (c) binarized with the first threshold 
T, (d) corrected with the second threshold T_, (e) refined by 
morphology dilation and erosion, and (f) coarse ship 
location.  
 
A. Image Enhancement In order to remove uneven 
illumination, a morphological operator, i.e., top-hat 
transform (THT), is used for ship extraction and background 
suppression. As ships are usually brighter than their 
surroundings, the white THT is employed in the proposed 
work [shown in Fig. 3(b)]. The mathematical definition of 
white THT is as follows: Tw(f) = f − f ◦ b (1) where f is the 
input LL coefficients of the original image, ◦ denotes 
opening operation, and Tw is the enhanced image. In the 
simulations, b is set as a circular structuring element with a 
radius of 12.  
 
B. Sea–Land Segmentation Different from the traditional 
intensity histogram and maximum variance segmentation, 
here, a statistical Gaussian model is adopted to adaptively 
estimate the probabilistic distribution of the sea regions [36], 
and the algorithm is as follows. 1) Binarize the input image 
by the Otsu algorithm [37], and then label the connected 
regions. 2) Find the geometrical center P of the largest 
connected region R. 3) Use point P as the starting point; 
traverse R to obtain another set of points P_ satisfying that 
the A × A (empirically set as 60 in the experiments) 
neighboring regions of P_ are inside the region R. Label the 
points P_ as all-sea region S. 4) Compute the mean μ and 
variance σ of S, and use them as the statistical parameters of 
the Gaussian model. The resulting μ and σ are used to 
compute a threshold (T) for image binarization, as follows: T 
= μ + λσ (2) where λ is the weight of variation (σ) and set as 
three according to the Gaussian distribution. The binarized 
image obtained by T [shown in Fig. 3(c)] usually remains 
holes in large lands or clouds. In this case, a new threshold 
(T_) for the elimination of hole regions and incorrectly 
marked lands is chosen as T _ = λ _ σ (3)  where λ_ is a 
parameter to control the similarity of land and sea, 
empirically set as four. After thresholding with T_ [shown in 
Fig. 3(d)], the median filtering (with size of [3 3]), 
morphology dilation, and erosion (circular structuring 
element with a radius of three) are applied to fill the isolated 
holes. Then, the masks of land, cloud, and ship candidates 
are segmented [shown in Fig. 3(e)]. In the following, ship 
candidates will be further extracted by using the unique 
shape properties of ships. Note that some of the pseudo 
targets may be included in the extracted regions; however, 
they can be removed in the process of feature fusion and 
classification. 
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C. Ship Locating Criteria In the previous section, several 
connected regions are extracted from the resultant masks by 
labeling the eight-connected neighbors. Geometric 
properties of the connected regions are then used for the 
locating of ship candidates, which are listed as follows  1) 
Area: It equals the number of pixels in the corresponding 
connected region. Area is used to cut off the lands, clouds, 
and other obviously large/small false targets. 2) Major 

minor axis ratio: It is defined as Rls = LaxisL LaxisS (4) 
where LaxisL and LaxisS are the length of long and short 
axes of the bounding rectangle, respectively. 
3)Compactness: Compactness measures the degree of 
circular similarity, and it is defined as Compactness = 
Perimeter2 Area . (5) By using these shape criteria, we can 
obtain the coarse locations of ship candidates [shown in Fig. 
3(f)]. In the experiments, the size of testing images is 2000 
× 2000 (in pixels) with a resolution of 5 m. The size of ship 
candidates is supposed to be smaller than 100 × 100 (or 
larger than 10 × 10). In this case, the regions with area 
larger than 10 000 (or smaller than 100) would be removed. 
Moreover, as the long axis of ship should be longer than the 
minor one, the major minor axis ratio is selected as 1.5. 
Compactness is set as 40 to exclude the regions which are 
obviously irregular. It is also worth to note that, compared 
with original images, using a low-frequency sub band (LL) 
for coarse ship locating would decrease the detection 
accuracy by 0.32% (in statistical average), but the detection 
speed is improved by more than 60%.  
 
4. Ship Feature Representation and 

Classification  
 
The state-of-the-art ship detection approaches extract 
complicated features and combine them with learning-based 
classification. These feature operators or descriptors, e.g., 
scaleinvariant feature transform  speeded up robust features , 
histogram of gradient , local multiple pattern (LMP) in , and 
shape/texture features in , are engineered to be invariant 
under certain rotations or scale variations and chosen for 
some specific vision tasks. Features extracted by these 
methods generally have some fundamental limitations in 
practical applications. For example, they may have poor 
performances when the images are corrupted by blur, 
distortion, or illumination, which commonly exist in the 
remote sensing images. Relatively, learning features from 
image would help to tackle these issues. Recent works in  
and  have shown that the features extracted by the 
unsupervised learning outperform those manually designed 
ones on object detection or recognition. However, ship 
detection is usually under complicated environmental 
conditions, and the processed images may contain various 
pseudotargets, e.g., islands, clouds, coastlines, etc. Bengio et 
al. indicated that traditional machine learning algorithms, 
e.g., SVM, may have difficulties in efficiently handling such 
highly varying inputs. These learning schemes usually use a 
few layers of computational units to establish the training 
model. When dealing with highly variant conditions, the 
computation is exponentially increased.  

 
 
As mentioned in Section II and shown in Fig. 2, the low 
frequency (LL) and high-frequency (LL, LH, and HH) sub 
bands are trained by two SDAs, respectively. Singularities 
represent the sparse structures of LL, and therefore, they are 
extracted to train the SDA1. As the LH, HL, and HH already 
reflect the sparseness of the image, they are combined and 
used as the inputs of SDA2. Before training, the input data 
need to be initialized by a zero-mean or z-score 
normalization  Z = M − mean(M) std(M) C. Pretraining and 
Fine Tuning In this section, we introduce the details of SDA 
training for ship feature extraction in low and high 
frequencies. Generally speaking, SDA-based feature 
extractor involves two main steps: pretraining and fine 
tuning. The unsupervised layer-by-layer pretraining can help 
to achieve good generalization and low variance of testing 
error. Each layer is trained as a denoising autoencoder by 
minimizing the reconstruction of its input (which is the 
output code of the previous layer). Based on the recent 
works in some additional parameters are set to further 
improve the performance of the SDA. Before training, the 
coefficients are scaled to [0, 1]d, and the learning rate is set 
as 0.1. The number of training batches depends on the size 
of data set, usually between [10, 100]. Different training 
batches should contain different classes of training samples 
to achieve better performance. Compared with 5% noise that 
is typically used in SDA the simulations in  indicated that it 
is better drop out 20% inputs combined with 50% hidden 
units. Once all of the layers are pretrained, the network 
needs a second stage of supervised training called fine 
tuning. The supervised fine tuning is used to minimize the 
prediction error. Practically, a logistic regression layer is 
added on top of the pretrained network.  
 
5. Experiments and Analysis  
 
Extensive experiments are conducted in this section. Since 
SDA-based feature extraction, ELM-based feature fusion, 
and classification are adopted in this work, we term the 
proposed method as SDA-ELM, which is compared with the 
relevant state-of-the-art methods in and . In , multiple 
features are fused by SVM (denoted as MF-SVM), while in , 
salient regions are detected before SVM-based classification 
(denoted as SA-SVM). In addition, another method (SDA-
based feature combined with SVM-based classification) is 
also tested (denoted as SDA-SVM). In the following 
sections, to verify the effectiveness of each component of 
the proposed method (i.e., ship locating, feature extraction, 
feature fusion, and classification), the performance of ship 
candidate segmentation is first tested; then, the proposed 
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SDA-based feature extraction is compared with other feature 
representation methods; classification performance of ELM 
is further evaluated against SVM, by using different 
combinations of extracted ship features; and finally, the 
overall ship detection accuracy is compared to demonstrate 
the advantages of the proposed scheme under practical 
testing conditions.  

 
Figure 5: Performance comparison of ship candidate 

segmentation. (a) Original image. (b) Manually labeled 
ground truth (the white pixels indicate ship candidates, while 

the black pixels represent land/sea regions). (c) Results by 
Chan– Vese model in. (d) Results by the proposed method. 

prepared to build an image data set to compare the 
performances of MF-SVM , SA-SVM , SDA-SVM, and 
SDAELM, and 1600 training samples are extracted for 

feature learning, shown in Table I. It should be emphasized 
that the images for the extraction of 1600 training samples 
have not been included in the testing images. The testing 

hardware and software conditions are listed as follows: Intel-
i7 2.4 G CPU, 8 G DDR3 RAM, Windows 7, Matlab 

R2012b, and Microsoft Visual Studio 2010. A. Comparison 
of Coarse Ship Locating The coarse ship locating is 

performed in the low-frequency sub band LL. Fig. 5 shows 
the comparison of segmentation results of ship candidates, 
and one can see that the proposed method achieves more 
accurate segmentation than the Chan– Vese model in. In 

addition, we also conducted objective comparisons to 
evaluate the performances of different methods. Three 

commonly used criteria were computed: false positive rate 
(FPR), false negative rate (FNR), and false error (FE). They 
are defined as follows: FPR(SR, GT) = #(SR ∩ GT) #(GT) 
∗  100% FNR(SR, GT) = #(SR ∩ GT) #(GT) ∗  100% FE 

(SR, GT) =(FPR + FNR) ∗  100%   

 
 Figure 6: Visualized 2-D space distributions of the first two 
principal components of different features. (a) Singularities 
of LL. (b) HFCs. (c) Shape/texture features of SA-SVM . (d) 
LMPs of MF-SVM . (e) Proposed SDA-based features. (f) 
Two-dimensional outputs of ELM pooling.  Fig. 6. 
Visualized 2-D space distributions of the first two principal 
components of different features. (a) Singularities of LL. (b) 
HFCs. (c) Shape/texture features of SA-SVM . (d) LMPs of 
MF-SVM . (e) Proposed SDA-based features. (f) Two-
dimensional outputs of ELM pooling. where SR denotes the 
segmentation results (ship candidates), GT denotes the 
manually labeled ground truth, #(·) is the number of pixels in 
the corresponding region, and GT and ER denote the regions 
which are not included in GT and ER, respectively. The 
averaging comparison results of the proposed method and 
Chan–Vese model in  are demonstrated in Table II. It is 
shown that the proposed model has lower FPR, FNR, and FE 
(better performance). B. Comparison of Feature 
Representations In this experiment, representation 
performances of different features are compared, including 
the LL singularities (LLSs), the HFCs, the LMPs in, the 
shape/texture features in , and the proposed SDA-based 
features. Principal component analysis  is used for 
visualizing different features in 2-D space. Fig. 6 shows the 
first two principal components of each feature, where the red 
points represent ships and the green ones represent other 
subclasses shown in Table I. As can be seen, the 
distributions of LLS and HFC are completely blended 
together. Relatively, the distances of the feature points in  
expand little in the Cartesian coordinates, and still, a large 
amount of feature points are overlapped. LMP outperforms 
the aforementioned features; nearly half of the red points are 
separated from the green ones. The proposed  C. 
Comparison of Feature Fusion and Classification In this 
section, the classification performance of ELM is compared 
against that of SVM, by using different combinations of 
extracted features. The classification accuracy of each 
method is computed as T = Number of correctly classified 

Paper ID: NOV163266 372



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 5, May 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

samples Number of tested samples ∗  100%. The 
experiments are based on k-fold cross-validation , which 
provides a better Monte Carlo estimate than simply 
randomly divided data set. First, the data set is randomly 
split into k mutually exclusive subsets S1, S2, . . . , Sk of 
approximately equal size. Then, the classifier is trained and 

tested k times; for each testing t ∈  {1, 2, . . . , k}, it is trained 
on S without St and tested on St. As our training data set has 
1600 samples, we select k = 4. The classification accuracy of 
each feature is shown in Fig. 7.   
  

 
Figure 9: Detection results of different methods under different experimental conditions. (Rows 1–4) Land, little clouds, 
cotton shaped cloud with mist, and large area of floccus. (Column 1) Input images. (Column 2) Coarse location of ship 

candidates. (Column 3) Classification results of MF-SVM [1]. (Column 4) Classification results of SA-SVM [11]. (Column 5) 
Classification results of our method 

 
6. Conclusion  
 
In this paper, we have proposed a compressed-domain ship 
detection framework using DNN and ELM for optical 
spaceborne images. Compared with the previous works, the 
proposed approach achieves better classification by 
deeplearning- based feature representation model with faster 
detection in compressed domain. After ship candidates are 
extracted, the singularities in LL are detected to train the 
SDA1. Then, the combination of high-frequency 
components (i.e., LH, HL, and HH) is used to train the 
SDA2. The two SDAs are viewed as feature extractors to 
obtain high-level features, and the resultant features are 
fused by ELM to further improve the classification results. 
ELM learns extremely faster and has better generalization 
than other traditional learning algorithms. Extensive 
experiments demonstrate that our proposed scheme 
outperforms the state-of-the-art methods in terms of 
detection time and accuracy. As for the possible 
shortcomings of the proposed work, the parameters in coarse 
ship locating should be more adaptive to the image contents. 
In addition, due to the availability of image data sets, the 
simulations in the proposed work are conducted using 
panchromatic images, and other remote sensing image could 
be further tested or verified in a future work.  
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