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Abstract: As the cloud computing technology develops during the last decade; outsourcing data to cloud service for storage becomes 

an attractive trend, which benefits in sparing efforts on heavy data maintenance and management. Nevertheless, since the outsourced 

cloud storage is not fully trustworthy, it raises security concerns on how to realize data deduplication in cloud while achieving integrity 

auditing. In this work, we study the problem of integrity auditing and secure deduplication on cloud data. Specifically, aiming at 

achieving both data integrity and deduplication in cloud, we propose two secure systems, namely SecCloud and SecCloud+. SecCloud 

introduces an auditing entity with a maintenance of a MapReduce cloud, which helps clients generate data, tags before uploading as 

well as audit the integrity of data having been stored in cloud. Compared with previous work, the computation by user in SecCloud is 

greatly reduced during the file uploading and auditing phases. SecCloud+ is designed motivated by the fact that customers always want 

to encrypt their data before uploading, and enables integrity auditing and secure deduplication on encrypted data 
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1. Introduction 
 
Cloud storage is a model of networked enterprise storage 
where data is stored in virtualized pools of storage which are 
generally hosted by third parties. Cloud storage provides 
customers with benefits, ranging from cost saving and 
simplified convenience, to mobility opportunities and 
scalable service. These great features attract more and more 
customers to utilize and storage their personal data to the 
cloud storage: according to the analysis report, the volume 
of data in cloud is expected to achieve 40 trillion gigabytes 
in 2020. Even though cloud storage system has been widely 
adopted, it fails to accommodate some important emerging 
needs such as the abilities of auditing integrity of cloud files 
by cloud clients and detecting duplicated files by cloud 
servers. We illustrate both problems below. The first 
problem is integrity auditing.  
 
The cloud server is able to relieve clients from the heavy 
burden of storage management and maintenance. The most 
difference of cloud storage from traditional in-house storage 
is that the data is transferred via Internet and stored in an 
uncertain domain, not under control of the clients at all, 
which inevitably raises clients great concerns on the 
integrity of their data. These concerns originate from the fact 
that the cloud storage is susceptible to security threats from 
both outside and inside of the cloud, and the uncontrolled 
cloud servers may passively hide some data loss incidents 
from the clients to maintain their reputation. What is more 
serious is that for saving money and space, the cloud servers 
might even actively and deliberately discard rarely accessed 
data files belonging to an ordinary client.  
 
Considering the large size of the outsourced data files and 
the clients’ constrained resource capabilities, the first 
problem is generalized as how can the client efficiently 

perform periodical integrity verifications even without the 

local copy of data files. The second problem is secure 
deduplication. The rapid adoption of cloud services is 

accompanied by increasing volumes of data stored at remote 
cloud servers. Among these remote stored files, most of 
them are duplicated: according to a recent survey by EMC , 
75% of recent digital data is duplicated copies. This fact 
raises a technology namely deduplication, in which the 
cloud servers would like to deduplicate by keeping only a 
single copy for each file (or block) and make a link to the 
file (or block) for every client who owns or asks to store the 
same file (or block). Unfortunately, this action of 
deduplication would lead to a number of threats potentially 
affecting the storage system , for example, a server telling a 
client that it (i.e., the client) does not need to send the file 
reveals that some other client has the exact same file, which 
could be sensitive sometimes. These attacks originate from 
the reason that the proof that the client owns a given file (or 
block of data) is solely based on a static, short value (in most 
cases the hash of the file) .  
 
Thus, the second problem is generalized as how can the 

cloud servers efficiently confirm that the client (with a 

certain degree assurance) owns the uploaded file (or block) 

before creating a link to this file (or block) for him/her. In 
this paper, aiming at achieving data integrity and 
deduplication in cloud, we propose two secure systems 
namely SecCloud and SecCloud+. SecCloud introduces an 
auditing entity with maintenance of a MapReduce cloud, 
which helps clients generate data tags before uploading as 
well as audit the integrity of data having been stored in 
cloud.  
 
This design fixes the issue of previous work that the 
computational load at user or auditor is too huge for tag 
generation. For completeness of fine-grained, the 
functionality of auditing designed in SecCoud is supported 
on both block level and sector level. In addition, SecCoud 
also enables secure deduplication. Notice that the “security” 
considered in SecCoud is the prevention of leakage of side 
channel information. In order to prevent the leakage of such 
side channel information, we follow the tradition of and 
design a proof of ownership protocol between clients and 
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cloud servers, which allows clients to prove to cloud servers 
that they exactly own the target data. Motivated by the fact 
that customers always want to encrypt their data before 
uploading, for reasons ranging from personal privacy to 
corporate policy, we introduce a key server into SecCloud as 
with  and propose the SecCloud+ schema. Besides 
supporting integrity auditing and secure deduplication, 
SecCloud+ enables the guarantee of file confidentiality. 
Specifically, thanks to the property of deterministic 
encryption in convergent encryption, we propose a method 
of directly auditing integrity on encrypted data. The 
challenge of deduplication on encrypted is the prevention of 
dictionary attack .  
 
As with, we make a modification on convergent encryption 
such that the convergent key of file is generated and 
controlled by a secret “seed”, such that any adversary could 
not directly derive the convergent key from the content of 
file and the dictionary attack is prevented. This paper is 
organized as follows: In Section II, we review the related 
works on integrity auditing and secure deduplication. In 
Section III, we introduce some background including the 
bilinear maps and convergent encryption. Section IV and 
Section V respectively proposes the SecCloud and 
SecCoud+ system. Section VI and Section VII respectively 
analyzes the security and efficiency of proposed systems. 
Finally Section VIII draws the conclusion of this paper.  
 
2. Related Work 
 
Since our work is related to both integrity auditing and 
secure deduplication, we review the works in both areas in 
the following subsections, respectively.  
  
 
Integrity Auditing The definition of provable data possession 
(PDP) was introduced by Ateniese et al.  for assuring that 
the cloud servers possess the target files without retrieving 
or downloading the whole data. Essentially, PDP is a 
probabilistic proof protocol by sampling a random set of 
blocks and asking the servers to prove that they exactly 
possess these blocks, and the verifier only maintaining a 
small amount of metadata is able to perform the integrity 
checking. After Ateniese et al.’s proposal , several works 
concerned on how to realize PDP on dynamic scenario: 
 
Ateniese et al.  proposed a dynamic PDP schema but without 
insertion operation; Erway et al.  improved Ateniese et al.’s 
work and supported insertion by introducing authenticated 
flip table; A similar work has also been contributed in . 
Nevertheless, these proposals suffer from the computational 
overhead for tag generation at the client. To fix this issue, 
Wang et al.  proposed proxy PDP in public clouds. Zhu et al.  
proposed the cooperative PDP in multi-cloud storage 
Another line of work supporting integrity auditing is proof 
of retrievability (POR) . Compared with PDP, POR not 
merely assures the cloud servers possess the target files, but 
also guarantees their full recovery.  

 
In, clients apply erasure codes and generate authenticators 
for each block for verifiability and retrievability. In order to 
achieve efficient data dynamics, Wang et al.  improved the 
POR model by ma- nipulating the classic Merkle hash tree 

construction for block tag authentication. Xu and Chang 
proposed to improve the POR schema in with polynomial 
commitment for reducing communication cost. Stefanov et 
al. proposed a POR protocol over authenticated file system 
subject to frequent changes.  
 
Azraoui et al. combined the privacy-preserving word search 
algorithm with the insertion in data segments of randomly 
generated short bit sequences, and developed a new POR 
protocol. Li et al. considered a new cloud storage 
architecture with two independent cloud servers for integrity 
auditing to reduce the computation load at client side. 
Recently, Li et al.utilized the key-disperse paradigm to fix 
the issue of a significant number of convergent keys in 
convergent encryption. 
 
A. Secure Deduplication 
Deduplication is a technique where the server stores only a 
single copy of each file, regardless of how many clients 
asked to store that file, such that the disk space of cloud 
servers as well as network bandwidth are saved. However, 
trivial client side deduplication leads to the leakage of side 
channel information. For example, a server telling a client 
that it need not send the file reveals that some other client 
has the exact same file, which could be sensitive information 
in some case. In order to restrict the leakage of side channel 
information, Halevi et al. introduced the proof of ownership 
protocol which lets a client efficiently prove to a server that 
that the client exactly holds this file.  
 
Several proof of ownership protocols based on the Merkle 
hash tree are proposed  to enable secure client-side 
deduplication. Pietro and Sorniotti  proposed an efficient 
proof of ownership scheme by choosing the projection of a 
file onto some randomly selected bit-positions as the file 
proof. Another line of work for secure deduplication focuses 
on the confidentiality of deduplicated data and considers to 
make deduplication on encrypted data. Ng et al. firstly intro- 
duced the private data deduplication as a complement of 
public data deduplication protocols of Halevi et al.. 
Convergent encryption  is a promising cryptographic 
primitive for ensuring data privacy in deduplication. Bellare 
et al. formalized this primitive as message-locked 
encryption, and explored its application in space-efficient 
secure outsourced storage.  
 
Abadi et al.further strengthened Bellare et al’s security 
definitions  by considering plaintext distributions that may 
depend on the public parameters of the schemas. Regarding 
the practical implementation of convergent encryp- tion for 
securing deduplication, Keelveedhi et al.  designed the 
DupLESS system in which clients encrypt under file-based 
keys derived from a key server via an oblivious 
pseudorandom function protocol. As stated before, all the 
works illustrated above considers either integrity auditing or 
deduplication, while in this paper, we attempt to solve both 
problems simultaneously. In addition, it is worthwhile 
noting that our work is also distinguished with which audits 
cloud data with deduplication, because we also consider to  
1) outsource the computation of tag generation,  
2) audit and deduplicate encrypted data in the proposed 
protocols. 
 

Paper ID: NOV163239 329



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 5, May 2016 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

3. Preliminary  
 
We now discuss some preliminary notions that will form the 
foundations of our approach. 
A. Bilinear Map and Computational Assumption Definition 
1 (Bilinear Map): Let G and GT be two cyclic multiplicative 
groups of large prime order p. A bilinear pairing is a map e : 
G×G→GT with the following properties:  
• Bilinear:  

e(ga 1,gb 2) = e(g1,g2)ab for all g1,g2 ∈R G  
anda,b ∈R Zp;  

• Non-degenerate: There exists g1,g2 ∈ G such that 
                               e(g1,g2) ̸= 1; 

 • Computable: There exists efficient algorithm to compute 
                                   e(g1,g2) for all g1,g2 ∈R G. 

The examples of such groups can be found in supersingular 
elliptic curves or hyperelliptic curves over finite fields, and 
the bilinear pairings can be derived from the Weil or Tate 
pairings. For more details, see . We then describe the 
Computational Diffie-Hellman prob- lem, the hardness of 
which will be the basis of the security of our proposed 
schemes. Definition 2 (CDH Problem): The Computational 
Diffie- Hellman problem is that, given g,gx,gy ∈ G1 for 
unknown x,y ∈Z∗ to compute gxy. 
 
B. Convergent Encryption  
Convergent encryption provides data confiden-tiality in 
deduplication. A user (or data owner) derives a convergent 
key from the data content and encrypts the data copy with 
the convergent key. In addition, the user derives a tag for the 
data copy, such that the tag will be used to detect duplicates. 
Here, we assume that the tag correctness property  holds, 
i.e., if two data copies are the same, then their tags are the 
same. Formally, a convergent encryption scheme can be 
defined with four primitive functions:  
• KeyGen(F) : The key generation algorithm takes a file 

content F as input and outputs the convergent key ckF of 
F;  

• Encrypt(ckF,F) : The encryption algorithm takes the 
convergent key ckF and file content F as input and 
outputs the ciphertext ctF;  

• Decrypt(ckF,ctF) : The decryption algorithm takes the 
convergent key ckF and ciphertext ctF as input and 
outputs the plain file F;  

• TagGen(F) : The tag generation algorithm takes a file 
contentF as input and outputs the tag tagF ofF. Notice 
that in this paper, we also allow TagGen(·) to generate 
the (same) tag from the corresponding cipher text as with  

 
4. SecCloud  
 
In this section, we describe our proposed SecCloud system. 
Specifically, we begin with giving the system model of Sec- 
Cloud as well as introducing the design goals for SecCloud. 
In what follows, we illustrate the proposed SecCloud in 
detail. 
 

 
 
A. System Model 
Aiming at allowing for auditable and deduplicated storage, 
we propose the SecCloud system. In the SecCloud system, 
we have three entities: • Cloud Clients have large data files 
to be stored and rely on the cloud for data maintenance and 
computation. They can be either individual consumers or 
commercial organizations; • Cloud Servers virtualize the 
resources according to the requirements of clients and 
expose them as storage pools. Typically, the cloud clients 
may buy or lease storage capacity from cloud servers, and 
store their individual data in these bought or rented spaces 
for future utilization; • Auditor which helps clients upload 
and audit their out- sourced data maintains a MapReduce 
cloud and acts like a certificate authority. This assumption 
presumes that the auditor is associated with a pair of public 
and private keys. Its public key is made available to the 
other entities in the system.  
 
The SecCloud system supporting file-level deduplication 
includes the following three protocols respectively 
highlighted by red, blue and green in Fig. 1.  
 
1) File Uploading Protocol: This protocol aims at allowing 
clients to upload files via the auditor. Specifically, the file 
uploading protocol includes three phases:  
• Phase 1 (cloud client → cloud server): client performs 

the duplicate check with the cloud server to confirm if 
such a file is stored in cloud storage or not before 
uploading a file. If there is a duplicate, another protocol 
called Proof of Ownership will be run between the client 
and the cloud storage server. Otherwise, the following 
protocols (including phase 2 and phase 3) are run 
between these two entities.  

• Phase 2 (cloud client → auditor): client uploads files to 
the auditor, and receives a receipt from auditor.  

• Phase 3 (auditor→cloud server): auditor helps generate 
a set of tags for the uploading file, and send them along 
with this file to cloud server. 2) Integrity Auditing 
Protocol: It is an interactive protocol for integrity 
verification and allowed to be initialized by any entity 
except the cloud server. In this protocol, the cloud server  
plays the role of prover, while the auditor or client works 
as the verifier. This protocol includes two phases: 

• Phase 1 (cloud client/auditor → cloud server): verifier 
(i.e., client or auditor) generates a set of challenges and 
sends them to the prover (i.e., cloud server). 

• Phase 2 (cloud server → cloud client/auditor): based 
on the stored files and file tags, prover (i.e., cloud server) 
tries to prove that it exactly owns the target file by 
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sending the proof back to verifier (i.e., cloud client or 
auditor).   
 At the end of this protocol, verifier outputs true if the 

integrity verification is passed.  
 
2) Proof of Ownership Protocol: It is an interactive 
protocol initialized at the cloud server for verifying that the 
client exactly owns a claimed file. This protocol is typically 
triggered along with file uploading protocol to prevent the 
leakage of side channel information. On the contrast to 
integrity auditing protocol, in PoW the cloud server works as 
verifier, while the client plays the role of prover. This 
protocol also includes two phases  
• Phase 1 (cloud server → client): cloud server generates 

a set of challenges and sends them to the client. 
• Phase 2 (client→cloud server): the client responds with 

the proof for file ownership, and cloud server finally 
verifies the validity of proof. Our main objectives are 
outlined as follows. • Integrity Auditing. The first design 
goal of this work is to provide the capability of verifying 
correctness of the remotely stored data. The integrity 
verification further requires two features:  

1) public verification, which al- lows anyone, not just the 
clients originally stored the file, to perform verification;  
2) Stateless verification, which is able to eliminate the need 
for state information maintenance at the verifier side 
between the actions of auditing and data storage.  
• Secure Deduplication. The second design goal of this 

work is secure deduplication. In other words, it requires 
that the cloud server is able to reduce the storage space 
by keeping only one copy of the same file. Notice that, 
regarding to secure deduplication, our objective is 
distinguished from previous work  in that we propose a 
method for allowing both deduplication over files and 
tags.  

• Cost-Effective. The computational overhead for provid- 
ing integrity auditing and secure deduplication should not 
represent a major additional cost to traditional cloud 
storage, nor should they alter the way either uploading or 
downloading operation. 

 
B. SecCloud  
Details In this subsection, we respectively describe the three 
pro- tocols including file uploading protocol, integrity 
auditing protocol and proof of ownership protocol in 
SecCloud. Before our detailed elaboration, we firstly 
introduce the system setup phase of SecCloud, which 
initializes the public and private parameters of the system. 
• System Setup. The auditor working as an authority picks a 
random integer α ∈R Zp as well as random elements 
g,u1,u2,...ut ∈R G, where t specifies the maximum number 
of sectors in a file block. The secret key sk is set to be α and 
kept secret, while the public key pk = (gα,{ui}t i=1) is 
published to other entities. 1) File Uploading Protocol: 
Based on the public and private parameters generated in 
system setup, we then describe the file uploading protocol. 
Suppose the uploading file F has s blocks: B1,B2,...,Bs, and 
each block Bi for i = 1,2,...,s contains t sectors: 
Bi1,Bi2,...,Bit. Let n be the number of slave nodes in the 
MapReduce cloud. 

 
As declared in Section IV-A, the file uploading protocol 
involves three phases. In the first phase shown in Fig. 2, the 
client runs the deduplication test by sending hash value of 
the file Hash(F) to the cloud server. If there is a duplicate, 
the cloud client performs Proof of Ownership protocol with 
the cloud server which will be described later. If it is passed, 
the user is authorized to access this stored file without 
uploading the file. Otherwise (in the second phase), the 
cloud client uploads a file F as well as its identity IDF to the 
distributed file system in MapReduce auditing cloud, and 
simultaneously sends an “upload” request to the master node 
in MapReduce, which randomly picks 
{αi}n i=1 such that∑n i=1 αi = α  
and assigns the ith slave node with αi. When each slave node 
(say the ith salve node) receives the assignment αi, it does 
two steps:  
1) Pick up (IDF,F) in the distributed file system in 
MapReduce, and build a Merkle hash tree on the blocks 
{Bj}s j=1 of F.  
2)Let hroot denote the hash of the root node of Merkle hash 
tree built onF. This slave node uses αi to sign hroot by 
computing τi = hαi root. Finally, the signature τi is sent to 
the the slave node which is specified by master node for 
executing the reducing procedure. The specified slave node 
for reducing procedure gathers all the signatures {τi}n i=1 
from the other slave nodes, and computes τ =∏n i=1 τi. The 
“reduced” signature τ is finally sent back to client as receipt 
of the storage of file F. In the third phase, the MapReduce 
auditing cloud starts to upload the file F to cloud server. To 
allow public auditing, the master node builds file tags of F. 
Specifically, master node firstly writes and arranges all the 
sectors of F in a matrix (we say S), and computes a 
homographic signature for each row of the matrix S 
(highlighted red in Fig. 3). Notice that the tag generation 
procedure also follows the computing paradigm with 
MapReduce.  
 
That is, for the ith (i = 1,2,...,s) row of S, the jth (j = 1,2,...,n) 
slave node computes σij = [Hash(IDF||Bi)∏t k=1 uBik k ]αj, 
where∑n j=1 αj = α. 
 
Accordingly, all the signatures {σij}n j=1 are then 
multiplied into the homomorphic signature σi =∏n j=1 σij at 
a specified reducing slave node. The homomorphic signature 
allows us to in future aggregate the signatures signed on the 
sectors in the same column of S using multiplication. 
Finally, the master node uploads (ID,F,{σi}s i=1) to cloud 
server. 2)  
 
Integrity Auditing Protocol: 
In the integrity auditing pro- tocol, either the MapReduce 
auditing cloud or the client works as the verifier. Thus, 
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without loss of generality, in the rest of the description of 
this protocol, we use verifier to identify the client or 
MapReduce auditing cloud. The auditing protocol is 
designed in a challenge-response model. Specifically, the 
verifier randomly picks a set of block identifiers (say IF) of 
F and asks the cloud server (working as prover) to response 
the blocks corresponding to the identifiers in IF. In order to 
keep randomness in each time of challenge, even for the 
same IF, we introduce a random coefficient for each block in 
challenge. That is, for each identifier i ∈ IF, the coefficient ci 
for the block identified by i is computed as ci = f(tm||IDF||i), 
where f(·) is a pseudorandom function and tm is the current 
time period. Finally, C = {(i,ci)}i∈IF is sent to cloud server 
for challenge. 

 
 
Upon receiving the challenge C, as shown in Fig. 3, the 
cloud server writes the sectors of F in matrix S, as the way 
of tag generation, and extracts all the rows in S involved in 
IF. Without loss of generality, we denote the extracted 
matrix as S, which is [Bmn]3≤m≤i,1≤n≤t in the example 
of Fig. 3. Then, for each column j of S, compute the 
coefficient affected sectors (in column)  

ωj = ∑i∈IF ciBij. 
Similarly, the cloud server also computes the (coefficient 
affected) ag- gregated homomorphic signature 

µ =∏i∈IF σci i . 
  
Notice that the (coefficient affected) matrix S could be re-
constructed using either the (coefficient affected) sectors 
{ωj}t j=1 or the aggregated homomorphic signature µ, 
which allows the cloud server to prove retrievability on 
sector-level. In addition, the cloud server also attempts to 
prove retriev- ability on block-level, through using Merkle 
hash tree. Recall that, a Merkle hash tree has been 
constructed on F by the MapReduce auditing cloud in file 
uploading to generate the receipt on F for future auditing. 
     
In the auditing protocol, the cloud server is required to 
construct the same Merkle hash tree on F and makes 
response based on the constructed Merkle tree. Without loss 
of generality, we denote Path(Bi) as the set of nodes from 
the leaf node identified by Bi to the root node of Merkle tree, 
and Sibl(Bi) is the set of sibling nodes of each node in 
Path(Bi). Then, for each i ∈ IF, the cloud server computes a 
pair (Hash(Bi),Ωi), where Hash(Bi) is the hash value of the 
i-th block of 

F and Ωi = Sibl(Bi)\∪j∈IF Path(Bj) 
    

includes the necessary auxiliary information for 
reconstructing the root node using {Bi}i∈IF. For example, 
suppose the Merkle hash tree has been constructed as in Fig. 
4, and the challenge blocks IF = {2,5} (i.e., challenge 
B2,B5). The hashes of B2 and B5 (highlighted by black in 
Fig. 4), Ω2 (highlighted by blue in Fig. 4) and Ω5 
(highlighted by orange in Fig. 4) are as the proof for 
retrievability on block-level. It is worth noting that, although 
the node labeled by x in Fig. 4 is a sibling of node in 
Path(B2), it should not be included in Ω2. This is because 
the node x also belongs to Path(B5) and can be re-
constructed using Hash(B5) and Ω5. The benefit of 
excluding the nodes in other challenge blocks paths is that, it 
allows us to reconstruct only a single version of root node of 
the Merkle hash tree for auditing all the challenge blocks. 

 
Cloud server sends (µ,{ωj}t j=1,{(Hash(Bi),Ωi)}i∈IF) as 
proof back to verifier for proving the existence of file F. The 
verifier makes the following two types of verifications:  
• Block-Level Auditing. In the block-level verification, the 

verifier reconstructs the root node (say R) of Merkle hash 
tree using {(Hash(Bi),Ωi)}i∈IF (a reconstruction example 
is highlighted by red arrow in Fig. 4), and then checks the 
validity of the published signatures. Specif- ically, the 
verifier verifies the signature by checking 
e(g,τ) ? = e(Hash(R),gα).  

• Sector-Level Auditing. Recall that to generate the tags of 
file F, we have computed the aggregated sec- tor 
signatures σi in terms of row, and to generate the proof of 
the existence of file F, we have com- puted the (coefficient 
affected) sectors ωi in terms of column. For sector-level 
auditing, our aim is to re-construct aggregated signature 
on the (coefficient af- fected) matrix S respectively in 
terms of row and column, and check the equality of both 
reconstruc- tions. Intuited by this, the equality to be 
checked is as  

    e(µ,g) ? = e(∏i∈IF[Hash(IDF||Bi)ci∏t k=1 uωk k ],gα)  
where the left part is computed following row while the right 
part follows a column computation. 3) Proof of Ownership 
Protocol: The PoW protocol aims at allowing secure 
deduplication at cloud server. Specifically, in deduplication, 
a client claims that he/she has a file F and wants to store it at 
the cloud server, where F is an existing file having been 
stored on the server. The cloud server asks for the proof of 
the ownership of F to prevent client unauthorized or 
malicious access to an unowned file through making 
cheating claim. In SecCloud, the PoW protocol is similar to  
and the details are described as follows. Suppose the cloud 
server wants to ask for the ownership proof for fileF. It 
randomly picks a set of block identifiers, say IF ⊆{1,2,...,s} 
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where s is the number of blocks in F, for challenge. Upon 
receiving the challenge set IF, the client first computes a 
short value and constructs a Merkle tree. Note that only 
sibling-paths of all the leaves with challenged identifiers are 
returned back to the cloud server, who can easily verify the 
correctness by only using the root of the Merkle tree. If it is 
passed, the user is authorized to access this stored file. 
 
5. SecCloud+  
 
We specify that our proposed SecCloud system has achieved 
both integrity auditing and file deduplication. However, it 
cannot prevent the cloud servers from knowing the content 
of files having been stored. In other words, the 
functionalities of integrity auditing and secure deduplication 
are only imposed on plain files. In this section, we propose 
SecCloud+, which allows for integrity auditing and 
deduplication on encrypted files. 
 
A. System Model Compared with SecCloud, our proposed 
SecCloud+ in- volves an additional trusted entity, namely 
key server, which is responsible for assigning clients with 
secret key (according to the file content) for encrypting files. 
This architecture is in line with the recent work . But our 
work is distinguished with the previous work  by allowing 
for integrity auditing on encrypted data. SecCloud+ follows 
the same three protocols (i.e., the file uploading protocol, the 
integrity auditing protocol and the proof of ownership 
protocol) as with SecCloud. The only difference is the file 
uploading protocol in SecCloud+ involves an additional 
phase for communication between cloud client and key 
server.  
  
That is, the client needs to communicate with the key server 
to get the convergent key for encrypting the uploading file 
before the phase 2 in SecCloud. Unlike SecCloud, another 
design goals of file confidentiality is desired in SecCloud+ 
as follows. • File Confidentiality. The design goal of file 
confi- dentiality requires to prevent the cloud servers from 
accessing the content of files. Specially, we require that the 
goal of file confidentiality needs to be resistant to 
“dictionary attack”. That is, even the adversaries have pre-
knowledge of the “dictionary” which includes all the 
possible files, they still cannot recover the target file . 
 
A. SecCloud+  
 
Details We introduce the system setup phase of SecCloud+ 
as follows. 
• System Setup. As with SecCloud, the auditor initializes the 
public key pk = (gα,{ui}t i=1) and private key sk = α, where 
g,u1,u2,...,ut ∈R G. In addition, to preserve the 
confidentiality of files, initially, the key server picks a 
random key ks for further generating file encryption keys, 
and each client is assigned with a secret key ck for 
encapsulating file encryption keys. Based on the initialized 
parameters, we then respectively describe the three protocols 
involved in SecCloud+.  
  
1) File Uploading Protocol: Suppose the uploading file Fhas 
s blocks, say B1,B2,...,Bs, and each block Bi for i = 1,2,...,s 
contains t sectors, say Bi1,Bi2,...,Bit. Client computes hF = 
Hash(F) by itself. In addition, for each sector Bij of F where 

i = 1,2,...,s and j = 1,2,...,t, client computes its hash hBij = 
Hash(Bij). Finally (hF,{hBij}i=1,...,s,j=1,...,t) is sent to key 
server for generating the convergent keys for F.  
  
Upon receiving the hashes, the key server computes sskF = 
f(ks,hF) and sskij = f(ks,hBij) for i = 1,...,s and j = 1,...,t, 
where ks is the convergent key seed kept at the key server, 
and f(·) is a pseudorandom function. It is worthwhile noting 
that, 1) We take advantage of the idea of convergent 
encryption  to make the deterministic and “content 
identified” encryption, in which each “content” (file or 
sector) is encrypted using the session key derived from 
itself. In this way, different “contents” would result in 
different ciphertexts, and deduplication works.  
 
2) Convergent encryption suffers from dictionary attack, 
which allows the adversary to recover the whole content 
with a number of guesses. To prevent such attack, as with 
[4], a “seed” (i.e., convergent key seed) is used for 
controlling and generating all the convergent keys to avoid 
the fact that adversary could guess or derive the convergent 
key just from the content itself.  
 
3) We generate convergent keys on sector-level (i.e., 
generate convergent keys for each sector in file F), to enable 
integrity auditing. Specifically, since convergent encryption 
is deterministic, it allows to compute homomorphic 
signatures on (convergent) encrypted data as with on plain 
data, and thus the sector-level integrity auditing is preserved. 
Client then continues to encrypt F sector by sector and 
uploads the ciphertext to auditor. Specifically, for each 
sector Bij of F, i = 1,2,...,s and j = 1,2,...,t, client computes 
ctBij = Enc(sskBij,Bij), and sends 
(IDF,{ctBij}i=1,...,s,j=1,...,t) to auditor, where Enc(·) is the 
symmetric encryption algorithm. The convergent keys sskij 
are encapsulated by client’s secret key ck and directly stored 
at the cloud servers. 
 
The auditor does almost the same thing as that in Sec- Coud. 
Firstly, he computes the hash of ciphertext {ctBij} and sends 
it to the cloud storage server for duplicate check. If there is a 
duplicate stored in the cloud server, the auditor performs a 
PoW and the details are described in the Proof of Ownership 
protocol. If it is passed, the user is authorized to access this 
stored file. (Actually, the auditor can perform the duplicate 
check at local by storing the hash of each file that clients 
uploaded. In this way, no encryption operation is required if 
there is duplicate.) Otherwise, upon receiving 
(IDF,{ctBij}i=1,...,s,j=1,...,t), the auditor takes advantage of 
MapReduce cloud to build Merkle hash tree on encrypted 
blocks [ctB1,ctB2,...,ctBs] where ctBi = [ctBi1,...,ctBit] and 
i = 1,2,...,s and compute τ = hαroot. Notice that, unlike the 
description of SecCloud, the notation hroot is abused to 
denote the root hash of Merkle tree built on encrypted 
blocks. Then τ is returned to client as receipt of the storage 
of file F.  
 
In addition, all the sector ciphertexts are written in a matrix 
similar to Fig. 3 (but the plain sector Bij is replaced by its 
corresponding ciphertext ctBij), and the auditor computes σi 
= [Hash(IDF||i)∏t j=1 u cBij j ]α with MapReduce cloud for 
each i = 1,2,...,s. Finally, the auditor uploads 
(IDF,{ctBij}i=1,...,s,j=1,...,t,{σi}s i=1) to the cloud servers. 
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2) Integrity Auditing Protocol: The integrity auditing proto- 
col works in the same way of that in SecCloud, but imposed 
on encrypted data. Specifically, the verifier (could be either 
the client or the auditor) submits a set of pairs {(i,ci)}i∈IF 
where IF ⊆{1,2,...,s} and ci ∈R Z. Upon receiving 
{(i,ci)}i∈IF, the cloud servers then computes ωj =∑i∈IF 
cictBij for each j = 1,2,...,t, as well as the aggregated 
homomorphic signa- ture µ =∏i∈IF σci i . In addition, the 
cloud server constructs a Merkle hash tree on encrypted 
blocks ctBi of F and at- tempts to prove retrievability at 
block-level. Precisely, for each i ∈ IF, the cloud server 
computes a pair (Hash(ctBi),Ωi), where ctBi = 
[ctBi1,...,ctBit] and Ωi includes the necessary auxiliary 
information for reconstructing the root node using 
{ctBi}i∈IF. Finally (µ,{ωj}t j=1,{(Hash(ctBi),Ωi)}i∈IF) 
issent to verifier for auditing.  
 
The verifier makes two-level auditing: 1) On the block level, 
the verifier reconstructs the root node of Merkle tree using 
{(Hash(ctBi),Ωi)}i∈IF and verifies e(g,τ) ? = e(Hash(R),gα). 
2) On the sector level, the verifier checks e(µ,g) ? = 
e(∏i∈IF[Hash(IDF||i)ci∏t i=1 uωi i ],gα). 3) Proof of 
Ownership Protocol: Suppose a client claims that he/she has 
a file F and wants to store it at the cloud server, where F is 
an existing file having been stored on the server. The client 
needs to show the proof that he owns the same file at local. 
The user performs the proof of ownership in a similar way 
as [3] based on the encrypted file. If it is passed, a pointer 
will be provided to the client for the access to the same file 
stored in the cloud server. 
 
6. Security Analysis 
 
In this section, we attempt to analyze the security of our 
proposed both schemes. Before this, we firstly formalize the 
security definitions our schemes aim at capturing  
 
A. Security Definitions Based on the paradigm of SecCloud 
and SecCloud+, we define the security definitions, adapting 
to the integrity au- diting and secure deduplication goals. 
Our both definitions capture the philosophy of game-based 
definition. Specifically, we define two games respectively 
for integrity auditing and secure deduplication, and both of 
the games are played by two players, namely adversary and 
challenger. The adversary (the role of which is worked by 
semi-honest cloud server and cloud client respectively in 
integrity auditing and secure deduplication definition) is 
trying to achieve the goal condition explicitly specified in 
the game. Having this intuition, we give our security 
definitions as follows. 1) Integrity Auditing: An integrity 
auditing protocol is sound if any cheating cloud server that 
convinces the verifier that it is storing a file F is actually 
storing this file. To capture this spirit, we define its game 
based on Proof of Retrievability (PoR). The security model 
called Proof of Retrievability (PoR) was introduced by 
Shacham and Waters’ in .  
 
This security model captures the requirement for integrity 
auditing, whose basic security goal is to achieve proof of 
retrievability. In more details, in this security model, if there 
exists an adversary who can forge and generate any valid 
integrity proofs for any file F with a non-negligible 
probability, another simulator can be constructed who is able 

to extract F with overwhelming probability. The formal 
definition for the above model can be given by the following 
game between a challenger and an adversary A. Note that in 
the following security game, the challenger plays the role of 
auditing server while the adversary A acts as the storage 
server.  
 Setup Phase. The challenger runs the setup algorithm 

with required security parameter and other public pa- 
rameter as input. Then, it generates the public and secret 
key pair (pk,sk). The public key pk is forwarded to the 
adversary A.  

 Query phase. The adversary is allowed to query the file 
upload oracle for any file F. Then, the file with the correct 
tags are generated and uploaded to the cloud storage 
server. These tags can be publicly verified with respect to 
the public key pk.  

 Challenge Phase. A can adaptively send file F to the file 
tag tag comes, C runs the integrity verification protocol 
IntegrityVerify{A 

 C(pk,tag)} with A.  
 Forgery. A outputs a file tag tag′ and the description of a 

prover Pt. We say that a prover Pt on tag′ is β-admissible, 
if the following two conditions hold: (1) tag′ is a file tag 
output by a previous upload query. (2) 
Pr[IntegrityVerify{Pt C(pk,tag′)} = 1] ≥ β. Then we can 
define the soundness of PoR scheme. Definition 3: (Proof 
of Retrievability) A PoR scheme is (β,γ)-sound if for any 
β-admissible prover Pt output by A in the above game, 
there exists an extractor E that can recover the original file 
of tag tag with probability at least 1−γ. 

 
2) Secure Deduplication: Similarly, we can also define a 
game between challenger and adversary for secure dedupli- 
cation below. Notice that the game for secure deduplication 
captures the intuition of allowing the malicious client to 
claim it has a challenge file F through colluding with all the 
other clients not owning this file.  
 Setup Phase. A challenge file F with fixed length and 

minimum entropy (specified in system parameter) is 
randomly picked and given to the challenger. The 
challenger continues to run a summary algorithm and 
generate a summary sumF.  

 Learning Phase. Adversary F can setup arbitrarily many 
client accomplices not exactly having F and have them to 
interact with the cloud servers to try to prove the 
ownership of file F. Notice that in the learning phase, the 
cloud server plays as the honest verifier with input sum 
sumF and the accomplices could follow any arbitrary 
protocol set by A. 

 Challenge Phase. The exact proof of ownership pro- tocol 
is executed. Specifically, the challenger outputs a 
challenge to A and A responses with a proof based on its 
learnt knowledge. If A’s proof is accepted by the cloud 
server, we say A succeeds. The security in terms of secure 
deduplication is achieved, if for all probabilistic 
polynomial-time adversaries A, the prob- ability that A 
succeeds in the above experiment is negligible. 

 
B. Security Proof Theorem 1:  
Assume that the CDH problem is a hard prob- lem. Then, 
the proposed public-verifiable PoR scheme satisfies the 
soundness. That is, no adversary could generate an integrity 
proof for any file such that the verifier accepts it with non- 
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negligible probability. Proof: We prove the soundness of the 
construction by reduction. Firstly, assume there is an 
adversary who can break the soundness with non-negligible 
probability. We show that how to construct a simulator to 
break the computational Diffie-Hellman problem through 
interacting with the adversary. During this phase, the 
simulator is required to answer all the queries as the real 
application. In more details, the simulator has to answer the 
tag genera- tion and integrity proof queries from the 
adversary.  
 
After the simulation, if the adversary outputs a valid tag that 
is not from client, the simulator can use this algorithm to 
solve the CDH problem. Notice that the simulation for the n 
slave nodes can be reduced to just one node because of the 
assumption that all the slave nodes are honest-but-curious 
and they will not collude. More clearly, the master key α can 
be split to n sub- keys by choosing n−1 random values and 
assigned to slave nodes as the corresponding private keys, 
while the n-th node is assigned the key of α minus the sum 
of these random values. Suppose that there exists an 
adversary who can generate the correct description of a 
prover. Denote F = (B1,...,Bt) as the file for integrity 
verification, Φ = {σi}1≤i≤t as the signatures of blocks, and 
the set Q = {(i,ci)}i∈IF as the query. Denote by R the root 
generated from the file F. If the adversary can generate a 
correct root R from F which passes the verification for a 
different file F′, it implies a collision of hash function used 
in the construction of Merkle Hash Tree. Based on the 
assumption of the collusion-free, this happens on with 
negligible probability. To construct a simulator, that given g, 
˜ g = gα, h, where α is unknown, outputs hα. In the setup 
phase, the simulator sets v as ˜ g, chooses two vectors of 
randomness β1,...,βt ∈ Zpand γ1,...,γt ∈ Zp, and sets uj = 
gβjhγj for j = 1,...,t. It additionally initiates an empty hash 
tables H-table and simulates the random oracle queries as 
follows.  
 
When a hash query of Bi comes and an entry (Bi,ri) exists in 
the hash-table for some random value ri, the simulator just 
returns gr i . When a query of a new Bi that has not been 
queried, the simulator performs the following steps. Firstly, 
it randomly chooses a value ri from Zp and puts (Bi,ri) in the 
Hash table H-table and returns Hash(Mi) = gri. The 
simulator also needs to simulate the Uploading Oracle. 
Specifically, for a query of file F to be uploaded, the 
simulator computes the hash values and constructs Merkle 
Hash Tree root R from the file. The proof is very similar to 
and omitted here. The adversary can also start the query for 
the integrity proof. When an oracle query of a file tag, the 
simulator just starts an honest protocol with the adversary 
for the simulation.  
 
After the above simulation, the adversary outputs a forgery 
of a valid signature σ′ ̸= σ satisfying the verification. Similar 
to the security analysis in , the simulator can compute and 
get the value hα = (σ′σ−1v−∑s j=1 βj∆µj) 1∑ t j=1 γj∆µj as 
the solution to the given CDH instance. Theorem 2: An 
extractor can be constructed to recover the file in time 
O(n2(s + 1) + (1 + βn2)n/ω) for well behaved β-admissible 
prover by running O(n/ω) interactions on a n- block file with 
ω = β −1/p−(ρn/n−c + 1)c. Actually, such an extractor can 
be constructed to get correct proof for the verification 

queries in the protocol. With the combinatorial techniques, 
we can easily get the result that a ρ-fraction of encoded file 
blocks can be retrieved after at most O(n/ω) interactions.  
 
Based on the rate-ρ error correcting codes, all the file blocks 
are able to be recovered. The security model for the integrity 
verification protocol is the same as in Shacham and Waters’ 
PoR model. Thus, the simulation for extracting the original 
file is similar to that in [12][17], which is omitted here. By 
combining Theorem 1 and Theorem 2, we can directly have 
the following theorem. Theorem 3: The proposed PoR 
construction is (β,γ)-sound for any β-admissible prover  
 
where γ = 1−(1−1/p)logn+1 + 1/p.  
 
Regarding the file confidentiality of SecCloud+, we have the 
following theorem. Theorem 4: The proposed SecCloud+ 
achieves confiden- tiality of file with the assumption that the 
adversary is not allowed to collude with the key server. 
Proof: In our construction, a key server is introduced to 
generate the convergent key and hash values for the 
duplicate check. Without the private key stored at the key 
server, no adversary can generate a valid convergent key for 
any file with non-negligible probability.  
 
Thus, for the cloud storage server, without the help of key 
server, it cannot launch the brute force attack because the 
underlying hash value over the file is a valid message 
authentication code. Furthermore, all the data has been 
encrypted before they are outsourced. The data is encrypted 
with the traditional symmetric encryption scheme and the 
key is generated by the key server. The convergent key is 
encrypted by another master key and stored in the cloud 
server.  

 
The convergent key has been computed from both the file 
and private key of the key server, which means that the 
convergent key is not deterministic only in terms of the file. 
Even if the file is predictable, the adversary cannot guess the 
file with brute-force attack if the adversary is not allowed to 
collude with the key server. Because we used the PoW 
technique, based on the assumption of secure PoW scheme, 
any adversary without the file can- not convince the cloud 
storage server to get the corresponding access privilege. 
Thus, our deduplication system is secure in terms of the 
security mode 
 
7. Performance Analysis 
 
In this section, we will provide a thorough experimental 
evaluation of our proposed schemes. We build our testbed 
by using 64-bit t2.Micro Linux servers in Amazon EC2 
platform as the auditing server and storage server. In order 
to achieve λ = 80 bit security, the prime order p of the 
bilinear group G and GT are respectively chosen as 160 and 
512 bits in length. We also set the block size as 4 KB and 
each block includes 25 sectors. 
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Fig. 5 shows the time cost of slave node in MapReduce for 
generating file tags. It is clear the time cost of slave node is 
growing with the size of file. This is because the more 
blocks in file, the more homomorphic signatures are needed 
to be com- puted by slave node for file uploading. We also 
need to notice that there does not exist much computational 
load difference between common slave nodes and the 
reducer. Compared with the common slave nodes, reducer 
only additionally involves in a number of multiplications, 
which is lightweight operation. It is worthwhile noting that, 
the procedure of tag generation (the phase 2 and 3 in file 
uploading protocol) could be handled in preprocessing, and 
it is not necessary for client to wait until uploading file. 

 
 
Before examine the time cost of file auditing, we need to 
firstly make analysis and identify the number of challenging 
blocks (i.e., |IF|) in our integrity auditing protocol. 
According to, if ρ fraction of the file is corrupted, through 
asking the proof of a constant m blocks of this file, the 
verifier can detect the misbehavior with probability α = 1 − 
(1 − ρ)m. To capture the spirit of probabilistic auditing, we 
set the probability confidence α = 70%,85% and 99%, and 
draw the relationships between ρ and m in Fig. 6. It 
demonstrates that if we want to achieve low (i.e., 70%), 
medium (i.e., 85%) and high (i.e., 99%) confidence of 
detecting any small fraction of corruption, we have to 
respectively ask for 130,190 and 460 blocks for challenge. 

 
Now, we come back to evaluate the time cost of file auditing 
in Fig. 7, which shows the time cost of auditing for detecting 
the misbehavior of cloud storage respectively with 70%,85% 
and 99% confidence. Obviously, as the growth of the 
number of blocks for challenge (to guarantee higher 
confidence), the time cost for response from cloud storage 
server is increasing. This is because it needs to compute all 
the exponentiations for each challenge block as well as the 
coefficient for each column of S. Correspondingly, the time 
cost at auditor grows with the number of challenge blocks as 
well. But compared with cloud storage, the rate is slightly 
lower, because auditor only needs to aggregate the 
homomorphic signature of the challenged blocks. 
 
8. Conclusion 
 
Aiming at achieving both data integrity and deduplication in 
cloud, we propose SecCloud and SecCloud+. SecCloud in- 
troduces an auditing entity with maintenance of a 
MapReduce cloud, which helps clients generate data tags 
before uploading as well as audit the integrity of data having 
been stored in cloud. In addition, SecCoud enables secure 
deduplication through introducing a Proof of Ownership 
protocol and pre- venting the leakage of side channel 
information in data dedu- plication. Compared with previous 
work, the computation by user in SecCloud is greatly 
reduced during the file uploading and auditing phases. 
SecCloud+ is an advanced construction motivated by the 
fact that customers always want to encrypt their data before 
uploading, and allows for integrity auditing and secure 
deduplication directly on encrypted data. 
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