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Abstract: From the perspective of the Bayesian approach, the denoising problem is essentially a prior probability modeling and 

estimation task. In thispaper, wepropose an approach that exploits a hidden Bayesian network, constructed from wavelet coefficients, to 

model the prior probability of the original image. Then,weusethe beliefpropagation (BP)algorithm,which estimates acoefficient based 

onallthecoefficients ofanimage,as the  maximum-a-posterior  (MAP)  estimator  to   derive  the denoised wavelet coefficients. We show 

that if the network is a spanning tree, the standard BP algorithm can perform MAP estimation efficiently. Our experiment results 

demonstrate that, in terms of the peak-signal-to-noise-ratio and perceptual quality, the proposed approach out performs state-of-the-art 

algorithms on several images, particularly in the textured regions, with various amounts of white Gaussian noise. 
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1. Introduction 
 
COMPLEX phenomena usually involve a large number of 
hidden variables and data sources. Graphical models 
provide a unifying framework for modeling the probability 
distributions of such phenomena by decomposing joint 
probability distributions into a set of local constraints and 
dependencies [1]. After formulating a problem as a graphical 
model, a wide range of statistical learning and inference 
algorithms can be applied directly to derive a solution. 
Bayesian networks are probably the most popular type of 
(directed) graphical model. In this paper, our objective is to 
construct a Bayesian network from a single image for 
denoising purposes. To do this, we need to overcome two 
difficulties: 1) constructing a Bayesian network is 
computationally in efficient and 2) the data over-fitting 
problem, which exaggerates minor fluctuations in the input 
data. 
 
The construction of a Bayesian network involves prior 
knowledge of the probability relationships between the 
variables of interest. Learning approaches are widely 
used to construct Bayesian networks that best represent the 
joint probabilities of training data[2] - [5]. In practice, an 
optimization process based on a heuristicse arch technique is 
used to find the best structure over the space of all possible 
networks. 
 
However, the approach is computationally intractable 
because it must explore several combinations of dependent 
variables to derive an optimal Bayesian network. The 
difficulty is resolved in this paper by representing the data in 
wavelet domains and restricting the space of possible 
networks by using certain techniques, such as the “maximal 
weighted spanning tree” (MWST). Three wavelet properties-
sparsity, clustering, and persistence-can be exploited to 
reduce the computational complexity of learning Bayesian 
network. First, the wavelet transform of a natural image 
tends to be sparse with large coefficients at the edges. The 
sparsity reduces the number of variables required to 
construct a graph. Second, the adjacent wavelet coefficients 
tend to have similar values as a cluster. Third, wavelet  
coefficients   at  the  same  location   and orientation tend to 
be positively correlated in adjacent scales. 
 

The over-fitting problem occurs because the underlying 
network is too complex; for example, there may be too many 
parameters for the number of observations [6]. In the effort 
of using hidden Markov tree (HMT) model[7]–[9] to capture 
the joint statistics of wavelet coefficeints, the marginal 
probability of each wavelet coefficient is modeled as a mixed 
density function with a hidden state variable; for example, an 
M-state Gaussian mixture model for a wavelet coefficient 
consists of M states and M Gaussian conditional probability 
density functions (pdf), one for each state.  
 
To generate wavele t  coefficients, the HMT first draws a 
state values based on the pd fp, and then draws an 

observation according to the conditional probability of the 

state. The pdf of the wavelet coefficient is given by s=1 p(s)f 

(.|s), where the conditional pdff(.|s) is written  as a parametric 
formula that depends on certain parameters. Because several 
parameters are used to estimate a wavelet coefficient, the 
HMT approach can only be used to model the marginal 
probability when the number of training images is large; then 
the underlying parameters can be estimated accurately. If 
there is only one image, the over- fitting problem under the 
HMT approach would be severe. Thus, instead of associating 
each wavelet coefficient with a random variable, we split all 
the wavelet coefficients into equal-size blocks and assume 
that the blocks are independently sampled  from a matrix of 
random variables (called a wavelet patch). The approach 
allows us to estimate non-parametric statistics, which do not 
require a pdf assumption, from the samples in the wavelet 
patch. 
 
The image denoising problem is particularly serious in 
modern image capturing devices because the increase in the 
sensor’s density perunit area of a chip reduces the signal-to-
noise(SNR) and increases the capturing device’s sensitivity 
to noise [10].The state-of-the-art denoising algorithms are 
based on the non-local means approach[11]–[13], which 
exploits the self-similarity and redundancy in an image. The 
most representative approach is the block matching and 3-D 
filtering (BM3D) algorithm [13]. It combines similar 2-D 
patches that can be over lapped to form a 3-D group, and the 
nuses collaborative 3-D filtering techniques to perform non-
local filtering. The filtered blocks are returned to their 
original positions, and the final estimate of a pixel is 
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computed as the weighted average of the estimates of the 
pixel in several different blocks. This simple approach is 
very efficient and it yieldsbetterresultsthan regularnon-
localmeansapproaches. In [14],adenoising Wienerfilter, 
motivated by the statistical analysis of the performance 
bounds of patch-based methods, is proposed. The filter’s 
parameters are estimated from geometrically as well as photo 
metrically similar patches. Recent developments 
insparserepresentation havebeenusedtogetherwiththenon- 
localmeansapproach fornoisereduction purposes [15],[16]. 
The sparse model approach assumes that image patches can 
be represented sparsely by an over-complete redundant 
dictionary, which can be learned from a family of training 
data. In [17], Milan far demonstrates that the non-local 
means approach as well a recent multi-dimensional filtering 
approaches (e.g., bilateral filtering and kernel regression) are 
operations that are adaptive to the local structure of an 
image. Healsopresentsageneralframeworkforunderstanding 
the basicprinciplesbehindtheapproaches. 
 
The Bayesian approach is also widely used to resolve the 
image demising problem.  The Bayesian formula indicates 
that the denoising problem is essentially a prior probability 
modeling and estimation task. If y=x+n, where n is white 
Gaussian noise with known variance, then the Bayesian 
formula is P(x|y)= P(y|x)P(x),where(y|x)= Pn(y−x) is the 
noise probability.   
 
The maximum-a-posterior(MAP) solution of P(x|y ) is 
determined by the priori probability P(x).The structure of 
image prior is usually modeled by Markov Random Fields 
(MRFs), where the probability of a pixel depends solely on 
the joint probability of the pixels in its neighborhood.  
According to the Hammersley-Clifford theorem, the 
probability distribution of an MRF is the Gibbs distribution 
whose energy function is the sum of the potential functions 
defined on the cliques (i.e., maximal complete subgraphs) in 
image neighborhoods. 
 
Many wavelet-based denoising algorithms integrate the 
wavelet properties in MRF storeta in the structure of a 
denoised image. The main differences between the 
algorithms are the methods used for neighborhood  selection, 
the modeling of the original image over the neighborhood, 
and the techniques employed to derive solutions. In [18], 
the estimated wavelet coefficient at index l (position, 
scale),wˆl, isobtainedby 
 

wˆl=wl P(xl|M)≈ wl P(M|xl) P(xl), 
 
where wl is the observed wavelet coefficient, xl is the hidden 
label, P(xl|M) is the probability of the label l as a nedge, and 
M is the measurement derived by inter-scale Lipschitz 
exponentestimation[19],[20]. 
 
The prior probability P (xl)at the scale of l is modeled by a 
2× 2 MRF, where the potential functions between two 
neighboring wavelet coefficients on hand-chosen cliques are 
defined as xixj,with each variable taking the value 1or−1. 
The approach is extended in [21] by incorporating robust 

inter-scale estimators M and P (xl|M) and generalized an 
isotropic MRF prior P (xl) on each scale. 
 
Simon celli examined the empirical statistical properties of 
images in a adjacent scales and presented an inter-scale 
probability model for the wavelet coefficients in two 
adjacent scales [22]. The joint statistical model assumes 
that the density of an estimated wavelet coefficient is 
conditionally Gaussian, where the variance is a linear 
combination of the squared coefficients in a local 
neighborhood.  
 
The neighborhood consists of coefficients at other 
orientations and adjacent scales, as well as adjacent spatial 
locations. For example, Simon celli’s model uses a 
neighborhood comprised of the 12 nearest spatial neighbors 
in the same sub band, the 5 nearest coefficients in sub bands 
at other orientations on the same scale, the 9 nearest 
coefficients in the adjacent subband of the coarser scale, and 
some coefficients in other subbands. 
 
The BLS-GSM algorithm [23] models the distribution of a 
vector of wavelet coefficients in a 3×3 region, together with 
the coefficient at the center location and the same orientation 
at the next coarser scale, as a Gaussian Scale Mixture 
(GSM). Then, the Bayesian least square method is used to 
estimate the wavelet coefficient at the center of the 
neighborhood system. In [24], a mixture of Gaussian Scale 
Mixtures (MGSM)is proposed to make the GSM model 
adaptive to the image content.  Its denoising performance is 
almost as good as that of the BM 3D algorithm. In [25], a 
dimension reduction technique is applied to the MGSM to 
reduce the computational cost and avoid the curse of 
dimensionality problem in learning the high number of free 
parameters of the model. 
 
The MRF is modeled on a nun directed graph. In this paper, 
we propose an approach that uses a hidden directed graph to 
model the prior probability of an image.  Specifically, the 
graph is a Bayesian network with a multi-layer network 
structure constructed from the wavelet coefficients of an 
image. Our approach has two advantages over existing 
approaches.  
 
First, the MAP solution can be derived by using the standard 
BP algorithm [26], [27]. BP inference passes messages 
forward from coefficients at coarser scales to finer scales and 
back-ward from finer scales to coarser scales. Forward 
message passing tends to smooth fluctuations in fine scales, 
while backward message passing tends to retain the fine 
details of an image. 
Thus, our method is more capable of retaining the fine 
structure of an image than existing approaches. The second 
advantage is that the hidden structure is derived by a data-
adaptive process. 
 
In addition, the prior probabilities over inter-scale edges and 
intra-scale edges are modeled in a similar way to those in 
[22] and [28] respectively.  
 
We also analyze the complexity of estimating the solution of 
a Bayesian network and show that BP inference can derive 
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the MAP solution efficiently provided that  the Bayesian 
network is a spanning  tree.  
 
To evaluate our approach, we compare its performance with 
that of other approaches, including BM 3D,and demonstrate 
that it yields a better peak-signal-to-noise ratio (PSNR) as 
well as better perceptual quality on the textured are as of an 
image. 
 
The remainder of this paper is organized as follows. In 
Section II, we explain the rationale behind the proposed 
data- adaptive graph modeling of an image. We also analyze 
the computational cost of using BP inference to estimate the 
MAP solution for the proposed approach. In Section III, we 
present the method used to construct and model wavelet 
Bayesian networks; and in Section IV, we describe how the 
networks are used for denoising. In Section V, we discuss 
the proposed denoising algorithm and compare its 
performance with that of other approaches. Section VI 
contains some concluding remarks. 

 
Figure 1:  Constructing a hidden directed graph from a 

wavelet subband. (a) Subband of 4×4 coefficients. (b) 

Wavelet patch is a matrix of 2×2 random variables, X1, X2, 

X3, and X4. (c) Subband is divided into four rectangles, each 

containing 2× 2 coefficients .The coefficients at the same 

location in each rectangle are assigned to the node at the 

same location in the wavelet patch, and the coefficients of 

the same color are grouped as the observations of anode.(d) 

Directed edges are constructed to form a spanning tree. 

 
2. Data-Adaptive Hidden Network Approach 
 
In this section, we describe the proposed framework for the 
constructing    a    data-adaptive   graph structure and 
formulating the prior m and probability of the original image 
in the wavelet domain. We also explain how the graph 
structure is used with the BP algorithm to derive the MAP 
solution. 
 
We assume that the wavelet coefficients of the original 
image represent a realization of a hidden graph. To construct 
the graph, we first create a matrix of random variables (a 
wavelet patch) for each subband (indexed by orientation and 
scale), and assign the subband coefficients as the observed 
data of the random variables. Then, a subgraph (network) is 
constructed from the wavelet patch as follows.   
 

First, we associate each random variable with a node; hence, 
the coefficients assigned to the random variable can be 
regarded as node’s observed data. Second, the arcs (directed 
edges) in the subgraph are derived according to a data 
dependence measurement between the observed data in any 
pair of nodes. 
 
In this way, we can construct a one-layer network from the 
wavelet subband and associate the sub band’s coefficients 
with the nodes in the network. The procedure is shown in 
Fig.1. Finally, the one-layer networks of adjacent subbands 
can be linked by inter-scale arcs, from coarser scales to finer 
scales, to form a multi-layer network structure, as shown in 
Fig. 2(a)–(c).  
 
Two problems may a rise during the above construction 
procedure: 1) the coefficient and wavelet patch association 
problem, which involves associating subband coefficients 
with a wavelet patch; and 2) the graph selection problem, 
i.e., determining the type of graph to construct. To solve the 
first problem, we propose the following heuristic procedure. 
Assume that the wavelet patch is a matrix of m ×m random 
variables. Let the size of a subband be N

N×2 N and let m 

divide N. We partition the subband into(m) rectangular 
blocks, each of which contains m×m coefficients. Then, the 
coefficient at location (i,j) in each block is assigned as a 
realization of the random variable at location (i,j) in the  
wavelet patch. Thus, each random variable has 

sampled observations. 
 
For the second problem, we analyze the computational cost 
of a graph structure for which the MAP solution  can be 
derived efficiently by the standard BP algorithm. The 
standard implementation of the message passing algorithm in 
BP on m ×m cliques runs in O (N

2
k m ×m

 T), where N2 is the 
number of coefficients in a subband, k is the number of 
labels for each coefficient, and T is the number of iterations. 
Basically, computing each message takes O(k m×m) time and 
there are O(N

2
) messages per iteration. The computational 

cost of the conventional BP algorithm can be reduced if 
the algorithmic techniques in [29]–[31] are used for 
Bayesian inference. 
 
If parallelism is also exploited as described in [32], BP 
inference can achieve a near linear parallel scaling 
performance. We use a graph G(V , E) to represent the 
(one- layer) subgraph structure, where V is the node set 
and E is the arc set. If G is a loopy Bayesian network, the 
BP algorithm sometimes yields surprisingly good 
approximate results; however, sometimes, it fails to 
produce any results, even after a large number of 
iterations. BP can derive an exact MAP solution in two 
iterations if G is a directed-acyclic-graph (DAG), but the 
inference cost depends on the structure of the DAG. A 
DAG that incurs a high inference cost can be constructed 
as follows: let the nodes in G be indexed from 1 to m2. For 
each node j, passing  at  node  jFor typical values of k and 
m, which are 512 and 4 respectively, BP inference of the 
DAG is too high to be of practical use.   
 
If we assume that G is a spanning tree structure, we can 
show that the average computation time for BP inference is 
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O(m
2
 k).Let us assume that any two nodes have an 

equalchance of being linked by an arc in a spanning tree. As 
the tree contains m2 - 

 
Figure 2: Constructing a multi layer hidden network.(a)Two 

subbands, with the coarser subband on top.(b) Procedure 

creates two wavelet patches, each of which is associated 

with a subgraph. Subband coefficients are assigned to 

nodes, as specified in Fig. 1(c). (c) Nodes in the two-layer 

network are linked by intra-scale (solid) arcs and inter-

scale (dashed) arcs. (d) To derive the prior probability, the 

hidden coefficients are organized into groups a, b, c, and d. 

In group a, the coefficients are { Pai , ai |i = 1, 2, 3, 4} and 

they are highlighted in the local blocks of the subbands in 

(a). Coefficients in the other groups can be derived in a 

similar manner. 

 

involves kj-1 operations, where k is the label of a wavelet 
coefficient. The total cost of the operation for all nodes is  
 

 
 
1edges, each node has 1 in-degree at most; and, in total, all 
the nodes have m2 - 1 out-degrees. Because all the nodes are 
treated equally, the average out-degree of each node in a 
spanning tree is ≤ 1. BP inference in a spanning tree is 
comprised of two phases: forward message passing and 
backward message passing, which use the in degree arcs and 
out-degree arcs respectively to pass Messages to a node. 
Because the average in-degree and out-degree arc of a node 
is at most 1, the average number of messaging passing 
operations on a node is O(k). There are m

2 nodes, so the 
average number of message passing operations is O(m

2
k) for 

BP inference in spanning trees. The analysis shows that the 
cost of BP inference on a spanning tree can be significantly 

less than that in a general DAG. However, the power of a 
spanning tree to express the structure of a wavelet patch is 
limited. For a subgraph of m × m nodes, there are m2× m2a  
pairwise relations, but a spanning tree only uses m

2– 1 of 
them. Thus, a panning tree cannot fully capture a 

complicated structure that contains more than m
2- 1 highly 

correlated pairwise relations and a smooth region in which 
all the nodes are highly correlated to one another. 
 
The joint probability of a spanning tree G = (V , E) can be 
formulated by the dependency structure in G as follows.  
 
Let f (vi | ui ) be the probability function associated with arc 
ui


 vi ,  where ui, vi ∈  V ,  and let u be  the  root of  the tree 
with probability f (u). Then, the joint probability of G is  
 

f(G)=  f (vi |ui ) f (u).           (2)  
 

ui→vi ∈E 
Note that the intra-scale clustering property of wavelet 
coefficients indicates that the neighboring coefficients in a 
subband are positively correlated. Thus, the pairwise joint 
probability can be modeled as a measurement of |ui−vi|, 
resembling the marginal statistics of the gradient of 
neighboring nodes with values ui and vi .We can stack the 
subgraphs of two adjacent scales to form a two-layer graph. 
Let Gc=(Vc,Ec) be the graph corresponding to a subband at 
the coarser scale of G. Based on the inter-scale persistence 
property, inter-scale arcs can be constructed between Vc and 
V, denoted as A, by combining the parent node and child 
node (nodes at the same location) in Gc and G respectively. 
Let p(vk) in Vc be the parent node of vk in V; and let uc and u 

be the root of the tree in Gc and G respectively. Because of 
the node dependency in the graphs,   the joint probability of 
the resulting directed graph can be formulated as follows:  
 

f(Gc,G)= fc(uc)               fc(u j|ui) 

×f(u|p(u))             f(vl|vk,p(vl))  (3) 
vk→vl∈E 

where p(u)→u∈A, and p(vl)→vl∈A. Equation (3) gives the 
joint probability of all the nodes in the graph shown in 
Fig.2(c). The prior probability of the hidden coefficients in 
the graph is derived as follows. We take one coefficient from 
each node to form a data group; for example, Fig. 2 (d) has 
four data groups. 
 
The joint probability of each data group can be written in the 
form of Equation (3) by replacing the node variables with the 
hidden coefficients. Finally, it is assumed that the joint 
probability of all the data groups is the product of that of each 
data group. 
 
After constructing the hidden network, we create layer of 
observation nodes for each noisy wavelet subband. Next, we 
assign the noisy coefficients to the observation nodes in the 
same way as the ideal subband coefficients are assigned to 
the hidden nodes, as shown in Fig.3(a)and(b). 
 
Then, arcs are created to link the observation nodes to  the 
corresponding hidden nodes, as shown in Fig.3(c). BP 
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inference can now be applied to derive the MAP solution for 
the denoising problem. Recall  that  each  node  in  a  
wavelet  patch  has  ( mN )2 realizations. If we  take one  
wavelet coefficient from each node and use the BP algorithm 
to estimate the solution, thedenoisingprocess makes ( mN )2 
BP inferences.  
 
Note that, as shown in Fig. 3(d), all the wavelet coefficients 
located in the same rectangular blocks in various subbands 
are estimatedsimultaneously by one BP inference.  
 
We calculate the computational cost of image denoising 
under the proposed model as follows. Because each node has 
one in-degree and one out-degree inter-scale edge at most, 
the number of operations that BP inference performs for the 
multi-layer graph is J times the number performed for one 
wavelet patch.  
 
For a spanning tree, each inference involves an average of 
O(m

2 
k) operations and there are (mN

)
2 BP; thus,the proposed 

algorithm performs an average of O(N
2
k) operations for one 

wavelet patch. As a result, the average BP inference cost of 
the J layers network is O(J N 

2
k).  

 
Figure 3: (a) Top layer and the bottom (dashed) layer of 
each group are composed of hidden subband coefficients and 
coefficients observed at the corresponding subband, 
respectively. (b) Coefficients in observed (dashed)  layers are 
organized in the same way as the coefficients in the hidden 
layers. (c) Observation nodes {ypi ,yi } are created and 
linked to hidden nodes {x  ,x }. (d) For denoising proposes, 
data in the network is organized into four groups and BP 
inference is applied to each group. For example, i{ypai , pai , 

yai , ai(i = 1, 2, 3, 4} is a group. The other three data groups 
can bederived in a similar manner.  
 
We have explained the basic approach used to construct 
aspanning tree from a wavelet patch and stack the spanning 
treesnto form a multi-layer network. In addition, we have 
shown that ifthe subgraph structure is a spanning tree, the 
exact MAP solutioncan be derived efficiently by BP 
inference. Before describing theconstruction in detail, we 
remark that the wavelet coefficients atthe same location and 
scale, but in different orientations, arecorrelated. However, 
they are not necessarily positivelycorrelated, so their 
potential functions are not suitable formodeling as a function 
of their absolute difference.Therefore, weconstruct a wavelet 
Bayesian net-work for the wavelet subbandsin each 
orientation.  
 
3. Constructing Wavelet Bayesian Networks 
 
A Bayesian network, denoted as B = (V, E, P), comprises a 
set of random variables and their conditional dependencies 
represented by a directed acyclic graph in which the 
nodesrepresent the elements in V. Each edge element in E 
takes theform of a directed arc x → y, where x and y ∈ V. 
The  likelihood  p(y|  x )  ∈   P of an  edge x  → y  ∈ E  is the 
conditional probability of observing y  given that x exists.  
 
We call the Bayesian networks constructed in wavelet 
domains wavelet Bayesian networks (WBNs). Our primary 
objective is to construct a WBN from the undecimated 
discrete wavelet transform (DWT) of a single image. 
Initially, wavelet decomposition of an image F yields three 
images of wavelet coefficients with horizontal, vertical, and 
diagonal orientations respectively, and one approximate 
image of F. Then, at the next scale, the approximated image 
is further decomposed to obtain three images of the wavelet 
coefficients and one coarser approximate image of F.  
 
Let W hj  F(u, v), Wvj F(u, v), and WdF(u, v) denote, 
respectively, the horizontal, vertical, and diagonal images of 
the wavelet coefficients at scale 2 j ; and let Aj represent the 
approximated image at the same scale. If the undecimated 
DWT is decomposed J times, we will have wavelet 
coefficients W hj F, Wvj F(u, v) F, and Wdj F with  j=  1, . . . , 
Jand  the  coarsest  approximate image AJF.     
 
To construct a WBN, we first group subbands with the same 
orientation together to obtain a horizontal-group, avertical-
group, and a diagonal-group of wavelet coefficients.  Then, 
we construct a Bayesian network B for each group. Let Bh= 
(V

h
,E

h
,P

h
), Bv= (V

v
,E

v
,P

v
), and B

h=(V 
d
 , E

d 
, P

d
) denote the 

Bayesian networks constructedfromthe horizontal-group, 
vertical-group, and diagonal-group of wavelet coefficients 
respectively. 
 
The WBN B = (V,E,P)is derived from Bh , Bv and Bd by ,  
V = V

h∪ V
v∪V 

d        (4)
 

E= E
h∪E 

v∪ E 
d        (5)      

P= P
h∪ P 

v∪ P 
d         (6) 

Next, we  explain how to construct the Bayesian network  
B

u 
(V 

u
 ,E

u
 , P

u
 ) that corresponds to the u-orientation, where 

u∈{h, v, d}.  
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A. Vertex Set V
u
 

 
Let the size of the input image F be N × N. If J wavelet 
decompositions are applied to F, there will be J subbands of 
size N × N in each orientation. Let a wavelet patch (matrix of 
random variable) be of size m × m. For each subband, a 
graph of m

2 variable nodes are formed. We then associate 
each random variable in the wavelet patch to a variable node 
in the graph. Without loss of generality, we assume that m 
divides N. Each subband can then be partitioned into (m

N
)

2 

blocks, each of size m × m. Then, (mN
)

2 wavelet coefficients 
sampled from the subband are assigned to each variable 
node.  
 
Let xh

(i,k), with j = 1, . . . ,J and i,k = 0, . . . ,m - 1,denote the 
(i,k) variable node in the j –th subband. In our j construction, 
the (m

N
)
2wavelet coefficients assigned to nodex 

u
j (i, k) are 

sampled from Wu
j F(i+mp, k +mq) with p, q =0, . . . ,m

N- 1. If 
we represent each node as a vertex in theBayesian network 
B

u will be V u = {x 
u
j , then the vertex set of Buwill be 

 
Vu=(xu j (i, k)|i, k =0, · · · , m -1;   j =1, · · · , J }(7) 

 
and the (m

N
)
2  wavelet coefficients can be regarded as 

sampled from some  unknown) distribution of a random  
variable. Figs. 1(a), (b), and (c) show the procedure used to 
construct the vertex set for a subband of 4 × 4 coefficients.  

B. Edge Set E
u 

The arcs (directed edges) in B
u  can be divided into two 

disjoint sets, E o
u and Ei

u, where E o
u comprises the 

(interscale) edges incident to vertices at different scales, and 
E comprises the (intra-scale) edges incident to vertices at the 
same scale. The persistence property of the wavelet 
transforms indicates that large/small values of wavelet 
coefficients tend to occur at the same spatial locations in 
subbands at adjacent scales. The property can be used to 
construct arcs in Eo

u by linking a vertex at the coarser scale 
j+ 1 to the vertex of the same index at the finer scale j ; that 
is,  
 

Eo
u= {x 

u
j+1(i, k) → x 

u
j (i, k)|i,  k =0, . . . , m -1  

 
andj = 1, · · · ,J - 1}.   (8) 
 
The edges in Ei

u represent the connections between vertices 
at the same scale and orientation. Constructing the edges 
corresponds to deriving the Bayesian network on the nodes 
x

u
j(i,k) that best represent the joint probability of the nodes at 

the same scale j and orientation u. However, as discussed in 
Section II, BP inference is computationally intractable if the 
Bayesian network is a general graph. Thus, we limit the 
solution space to spanning trees so that we can derive an 
efficient solution by using the maximal weighted spanning 

tree (MWST) algorithm [33]–[36]. A maximal weighted 
spanning tree is a spanning tree whose weight is greater than 
or equal to the total weight of every other spanning tree. The 
optimum weighted spanning tree can be derived by 
minimizing the relative entropy (Kullback-Leibler distance) 
D (p||q) between the probability functions p and q.  
 

In the following, we show how the spanning tree that 
minimizes D(p||q) is equivalent to the tree that maximizes the 
weighted summation of conditional mutual information on 
all the edges of the tree. Let x be the vector of variables x1 , . 
. .,xn; let p(i ) and b(i ) denote the indices of the parent nodes 
and the sibling nodes of xi  respectively; and let q be the 
induced probability of the spanning tree. Then, we have  

 
 
Note that nodes at the coarsest scale do not have parent 
nodes. To find the optimal spanning tree, we minimize the 
relative entropy between q(x) and the joint probability p(x) 
as follows:  

 
Since minimizing D(p||q) is  equivalent to maximizing  
X p(x) log q(x), we can derive the following: 
 
xp(x) log q(x) 

 
 
The second term in the last line of the above equation can be 
re-written as follows:  
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Algorithm 1 Kruskal’s Algorithm 
 
1) Calculate the m

2 × m
2  weights of the arcs between any 

two nodes. Note that the weight of arc x → y may be  
different from that of arc y → x .   
2) Sort the weights of the m2 × m2  arcs and compile a list in 
non increasing order so that the weight wi is not less than the 
weight w with i<j .  
3) Assume that the initial spanning tree is empty and add the 
arc of weight w1 to the empty tree.   
4) Do until the tree is a spanning tree:   
a) Let wi  be the next weight on the list.   
b) Check if adding the arc of weight wi to the tree 
creates a cycle.   
 5) End   
and the sample probabilities are calculated as follows: 
 
f(xi= u)=  bf (xi= u , xj=v) 

f(xj=v)=  af(xi= a , xj= v)             (15) 
 
It is well-known that the joint frequenciesf (xi= u , xj= v),f 

(xi= u) and f (xj=v)are maximum-likelihood estimators for  
the  probabilities  p(xi= u , xj= v),p (xi= u) and p  

(xj=v)respectively. Therefore, the samplemutual information 
can be computed as     
 

 
 

Then, we use  Iˆ(xi , xj ) instead of I (xi, x j) j =v) j =v) when 
calculating the weights in the above algorithm. For each 
scalej∈ {1, . . . ,J }, we execute Kruskal’s algorithm to obtain 
a contains all the edges in all spanning tree. The edge set 
Ei

uthe spanning trees. 
 
Figure(d) shows an example of a network with intra-scale 
edges derived by the MWST algorithm from the fournodes in 
Fig. 1(c); and Fig. 2(c) shows an example of a 
multilayernetwork where the inter-scale and intra-scale edges 
areconstructed from the nodes in Fig. 2(b). The WBN B in 
Fig. 4 is comprised of three oriented Bayesian networks, 
B

h,BvandB
d . 

C. Probability Model P
u 

There are two types of arcs in a Bayesian network Bu: 1)the 
inter-scale parent-child arc, which connects a node with its 
coarser-scale parent; and 2) the intra-scale sibling arc, 
whichconnects two nodes of the same scale. To obtain 
theprobability inference, we need to model 
theprobabilityfunction on each arc.  
 
Simoncelli [22] exploited the persistence property ofwavelet 
transforms and proposed a joint statistical model of a“child” 
coefficient conditioned on the coarse-scale 
“parent”coefficients at the same spatial locations in all 
orientations.  

 
Let {xpk } comprise the parent coefficients of the child 
coefficient x. Then, the probability function of x conditioned 
on {xpk }  is defined as the following Markov model:  

 
which is a conditional Gaussian density function whose 
variance is a linear function of the squared coefficients in 
{xpk} with weights {wk }, and a is the bias of the variance. 
We simplify Simoncelli’s joint probability model to 
represent the kpdf of a parent-child arc in Eo

u . Specifically, 
we remove the dependency of the coarse-scale parents’ 
coefficients in all orientations except that of the child 
coefficient and set the bias of variance  to zero. Thus, there 
is only one parent coefficient xpforx . Then, the joint 
probability of the parent-child arc in Eo

u is modeled as 

 
where w is a chosen parameter. 
Other researchers have observed that large/small 
waveletcoefficients of the same sign tend to occur near each 
other in a subband. The observations are summarized as the 
clustering property of the wavelet transform. The property 
means that, in a subband, there is a strong positive 
correlation between waveletcoefficients that are in close 
proximity and dependent on eachother. The ROF approach 
[28] exploits the clustering propertybetween neighboring 
pixels by using TV norms, which areessentially L1 norms of 
the derivative of the values of two neighboring coefficients, 
to estimate the discontinuities in an image. Equivalently, the 
joint probability function between twocoefficients in close 
proximity is modeled as the Laplacian distribution of the 
absolute of the difference of two waveletcoefficients [42]. In 
the construction of intra-scale edges,Kruskal’s algorithm 
selects the arc x → z∈Ei

u , where themutual information 
between x and z is high; that is, x and z arehighly correlated. 
Thus, we utilize a similar concept to model the probability of 
z conditioned on x as the following Laplacian distribution 
function:  
fi

u(z|x)∝λexp(-λ|x- z|)    (19) 
where λ is the scale parameter of the Laplacian 
distribution,andλ|x - z| is the potential function of the local 1 
× 1 clique.   
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4.  Wavelet Bayesian Networks For Denoising 
 
In this section, we consider using the wavelet Bayesian 
network to model the prior probability of the original image 
for the image denoising problem, which involves removing 
white and homogenous Gaussian noise with zero mean and 
known variance from an image.  To infer the probability for 
denoising, we associate each variable node x in Bayesian 
network B with an observation node y and create the arc y → 
x . The probability function of x conditioned on the observed 
value of y is modeled as  

 
where n

2  is the variance of the zero mean Gaussian white 
noise and ρ depends on the scale and wavelets.  
 
Recall that the variable nodes in the Bayesian network B are 
represented by {x

u
j  (i, k)|u∈ {h, v, d}; j = 1, . . . , J ; i, k = 0, 

. . . , m - 1} (Equation (7)). Let y
u
j (i, k) denote the 

observation node corresponding to x
u
j , and Pn denote the 

collections of{y (i, k); and let Y ,  Eu
j(i, k)}, the arcs{ynuj(i, 

k)→ x (i, k)}, and the probability functions{fn(x 
u
j(i, k))} 

respectively. The WBN Bn(i, k)|yu
j for image denoising is 

constructed and represented as Bn = (V∪Y, E∪En , P∪Pn ).  
 
Let a noisy image Z = F + N, where F is the original image 
andN is zero-mean white Gaussian noise. As shown by the 
simpleexample in Fig. 3(d), each wavelet coefficient of Z is 
assigned to one observation node in Bn . That is, the 
coefficient W

u
j Z(i+mp, k + mq) is assigned to observation 

node y
u j(i+k), where p, q = 0, · · ·mN - 1; thus, each 

observation node has (mN)2 observation values and 
realizations. If we take one waveletcoefficient from each 
observation node, we can obtain (realizations of Bn , denoted 
as ( p, q) with p, q =0,· · ·mN - 1. Note that, similar to the 
example shownin Fig. 3(d), the waveletcoefficients assigned 
to the ( p, q)-th realization are taken locally  from the (i, k)-
blocks of all subbands at scale 2j and orientation u.  
 
We use the message passing algorithm to obtain theestimated 
wavelet coefficients of each realization. First, we convert 
WBN Bn to a factor graph Fn , and then use the max product 
algorithm to derive the estimated wavelet coefficients. The 
conversion of Bn to Fn and the max-product message passing 
schemes are standard techniques. For completeness, we 
provide them in Appendix A. The last step of the 
maxproduct algorithm calculates the marginal probability of 
each v in Fn. LetN(x ) represent the neighboringfactor nodes 
of variable node x in Fn variable node V in Fn. In addition, let 
xp andxc denote, respectively, the parent variable node and 
childvariable node of x in Bn; and let {x  } denote the 
siblingvariable nodes of x in Bn. The value of xˆ can be 
estimatedbased on whether x has a child node.  
Case1:x hasa child node xc. 

 

In Equation (22), _ =_ ( y , xp,xc{x j}) is independent of x, is 
the variance of the wavelet coefficients associated with 
observationnode y. The variance 2can be written as  2 ρ, 
where ρ  depends  y        on thescale andthe wavelets. N  In 
Appendix B, we showthat ρ  =  1 if thewavelets are 
orthogonal. Let          

 
Where sign(x ) returns the sign of x if x _= 0; otherwise, it 
returns 0. Hence  

 

 
Case 2: x does not have a child node (x is a node at thefinest 
wavelet scale). We can set xc = 0 in Equation (22) and obtain 

 
Algorithm 2 WBN Denoising Algorithm 
1) Wavelet representation: calculate the un decimated 

DWT of an N×N noisy image Z to obtain the horizontal, 
vertical, and diagonal subbands{W

u
jZ|j=1,...,J }, 

vertical, and diagonal subbands{W
v
jZ|j=1,...,J } and 

{Wa
jZ|j   =     1,...,J }, respectively, as well as the 

coarsest approximate image A
J
Z. 

2) Create a vertex set Vu : let the  parameter m divide 

Foreachsubbandu
Z ,createm

2  Variablenodes  

{x
u

j(i,k)|i,k=0,...m−1};then assign(mN
)
2  

Wavelet 

coefficient.
 

3) Create sibling edges (Ei
u) for nodes at the same scale 

and orientation: derive the empirical probability of each 
variable from the frequency counts of ( mN2 ) wavelet 
coefficients assigned to the node; then, use Kruskal’s 
algorithm to derive the maximal weighted spanning tree 
from the m2 nodes in each subband.   

4) The root of J (x ) = 0 can be derived by the following 
fixed point algorithm. Let x  be the estimated value after 
the t-th iteration. Then, x tt can be derived from xt -1 as 
follows: 
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The iterative estimation stops when the difference between 
the values x t-1and xtis smaller than some given threshold. 
 
5. Denoising Algorithm and Experimental 

Results 
 
In this section, we present our denoising algorithm, explain 
its implementation, and compare its performance with that of 
other methods. The proposed algorithm is summarized in 
Algorithm 1. The steps are as follows: Step (1) calculates the 
undecimated DWT of the input image; Steps (2) to (5) 
construct the WBN B; and Steps (6) to (8) create the WBN 
Bn used for denoising purposes; In Step (9), the wavelet 
coefficients are estimated from Bn by applying the max-
product algorithm to the factor graph F for each realization 
of Bn . We use CDF 9/7 filters to process the undecimated 
DWT. Because CDF 9/7 filters are close toorthogonal 
wavelet filters, the noise variance of subbands at all scales 
can be set at n

2, which is the image noise variance 
(seeAppendix B). The variance n

2 is used in the Wiener 
filtering in Step (2) as well as in deriving the MAP 
estimation of the wavelet coefficients in Step (9). The 
frequency count in Step (4) indicates the number of wavelet 
coefficients in a quantization bin. The size of a subband’s 
quantization bin is set at14 of the standard deviation, 
measured from the wavelet coefficients in the subband.  
 
We conduct experiments on two sets of images. Set I 
contains nine gray scale images (size 512 × 512 or 256 × 
256)downloaded from the USC-SIPI image database [43]; 
and SetII (shown in Fig. 6) contains nine gray scale textures, 
some ofwhich are from the Brodatz texture set. The 
parameter settings of the WBN denoising algorithm 
evaluated in the experiments are: J = 4 (the number of 
wavelet decompositions), ω = 0.64(Equation (18)), λ = 0.45 
(Equation (19)), and the parameter m = 4 in Step (3). Each 
subband represents a 512 × 512 image and contains 4 × 4 
nodes. The WBN B has 16 × 4 × 3 variablenodes because 
there are four subbands in each of the three  has 2 × 16 × 4 × 
3 nodes, halfof which are variable nodes and the rest are 
observation orientations. Hence, WBN Bn, we assign 
128×128 wavelet coefficients. Note that thisnumber is large 
enough to nodes. For each observation node in Bnderive the 
empirical probability in Step (4) of the WBNalgorithm. 
There are also 128 × 128 realizations of Bn . 
 
Next, we present the experimental results derived by 
ouralgorithm and compare its performance with that of two 
state-ofthe-artalgorithms: the BM3D algorithm [13] and the 
BLS-GSMalgorithm [23]. The source codes for the BLS-
GSM and BM3Dmethods are available from the websites of 
the respective authors.Our algorithm is executed on an Intel 
Core2Quad Q9300 CPU,with Windows XP and 
Matlab2007a. Tables I and II list the averages of five 
denoised PSNR results of the three comparedmethods for the 
images in Sets I and II respectively; white noise  was added 
with n

2 = 10, 15, . . . , 35. In the tables, we divide theimages 
into two groups and compare the average PSNR gain of our 
method over the other methods on the images in each group. 

Table III summarizes the results in Tables I and II. Note that 
the Figure print and Baboon images are regarded as texture 
images because they are dominated by texture information. 
Interestingly, the PSNR gain of our method over BM3D is 
0.1 dB for textureimages (Group 2), but only 0.02 dB for the 
other images (Group 1). Moreover, from Table III, we 
observe that the gain of BM3D 

 
over BLS-GSM is smaller on texture images (0.06 B) than 
on the other images (1.0 dB). Texture images  contain rich 
across-scales information. Since both BLS-GSM and our 
method exploit inter-scale coefficients for data estimation, 
they are more adaptive to texture images than non-texture 
images. 
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In Figures 5, 6, and 7, we perceptually compare some images 
that were denoised by the three methods. The perceptual 
qualityof the images denoised by BM3D and our method is 
better than that of the BLS-GSM images. The highlighted 
regions in the figures compare certain details of the denoised 
images derived by all three methods with the corresponding 

 

 

 

 

 

Table III: Summary of Our PSNR Gain 

 

 
Figure 5: Comparison of the denoised images derived by 
BLS-GSM, BM3D,and our algorithm. The noise standard 
deviation is s= 25. (a) Original Lena image. (b) Denoised 

result of the BLS-GSM algorithm. (c) Denoised result of  the 
BM3D algorithm. (d) Denoised result of our algorithm. 

 
6. Conclusion 
 
The Bayesian formula indicates that the denoising problem is 
essentially a prior probability modeling and estimation task. 
In this paper, we present constructive data-adaptive 
procedure that derives a hidden graph structure from the 
wavelet coefficients. The graph is then used to model the 
prior probability of the original image for denoising 
purposes. Moreover, we show that if the network is a 
spanning tree, the standard BP algorithm can estimate MAP 
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efficiently. We compare our denoised results with those 
derived by other approaches, including BM3D, and 
demonstrate that our method yields a better PSNR and better 
perceptual quality on the textured areas of an image. 
Extending our method to content sensitive wavelet patches is 
an issue that merits future study. We will also investigate 
ways to speed up our algorithm’s execution time.  
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