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Abstract: From the perspective of the Bayesian approach, the denoising problem is essentially a prior probability modeling and
estimation task. In thispaper, wepropose an approach that exploits a hidden Bayesian network, constructed from wavelet coefficients, to
model the prior probability of the original image. Then,weusethe beliefpropagation (BP)algorithm,which estimates acoefficient based
onallthecoefficients ofanimage,as the maximum-a-posterior (MAP) estimator to derive the denoised wavelet coefficients. We show
that if the network is a spanning tree, the standard BP algorithm can perform MAP estimation efficiently. Our experiment results
demonstrate that, in terms of the peak-signal-to-noise-ratio and perceptual quality, the proposed approach out performs state-of-the-art
algorithms on several images, particularly in the textured regions, with various amounts of white Gaussian noise.
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1. Introduction

COMPLEX phenomena usually involve a large number of
hidden variables and data sources. Graphical models
provide a unifying framework for modeling the probability
distributions of such phenomena by decomposing joint
probability distributions into a set of local constraints and
dependencies [1]. After formulating a problem as a graphical
model, a wide range of statistical learning and inference
algorithms can be applied directly to derive a solution.
Bayesian networks are probably the most popular type of
(directed) graphical model. In this paper, our objective is to
construct a Bayesian network from a single image for
denoising purposes. To do this, we need to overcome two
difficulties: 1) constructing a Bayesian network is
computationally in efficient and 2) the data over-fitting
problem, which exaggerates minor fluctuations in the input
data.

The construction of a Bayesian network involves prior
knowledge of the probability relationships between the
variables of interest. Learning approaches are widely
used to construct Bayesian networks that best represent the
joint probabilities of training data[2] - [5]. In practice, an
optimization process based on a heuristicse arch technique is
used to find the best structure over the space of all possible
networks.

However, the approach is computationally intractable
because it must explore several combinations of dependent
variables to derive an optimal Bayesian network. The
difficulty is resolved in this paper by representing the data in
wavelet domains and restricting the space of possible
networks by using certain techniques, such as the “maximal
weighted spanning tree” (MWST). Three wavelet properties-
sparsity, clustering, and persistence-can be exploited to
reduce the computational complexity of learning Bayesian
network. First, the wavelet transform of a natural image
tends to be sparse with large coefficients at the edges. The
sparsity reduces the number of variables required to
construct a graph. Second, the adjacent wavelet coefficients
tend to have similar values as a cluster. Third, wavelet
coefficients at the same location and orientation tend to
be positively correlated in adjacent scales.

The over-fitting problem occurs because the underlying
network is too complex; for example, there may be too many
parameters for the number of observations [6]. In the effort
of using hidden Markov tree (HMT) model[7]-[9] to capture
the joint statistics of wavelet coefficeints, the marginal
probability of each wavelet coefficient is modeled as a mixed
density function with a hidden state variable; for example, an
M-state Gaussian mixture model for a wavelet coefficient
consists of M states and M Gaussian conditional probability
density functions (pdf), one for each state.

To generate wavelet coefficients, the HMT first draws a
state values based on the pd fp, and then draws an

observation according to the conditional probability ﬂ‘:: of the

state. The pdf of the wavelet coefficient is given by s=1 p(s)f
(.|s), where the conditional pdff(.|s) is written as a parametric
formula that depends on certain parameters. Because several
parameters are used to estimate a wavelet coefficient, the
HMT approach can only be used to model the marginal
probability when the number of training images is large; then
the underlying parameters can be estimated accurately. If
there is only one image, the over- fitting problem under the
HMT approach would be severe. Thus, instead of associating
each wavelet coefficient with a random variable, we split all
the wavelet coefficients into equal-size blocks and assume
that the blocks are independently sampled from a matrix of
random variables (called a wavelet patch). The approach
allows us to estimate non-parametric statistics, which do not
require a pdf assumption, from the samples in the wavelet
patch.

The image denoising problem is particularly serious in
modern image capturing devices because the increase in the
sensor’s density perunit area of a chip reduces the signal-to-
noise(SNR) and increases the capturing device’s sensitivity
to noise [10].The state-of-the-art denoising algorithms are
based on the non-local means approach[11]-[13], which
exploits the self-similarity and redundancy in an image. The
most representative approach is the block matching and 3-D
filtering (BM3D) algorithm [13]. It combines similar 2-D
patches that can be over lapped to form a 3-D group, and the
nuses collaborative 3-D filtering techniques to perform non-
local filtering. The filtered blocks are returned to their
original positions, and the final estimate of a pixel is
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computed as the weighted average of the estimates of the
pixel in several different blocks. This simple approach is
very efficient and it yieldsbetterresultsthan regularnon-
localmeansapproaches. In [14],adenoising Wienerfilter,
motivated by the statistical analysis of the performance
bounds of patch-based methods, is proposed. The filter’s
parameters are estimated from geometrically as well as photo
metrically  similar  patches. Recent developments
insparserepresentation havebeenusedtogetherwiththenon-
localmeansapproach fornoisereduction purposes [15],[16].
The sparse model approach assumes that image patches can
be represented sparsely by an over-complete redundant
dictionary, which can be learned from a family of training
data. In [17], Milan far demonstrates that the non-local
means approach as well a recent multi-dimensional filtering
approaches (e.g., bilateral filtering and kernel regression) are
operations that are adaptive to the local structure of an
image. Healsopresentsageneralframeworkforunderstanding
the basicprinciplesbehindtheapproaches.

The Bayesian approach is also widely used to resolve the
image demising problem. The Bayesian formula indicates
that the denoising problem is essentially a prior probability
modeling and estimation task. If y=x+n, where n is white
Gaussian noise with known variance, then the Bayesian
formula is P(xly)= P(y|X)P(x),where(y|X)= Pnp(y—Xx) is the
noise probability.

The maximum-a-posterior(MAP) solution of P(xly ) is
determined by the priori probability P(x).The structure of
image prior is usually modeled by Markov Random Fields
(MRFs), where the probability of a pixel depends solely on
the joint probability of the pixels in its neighborhood.
According to the Hammersley-Clifford theorem, the
probability distribution of an MRF is the Gibbs distribution
whose energy function is the sum of the potential functions
defined on the cliques (i.e., maximal complete subgraphs) in
image neighborhoods.

Many wavelet-based denoising algorithms integrate the
wavelet properties in MRF storeta in the structure of a
denoised image. The main differences between the
algorithms are the methods used for neighborhood selection,
the modeling of the original image over the neighborhood,
and the techniques employed to derive solutions. In [18],
the estimated wavelet coefficient at index | (position,
scale),w"| isobtainedby

W I=w| P(x|[M)= w| P(M[x) P(x|),

where W] is the observed wavelet coefficient, X| is the hidden
label, P(x||M) is the probability of the label | as a nedge, and

M is the measurement derived by inter-scale Lipschitz
exponentestimation[19],[20].

The prior probability P (x])at the scale of | is modeled by a

2x 2 MRF, where the potential functions between two
neighboring wavelet coefficients on hand-chosen cliques are
defined as Xjxj with each variable taking the value lor—1.

The approach is extended in [21] by incorporating robust

inter-scale estimators M and P (x]|M) and generalized an
isotropic MRF prior P (X|) on each scale.

Simon celli examined the empirical statistical properties of
images in a adjacent scales and presented an inter-scale
probability model for the wavelet coefficients in two
adjacent scales [22]. The joint statistical model assumes
that the density of an estimated wavelet coefficient is
conditionally Gaussian, where the variance is a linear

combination of the squared coefficients in a local
neighborhood.
The neighborhood consists of coefficients at other

orientations and adjacent scales, as well as adjacent spatial
locations. For example, Simon celli’s model uses a
neighborhood comprised of the 12 nearest spatial neighbors
in the same sub band, the 5 nearest coefficients in sub bands
at other orientations on the same scale, the 9 nearest
coefficients in the adjacent subband of the coarser scale, and
some coefficients in other subbands.

The BLS-GSM algorithm [23] models the distribution of a
vector of wavelet coefficients in a 3x3 region, together with
the coefficient at the center location and the same orientation
at the next coarser scale, as a Gaussian Scale Mixture
(GSM). Then, the Bayesian least square method is used to
estimate the wavelet coefficient at the center of the
neighborhood system. In [24], a mixture of Gaussian Scale
Mixtures (MGSM)is proposed to make the GSM model
adaptive to the image content. Its denoising performance is
almost as good as that of the BM 3D algorithm. In [25], a
dimension reduction technique is applied to the MGSM to
reduce the computational cost and avoid the curse of
dimensionality problem in learning the high number of free
parameters of the model.

The MRF is modeled on a nun directed graph. In this paper,
we propose an approach that uses a hidden directed graph to
model the prior probability of an image. Specifically, the
graph is a Bayesian network with a multi-layer network
structure constructed from the wavelet coefficients of an
image. Our approach has two advantages over existing
approaches.

First, the MAP solution can be derived by using the standard
BP algorithm [26], [27]. BP inference passes messages
forward from coefficients at coarser scales to finer scales and
back-ward from finer scales to coarser scales. Forward
message passing tends to smooth fluctuations in fine scales,
while backward message passing tends to retain the fine
details of an image.

Thus, our method is more capable of retaining the fine
structure of an image than existing approaches. The second
advantage is that the hidden structure is derived by a data-
adaptive process.

In addition, the prior probabilities over inter-scale edges and
intra-scale edges are modeled in a similar way to those in
[22] and [28] respectively.

We also analyze the complexity of estimating the solution of
a Bayesian network and show that BP inference can derive
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the MAP solution efficiently provided that
network is a spanning tree.

the Bayesian

To evaluate our approach, we compare its performance with
that of other approaches, including BM 3D,and demonstrate
that it yields a better peak-signal-to-noise ratio (PSNR) as
well as better perceptual quality on the textured are as of an
image.

The remainder of this paper is organized as follows. In
Section II, we explain the rationale behind the proposed
data- adaptive graph modeling of an image. We also analyze
the computational cost of using BP inference to estimate the
MAP solution for the proposed approach. In Section III, we
present the method used to construct and model wavelet
Bayesian networks; and in Section IV, we describe how the
networks are used for denoising. In Section V, we discuss
the proposed denoising algorithm and compare its
performance with that of other approaches. Section VI
contains some concluding remarks.
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Figure 1: Constructing a hidden directed graph from a
wavelet subband. (a) Subband of 4x4 coefficients. (b)
Wavelet patch is a matrix of 2x2 random variables, X1, X2,
X3, and X4. (c) Subband is divided into four rectangles, each

containing 2x 2 coefficients .The coefficients at the same
location in each rectangle are assigned to the node at the
same location in the wavelet patch, and the coefficients of
the same color are grouped as the observations of anode.(d)
Directed edges are constructed to form a spanning tree.

2. Data-Adaptive Hidden Network Approach

In this section, we describe the proposed framework for the

constructing a  data-adaptive %‘_ graph structure and

formulating the prior m and probability of the original image
in the wavelet domain. We also explain how the graph
structure is used with the BP algorithm to derive the MAP
solution.

We assume that the wavelet coefficients of the original
image represent a realization of a hidden graph. To construct
the graph, we first create a matrix of random variables (a
wavelet patch) for each subband (indexed by orientation and
scale), and assign the subband coefficients as the observed
data of the random variables. Then, a subgraph (network) is
constructed from the wavelet patch as follows.

First, we associate each random variable with a node; hence,
the coefficients assigned to the random variable can be
regarded as node’s observed data. Second, the arcs (directed
edges) in the subgraph are derived according to a data
dependence measurement between the observed data in any
pair of nodes.

In this way, we can construct a one-layer network from the
wavelet subband and associate the sub band’s coefficients
with the nodes in the network. The procedure is shown in
Fig.1. Finally, the one-layer networks of adjacent subbands
can be linked by inter-scale arcs, from coarser scales to finer
scales, to form a multi-layer network structure, as shown in

Fig. 2(a)—(c).

Two problems may a rise during the above construction
procedure: 1) the coefficient and wavelet patch association
problem, which involves associating subband coefficients
with a wavelet patch; and 2) the graph selection problem,
i.e., determining the type of graph to construct. To solve the
first problem, we propose the following heuristic procedure.
Assume that the wavelet patch is a matrix of m xm random
variables. Let the size of a subband be N, N and let m
divide N. We partition the subband into(m) rectangular
blocks, each of which contains mxm coefficients. Then, the
coefficient at location (i,j) in each block is assigned as a
realization of the random variable at location (i,j) in the
wavelet patch. Thus, each random variable has

m™ = *sampled observations.

For the second problem, we analyze the computational cost
of a graph structure for which the MAP solution can be
derived efficiently by the standard BP algorithm. The
standard implementation of the message passing algorithm in
BP on m xm cliques runs in O (N°k ™™ T), where N? s the
number of coefficients in a subband, k is the number of
labels for each coefficient, and T is the number of iterations.
Basically, computing each message takes O(k ™™) time and
there are O(N®) messages per iteration. The computational
cost of the conventional BP algorithm can be reduced if
the algorithmic techniques in [29]-[31] are used for
Bayesian inference.

If parallelism is also exploited as described in [32], BP
inference can achieve a near linear parallel scaling
performance. We use a graph G(V , E) to represent the
(one- layer) subgraph structure, where V is the node set
and E is the arc set. If G is a loopy Bayesian network, the
BP algorithm sometimes yields surprisingly good
approximate results; however, sometimes, it fails to
produce any results, even after a large number of
iterations. BP can derive an exact MAP solution in two
iterations if G is a directed-acyclic-graph (DAG), but the
inference cost depends on the structure of the DAG. A
DAG that incurs a high inference cost can be constructed
as follows: let the nodes in G be indexed from 1 to m”. For
each node j, passing at node jFor typical values of k and
m, which are 512 and 4 respectively, BP inference of the
DAG is too high to be of practical use.

If we assume that G is a spanning tree structure, we can
show that the average computation time for BP inference is
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O(m* k).Let us assume that any two nodes have an
equalchance of being linked by an arc in a spanning tree. As
the tree contains m* -

Xot Xz2
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Xp) Npt

Figure 2: Constructing a multi layer hidden network.(a)Two
subbands, with the coarser subband on top.(b) Procedure
creates two wavelet patches, each of which is associated

with a subgraph. Subband coefficients are assigned to
nodes, as specified in Fig. 1(c). (c) Nodes in the two-layer

network are linked by intra-scale (solid) arcs and inter-
scale (dashed) arcs. (d) To derive the prior probability, the

hidden coefficients are organized into groups a, b, ¢, and d.

In group a, the coefficients are { Pai , ai |i =1, 2, 3, 4} and
they are highlighted in the local blocks of the subbands in
(a). Coefficients in the other groups can be derived in a

similar manner.

involves kI"' operations, where k is the label of a wavelet
coefficient. The total cost of the operation for all nodes is

nrfml-J k-] _A-nmrr—l_] . ()
I e

ledges, each node has 1 in-degree at most; and, in total, all
the nodes have m” - 1 out-degrees. Because all the nodes are
treated equally, the average out-degree of each node in a
spanning tree is < 1. BP inference in a spanning tree is
comprised of two phases: forward message passing and
backward message passing, which use the in degree arcs and
out-degree arcs respectively to pass Messages to a node.
Because the average in-degree and out-degree arc of a node
is at most 1, the average number of messaging passing
operations on a node is O(k). There are m? nodes, so the
average number of message passing operations is O(mk) for
BP inference in spanning trees. The analysis shows that the
cost of BP inference on a spanning tree can be significantly

less than that in a general DAG. However, the power of a
spanning tree to express the structure of a wavelet patch is
limited. For a subgraph of m x m nodes, there are m?x m?
pairwise relations, but a spanning tree only uses m*— 1 of
them. Thus, a panning tree cannot fully capture a
complicated structure that contains more than m 1 highly
correlated pairwise relations and a smooth region in which
all the nodes are highly correlated to one another.

The joint probability of a spanning tree G = (V , E) can be
formulated by the dependency structure in G as follows.

Let f (v; | u; ) be the probability function associated with arc
ui, Vi, where u;, vi€ V, and let u be the root of the tree
with probability f (u). Then, the joint probability of G is

f(G)= f (vi |ui ) f (). )

ui—vi eE

Note that the intra-scale clustering property of wavelet
coefficients indicates that the neighboring coefficients in a
subband are positively correlated. Thus, the pairwise joint
probability can be modeled as a measurement of |Uj—Vjl,
resembling the marginal statistics of the gradient of
neighboring nodes with values Uj and Vi .We can stack the
subgraphs of two adjacent scales to form a two-layer graph.
Let Ge=(V¢,Ec) be the graph corresponding to a subband at
the coarser scale of G. Based on the inter-scale persistence
property, inter-scale arcs can be constructed between V¢ and
V, denoted as A, by combining the parent node and child
node (nodes at the same location) in G¢ and G respectively.
Let p(vk) in V¢ be the parent node of vk in V; and let Ug and U
be the root of the tree in G¢ and G respectively. Because of
the node dependency in the graphs, the joint probability of
the resulting directed graph can be formulated as follows:

f(Ge.G)=fc(uc) fe(u jlui)
xf(ulp(u)) f(viivikp(v)) (3)
Vk—V|EE

where p(u)—UEA, and p(v|)—V|EA. Equation (3) gives the
joint probability of all the nodes in the graph shown in
Fig.2(c). The prior probability of the hidden coefficients in
the graph is derived as follows. We take one coefficient from
each node to form a data group; for example, Fig. 2 (d) has
four data groups.

The joint probability of each data group can be written in the
form of Equation (3) by replacing the node variables with the
hidden coefficients. Finally, it is assumed that the joint
probability of all the data groups is the product of that of each
data group.

After constructing the hidden network, we create layer of
observation nodes for each noisy wavelet subband. Next, we
assign the noisy coefficients to the observation nodes in the
same way as the ideal subband coefficients are assigned to
the hidden nodes, as shown in Fig.3(a)and(b).

Then, arcs are created to link the observation nodes to the
corresponding hidden nodes, as shown in Fig.3(c). BP
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inference can now be applied to derive the MAP solution for
the denoising problem. Recall that each node in a
wavelet patch has ( m® )* realizations. If we take one
wavelet coefficient from each node and use the BP algorithm
to estimate the solution, thedenoisingprocess makes ( mN )2
BP inferences.

Note that, as shown in Fig. 3(d), all the wavelet coefficients
located in the same rectangular blocks in various subbands
are estimatedsimultaneously by one BP inference.

We calculate the computational cost of image denoising
under the proposed model as follows. Because each node has
one in-degree and one out-degree inter-scale edge at most,
the number of operations that BP inference performs for the
multi-layer graph is J times the number performed for one
wavelet patch.

For a spanning tree, each inference involves an average of
O(m? k) operations and there are (m“)? BP; thus,the proposed
algorithm performs an average of O(N’k) operations for one
wavelet patch. As a result, the average BP inference cost of
the J layers network is O(J N %K).
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Figure 3: (a) Top layer and the bottom (dashed) layer of
each group are composed of hidden subband coefficients and
coefficients observed at the corresponding subband,
respectively. (b) Coefficients in observed (dashed) layers are
organized in the same way as the coefficients in the hidden
layers. (c) Observation nodes {ypi ,yi } are created and
linked to hidden nodes {x ,x }. (d) For denoising proposes,
data in the network is organized into four groups and BP
inference is applied to each group. For example, i{ypai, pai ,

yai, ai(i =1, 2, 3, 4} is a group. The other three data groups
can bederived in a similar manner.

We have explained the basic approach used to construct
aspanning tree from a wavelet patch and stack the spanning
treesnto form a multi-layer network. In addition, we have
shown that ifthe subgraph structure is a spanning tree, the
exact MAP solutioncan be derived efficiently by BP
inference. Before describing theconstruction in detail, we
remark that the wavelet coefficients atthe same location and
scale, but in different orientations, arecorrelated. However,
they are not necessarily positivelycorrelated, so their
potential functions are not suitable formodeling as a function
of their absolute difference.Therefore, weconstruct a wavelet
Bayesian net-work for the wavelet subbandsin each
orientation.

3. Constructing Wavelet Bayesian Networks

A Bayesian network, denoted as B = (V, E, P), comprises a
set of random variables and their conditional dependencies
represented by a directed acyclic graph in which the
nodesrepresent the elements in V. Each edge element in E
takes theform of a directed arc x — y, where x and y € V.
The likelihood p(y| x) € Pofan edgex —y €E isthe
conditional probability of observing y given that x exists.

We call the Bayesian networks constructed in wavelet
domains wavelet Bayesian networks (WBNSs). Our primary
objective is to construct a WBN from the undecimated
discrete wavelet transform (DWT) of a single image.
Initially, wavelet decomposition of an image F yields three
images of wavelet coefficients with horizontal, vertical, and
diagonal orientations respectively, and one approximate
image of F. Then, at the next scale, the approximated image
is further decomposed to obtain three images of the wavelet
coefficients and one coarser approximate image of F.

Let W hj F(u, v), W' F(u, v), and WY(u, v) denote,
respectively, the horizontal, vertical, and diagonal images of
the wavelet coefficients at scale 2 j ; and let A; represent the
approximated image at the same scale. If the undecimated
DWT is decomposed J times, we will have wavelet
coefficients W "j F, W"j F(u, v) F, and W% F with j= 1, ...,
Jand the coarsest approximate image AJF.

To construct a WBN, we first group subbands with the same
orientation together to obtain a horizontal-group, avertical-
group, and a diagonal-group of wavelet coefficients. Then,
we construct a Bayesian network B for each group. Let B"=
(V" E"P", B'= (V',E",P"), and B"=(V ¢, E*, P% denote the
Bayesian networks constructedfromthe horizontal-group,
vertical-group, and diagonal-group of wavelet coefficients
respectively.

The WBN B = (V,E,P)is derived from B", B' and B by ,

v=Vvyvuve @

E=E'VUE'UE® ©

p=P'up‘up? ©

Next, we explain how to construct the Bayesian network

BY(V",E", P") that corresponds to the U-orientation, where
ueth,v, d}.
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A. Vertex Set V"

Let the size of the input image F be N x N. If J wavelet
decompositions are applied to F, there will be J subbands of
size N x N in each orientation. Let a wavelet patch (matrix of
random variable) be of size m x m. For each subband, a
graph of m” variable nodes are formed. We then associate
each random variable in the wavelet patch to a variable node
in the graph. Without loss of generality, we assume that m
divides N. Each subband can then be partitioned into (m%)?
blocks, each of size m x m. Then, (mY)? wavelet coefficients
sampled from the subband are assigned to each variable
node.

Let xh(i,k), withj=1,...,Jand i,k=0,...,m- 1,denote the
(i,k) variable node in the j —th subband. In our j construction,
the (mY)*wavelet coefficients assigned to nodex “j (i, k) are
sampled from W'j F(i+mp, k +mq) with p, =0, ... ,m"- 1. If
we represent each node as a vertex in theBayesian network
B" will be V U = {x ", then the vertex set of B'will be

Vi=x"j (i, K, k=0, ,m-1; j=1,---,3 7

and the (mY)? wavelet coefficients can be regarded as
sampled from some unknown) distribution of a random
variable. Figs. 1(a), (b), and (c) show the procedure used to
construct the vertex set for a subband of 4 x 4 coefficients.

B. Edge Set E"

The arcs (directed edges) in B" can be divided into two
disjoint sets, E ' and E;, where E ' comprises the
(interscale) edges incident to vertices at different scales, and
E comprises the (intra-scale) edges incident to vertices at the
same scale. The persistence property of the wavelet
transforms indicates that large/small values of wavelet
coefficients tend to occur at the same spatial locations in
subbands at adjacent scales. The property can be used to
construct arcs in E," by linking a vertex at the coarser scale
j* 1 to the vertex of the same index at the finer scale j ; that
is,

Eo'= {x j+1(i, k) — x “j G, K)li, k=0, ..., m-1
andj=1, - J-1}. (8)

The edges in E;" represent the connections between vertices
at the same scale and orientation. Constructing the edges
corresponds to deriving the Bayesian network on the nodes
x"j(i,k) that best represent the joint probability of the nodes at
the same scale j and orientation u. However, as discussed in
Section 11, BP inference is computationally intractable if the
Bayesian network is a general graph. Thus, we limit the
solution space to spanning trees so that we can derive an
efficient solution by using the maximal weighted spanning
tree (MWST) algorithm [33]-[36]. A maximal weighted
spanning tree is a spanning tree whose weight is greater than
or equal to the total weight of every other spanning tree. The
optimum weighted spanning tree can be derived by
minimizing the relative entropy (Kullback-Leibler distance)
D (pllg) between the probability functions p and g.

In the following, we show how the spanning tree that
minimizes D(p||q) is equivalent to the tree that maximizes the
weighted summation of conditional mutual information on
all the edges of the tree. Let X be the vector of variables X, , .
. »Xn; let p(i ) and b(i ) denote the indices of the parent nodes
and the sibling nodes of X; respectively; and let q be the
induced probability of the spanning tree. Then, we have
n

;_J X X X
( il pti) b(i) (9)

=

g(x) =

Note that nodes at the coarsest scale do not have parent
nodes. To find the optimal spanning tree, we minimize the
relative entropy between ((X) and the joint probability p(x)
as follows:

D( pllq)

Pix)
p(x) log g(xJ

X

p(x) log p(x) =

X X

n

"

p(x) log g(x). (10)

Since minimizing D(p||q) is equivalent to maximizing
X p(x) log q(x), we can derive the following:

«P(x) log q(x)
X i F
= p(x)log plej | pti) bij) (11)

Pl xp(; )

pix) log  pixpri)
DX X A

IAIF (i, pli) b

p(i) Bi)

]

“ gb{i)= p(x)log
% i, Xpfi))
: p(‘) ll}g ~ plil

X j
; =
Py

x X ..
i i b Plejxpii)

= log Pt

+* p(‘) |Og ﬂ“ mi J 2 bij .'J

x.j.jb==

The second term in the last line of the above equation can be
re-written as follows:

INTWLILNIL GO 1viIv iy o,
px x X  px
% (j, oti) b)) ( »i))
p(x) log pr——p71

)= (otih b)) (Jv ai)
p(x) log

px. &, Px &,
(i) pti): (il pti)
nxy 2 X
(j, b pli))

= x jbj)=

(J, bi)| i)
Plb(j)1%jp) Pl xp(j)
= Pl p(i)) (i, bl o)

XX
jib(j)=xp(i) i i)
X, X X
(J, bj)| »pti)
p) X X
) e (il p(i))
A i o
(eti)): (i, i)l p(i) (12)

Jib(j) =2 xi,Xb(j)Xp(i)
(1)= xjxHi)

log

log

T
(b

X
Lh(,/.) =2 pfj)
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Algorithm 1 Kruskal’s Algorithm

1) Calculate the m* x m* weights of the arcs between any
two nodes. Note that the weight of arc X — y may be
different from that of arcy — X .

2) Sort the weights of the m* x m* arcs and compile a list in
non increasing order so that the weight w; is not less than the
weight w with i<j .

3) Assume that the initial spanning tree is empty and add the
arc of weight w; to the empty tree.

4) Do until the tree is a spanning tree:

a) Let w; be the next weight on the list.

b) Check if adding the arc of weight w; to the tree

creates a cycle.

5) End

and the sample probabilities are calculated as follows:

f(Xi: U):
f(x=v)=

of (Xi= U, X=V)
af(x=a, x=Vv) (15)

It is well-known that the joint frequenciesf (xi= u , x= V),f
(x= u) and f (x;=v)are maximum-likelihood estimators for
the  probabilities p(x= U , X= V),p (X= u) and p
(X7=v)respectively. Therefore, the samplemutual information
can be computed as

log fai=uxi=y .
N B hog = fai=wfxj=v

(16)

Then, we use 1°(X;, X; ) instead of | (X, X j) j =v) j =v) when
calculating the weights in the above algorithm. For each
scaleje {1, ...,J }, we execute Kruskal’s algorithm to obtain
a contains all the edges in all spanning tree. The edge set
E;'the spanning trees.

Figure(d) shows an example of a network with intra-scale
edges derived by the MWST algorithm from the fournodes in
Fig. 1(c); and Fig. 2(c) shows an example of a
multilayernetwork where the inter-scale and intra-scale edges
areconstructed from the nodes in Fig. 2(b). The WBN B in
Fig. 4 is comprised of three oriented Bayesian networks,
B" B'andB* .

C. Probability Model P"

There are two types of arcs in a Bayesian network B": 1)the
inter-scale parent-child arc, which connects a node with its
coarser-scale parent; and 2) the intra-scale sibling arc,
whichconnects two nodes of the same scale. To obtain
theprobability ~ inference, @we need to  model
theprobabilityfunction on each arc.

Simoncelli [22] exploited the persistence property ofwavelet
transforms and proposed a joint statistical model of a“child”
coefficient conditioned on the coarse-scale
“parent”coefficients at the same spatial locations in all
orientations.

HH HH

i o O o o e e AN gggog-]
F |' 0000, oooo 0000«
' 0oo¥ ooooe oopoo« )
» 000 0000 ooQo-—
rgooo. uood . goog
;. | 0000, oooc oooo) !
““ | oooC®) D00 oooo !
y 0OQ0 0000 oogo |
roooos uooogy T ooocN™
' 0000 ) 0000, oooag) !
' 0ooY oooo oooo !
y OOQCY 0000 ooy |

RV 1
Fig. 4. WBN B has three components, B, .B . and B‘ . derived from the
horizontal, vertical. and diagonal orientation wavelet coefficients,
respectively, as shown from top to bottom. F and L L are, respectively. the
input and the coarsest approximation of F. k is the scale index.

Let {Xp } comprise the parent coefficients of the child
coefficient x. Then, the probability function of X conditioned

on {Xp } is defined as the following Markov model:
o 3

pix l{x pk V= NO2ug x pkta / (17
i

which is a conditional Gaussian density function whose
variance is a linear function of the squared coefficients in
{Xpx} with weights {wy }, and a is the bias of the variance.
We simplify Simoncelli’s joint probability model to
represent the kpdf of a parent-child arc in E," . Specifically,
we remove the dependency of the coarse-scale parents’
coefficients in all orientations except that of the child
coefficient and set the bias of variance @ to zero. Thus, there
is only one parent coefficient Xpforx . Then, the joint
probability of the parent-child arc in E," is modeled as

U 2
fo &k p)=NO; 2ux p) (18)

where w is a chosen parameter.

Other researchers have observed that large/small
waveletcoefficients of the same sign tend to occur near each
other in a subband. The observations are summarized as the
clustering property of the wavelet transform. The property
means that, in a subband, there is a strong positive
correlation between waveletcoefficients that are in close
proximity and dependent on eachother. The ROF approach
[28] exploits the clustering propertybetween neighboring
pixels by using TV norms, which areessentially L; norms of
the derivative of the values of two neighboring coefficients,
to estimate the discontinuities in an image. Equivalently, the
joint probability function between twocoefficients in close
proximity is modeled as the Laplacian distribution of the
absolute of the difference of two waveletcoefficients [42]. In
the construction of intra-scale edges,Kruskal’s algorithm
selects the arc X — z€E" , where themutual information
between X and z is high; that is, X and z arehighly correlated.
Thus, we utilize a similar concept to model the probability of
z conditioned on X as the following Laplacian distribution
function:

f(zIx)cchexp(-Ax- Z|) (19)

where A is the scale parameter of the Laplacian
distribution,andA|X - z| is the potential function of the local 1
x 1 clique.
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4. Wavelet Bayesian Networks For Denoising

In this section, we consider using the wavelet Bayesian
network to model the prior probability of the original image
for the image denoising problem, which involves removing
white and homogenous Gaussian noise with zero mean and
known variance from an image. To infer the probability for
denoising, we associate each variable node X in Bayesian
network B with an observation node y and create the arc y —
X . The probability function of X conditioned on the observed

value of y is modeled as i

I'j'- g _1 -_.:'_ .:|

f & v _]n:.'-:pr' (20)

q s R
n | % m Lan P
wheret'-rn2 is the variance of the zero mean Gaussian white
noise and p depends on the scale and wavelets.

Recall that the variable nodes in the Bayesian network B are
represented by {X"j (i, K)ue {h,v,d};j=1,...,3;i, k=0,
., m - 1} (Equation (7)). Let y"j (i, k) denote the
observation node corresponding to X'j , and P, denote the
collections of{y (i, k); and let Y , E'j(i, k)}, the arcs{ynuij(i,
kK)— x (i, K)}, and the probability functions{fn(x "j(i, k))}
respectively. The WBN B,(i, k)|y"'j for image denoising is
constructed and represented as B, = (VUY, EUE,,, PUP,).

Let a noisy image Z = F + N, where F is the original image
andN is zero-mean white Gaussian noise. As shown by the
simpleexample in Fig. 3(d), each wavelet coefficient of Z is
assigned to one observation node in B, . That is, the
coefficient W'j Z(i+mp, k + mq) is assigned to observation
node y" j(i+k), where p, q = 0, - - -mM - 1; thus, each
observation node has (mY)? observation values and
realizations. If we take one waveletcoefficient from each
observation node, we can obtain (realizations of B, , denoted
as (p, q) with p, g =0,- - -m™ - 1. Note that, similar to the
example shownin Fig. 3(d), the waveletcoefficients assigned
to the ( p, ()-th realization are taken locally from the (i, k)-
blocks of all subbands at scale 2! and orientation U.

We use the message passing algorithm to obtain theestimated
wavelet coefficients of each realization. First, we convert
WBN B, to a factor graph F, , and then use the max product
algorithm to derive the estimated wavelet coefficients. The
conversion of B, to F,, and the max-product message passing
schemes are standard techniques. For completeness, we
provide them in Appendix A. The last step of the
maxproduct algorithm calculates the marginal probability of
each v in F,. LetN(X ) represent the neighboringfactor nodes
of variable node X in F, variable node V in F,. In addition, let
X, andX. denote, respectively, the parent variable node and
childvariable node of x in B,; and let {x } denote the
siblingvariable nodes of x in B,. The value of X" can be
estimatedbased on whether X has a child node.

Casel:x hasa child node X¢.

max X

LT pD—x (
DeENfx )
max I_
=arg x xexp  —Jeix) (21)
where
2 2
= o 7 a—yt X Xe A Y Y o 22}

In Equation (22), _=_ (Y, Xp,Xc{X j}) is independent of X, is
the variance of the wavelet coefficients associated with
observationnode y. The variance o’can be written as @ p,
where p depends y on thescale andthe wavelets. N In
Appendix B, we showthat p = 1 if thewavelets are

orthogonal. Let
1

K&)= xexp —Jcix)i (23)
then
diogks) 4 10gl Ja) 1 7 a) @
dx dx Xt i =—x— ¢
According to Equation (22)
=
J&) E Wy sk pEe gy § signe xj/)  (25)
+ = +

s L wrpt ax 3 i

Where sign(x ) returns the sign of X if X = 0; otherwise, it
returns 0. Hence

my 1z =,
2 + - +
“.+ o = g axp? x?
) sigp-x;) (26)
I
2 .
V- lgy signfy | =x;)
i
2 2
tsqrt  V-dmy  signf_)-x;)
A
by X1 %
2 2
= Xz =X *o (27

Case 2: X does not have a child node (X is a node at thefinest
wavelet scale). We can set X = 0 in Equation (22) and obtain

Jix) et A %__ i X ox (28)
= oy +2ury I = ki
J
and then
Ju) &=y X pi signx  x )(29)
1 +
R, + 5 3 o

alf p= i i

Algorithm 2 WBN Denoising Algorithm

1) Wavelet representation: calculate the un decimated
DWT of an NxN noisy image Z to obtain the horizontal,
vertical, and diagonal subbands {W”jZ\jZl,...,J }s

vertical, and diagonal subbands{W'jZ|j=1.....J } and

wizj = l,...d }, respectively, as well as the
coarsest approximate image A,Z.
2) Create a vertex set V" : let the parameter m divide

ForeachsubbanduZ

(0 0lik=0,..m—1};then  assign(mty?
coefficient.

3) Create sibling edges (E;") for nodes at the same scale
and orientation: derive the empirical probability of each
variable from the frequency counts of ( mMN2 ) wavelet
coefficients assigned to the node; then, use Kruskal’s
algorithm to derive the maximal weighted spanning tree
from the m” nodes in each subband.

4) The root of J (X ) = 0 can be derived by the following
fixed point algorithm. Let X be the estimated value after
the t-th iteration. Then, X tt can be derived from xt -1 as
follows:

,createm’ Variablenodes

Wavelet
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-

v = apdsign iy —| =x;/ (30)
:
The iterative estimation stops when the difference between

the values X t-1and Xtis smaller than some given threshold.

5. Denoising Algorithm and Experimental
Results

In this section, we present our denoising algorithm, explain
its implementation, and compare its performance with that of
other methods. The proposed algorithm is summarized in
Algorithm 1. The steps are as follows: Step (1) calculates the
undecimated DWT of the input image; Steps (2) to (5)
construct the WBN B; and Steps (6) to (8) create the WBN
B, used for denoising purposes; In Step (9), the wavelet
coefficients are estimated from B, by applying the max-
product algorithm to the factor graph F for each realization
of B, . We use CDF 9/7 filters to process the undecimated
DWT. Because CDF 9/7 filters are close toorthogonal
wavelet filters, the noise variance of subbands at all scales
can be set at an, which is the image noise variance
(seeAppendix B). The variance @,> is used in the Wiener
filtering in Step (2) as well as in deriving the MAP
estimation of the wavelet coefficients in Step (9). The
frequency count in Step (4) indicates the number of wavelet
coefficients in a quantization bin. The size of a subband’s
quantization bin is set atl4 of the standard deviation,
measured from the wavelet coefficients in the subband.

We conduct experiments on two sets of images. Set I
contains nine gray scale images (size 512 x 512 or 256 x
256)downloaded from the USC-SIPI image database [43];
and Setll (shown in Fig. 6) contains nine gray scale textures,
some ofwhich are from the Brodatz texture set. The
parameter settings of the WBN denoising algorithm
evaluated in the experiments are: J = 4 (the number of
wavelet decompositions), @ = 0.64(Equation (18)), A = 0.45
(Equation (19)), and the parameter m = 4 in Step (3). Each
subband represents a 512 x 512 image and contains 4 x 4
nodes. The WBN B has 16 x 4 x 3 variablenodes because
there are four subbands in each of the three has 2 x 16 x 4 x
3 nodes, halfof which are variable nodes and the rest are
observation orientations. Hence, WBN B, we assign
128x128 wavelet coefficients. Note that thisnumber is large
enough to nodes. For each observation node in Bderive the
empirical probability in Step (4) of the WBNalgorithm.
There are also 128 x 128 realizations of B, .

Next, we present the experimental results derived by
ouralgorithm and compare its performance with that of two
state-ofthe-artalgorithms: the BM3D algorithm [13] and the
BLS-GSMalgorithm [23]. The source codes for the BLS-
GSM and BM3Dmethods are available from the websites of
the respective authors.Our algorithm is executed on an Intel
Core2Quad Q9300 CPU,with Windows XP and
Matlab2007a. Tables I and II list the averages of five
denoised PSNR results of the three comparedmethods for the
images in Sets I and II respectively; white noise was added
with an =10, 15, ..., 35. In the tables, we divide theimages
into two groups and compare the average PSNR gain of our
method over the other methods on the images in each group.

Table III summarizes the results in Tables I and II. Note that
the Figure print and Baboon images are regarded as texture
images because they are dominated by texture information.
Interestingly, the PSNR gain of our method over BM3D is
0.1 dB for textureimages (Group 2), but only 0.02 dB for the
other images (Group 1). Moreover, from Table III, we
observe that the gain of BM3D

over BLS-GSM is smaller on texture images (0.06 B) than
on the other images (1.0 dB). Texture images contain rich
across-scales information. Since both BLS-GSM and our
method exploit inter-scale coefficients for data estimation,
they are more adaptive to texture images than non-texture
images.

TABLE 1 AVERAGE PSMR RESULTS FOR IMAGE SET 1
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Image Moise PSNR
Level BLS—GSM & M0 O
Einstein w101 34.1406 34.4392 34 4837
512 = 512 =15 326818 33.0331 I30RTS
31.7412 32,1694 31287
=15 31.0201 31.4186 31 4682
=30 30.4306 30.8709 IN17S
~15 29.9372 30.3777 304116
Boat = Hi 33.5080 33.88E3 330127
512 = 512 =15 3l.6452 32,1067 311375
=20 30.3194 30.8554 30 E8T2
pm 28 292846 29,8356 208612
=0 28.4395 29.0954 20,1247
w= 35 27.7301 28.2992 28 1186
Barhara - 10 33.1518 34.9567 349654
512 =512 =15 30.7724 33.0666 330735
=20 29.0984 31.7376 317546
278214 30.7176 30,7354
= 26.7998 20,7049 W TG
259775 28 HETO 28.6753
Lena w101 35.9226 36.6367 366375
512 =512 34.1105 34.8782 34 BERO
-2 32.8047 33.0567 331246
£y =25 31.7891 315501 324874
=30 30.9633 316531 31.5637
-35 30,2780 310301 30,9353
Cameraman -1 33.3739 34.1355 34,1624
256 = 256 =15 31.0334 31.8449 31 702
3 29.5762 30.3797 30 4034
28.5242 294118 10 4837
-3 27.6872 28.5516 28 6476
=35 26.9689 27.8758 27 0645
Hoiise =10 35.3223 36.6638 36,7135
256 = 256 =15 33.7257 34.9028 349476
, =21 32.5237 33.7349 11 7TH
31.5753 32.9084 310406
= 30.7650 32.1240 311574
= 35 30.0579 31.5103 31 5385
Pepper ay= 1) 34.0542 34 6889 347184
256 = 256 ny= 15 320136 32.7290 327602
=20 30.5676 31.2671 312957
=35 29.4553 30.2223 302607
= 28.5640 29,3090 203276
27.8161 28.5795 286014
Fingerprint =1 32.1994 32.4628 317184
512 « 512 209283 30.2822 305875
=21 28.3391] 28.8085 200732
nq =15 27.0946 27.7112 28 0364
=30 26.0682 26,8245 271262
=15 25,1981 260995 264075
Baboon .= 10 30.3735 30.5798 306623
S
512 = 512 27.8549 281390 18 2505
=20 26.1750 26.5307 266175
24,9483 25,3495 154374
= 24.0063 24.4407 14 8138
w35 23.2643 23.6554 23.7512
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TABLEII
AVERAGE PSNR REsuLTs FoR IMAGE SET 11
Image Noise PSNR
Level BLYS=GNM 8 M3D Chur

Fi =10 31.6031 32.52 316212

512 = 512 PRt 29.6083 303213 304143

2= 200 28.2010 28.8595 289314

27.2514 27.7279 27 8087

=30 26,3668 26.7751 26 8644

] 25.6029 25.9243 26,0136

F7 o= 10 20.9444 20.8087 30.1253

512 x 512 =15 27.2804 27.3043 27 3765

=20 25.5200 25.6216 25 6782

242851 24,3522 244186

w30 23.3451 23.401 234861

] 22.602 22 5878 226574

p3 =10 31.1789 313155 313385

512 = 512 =5 288130 200087 200274

=20 27.2571 27.4678 27 4936

26.1114 26.3278 263414

=30 252116 25.4362 154535

] 244756 24.7034 247153

F3 o= 10 29.2042 293575 295361

512 x 512 =15 26.3055 26.3832 26 5738

=20 24,3449 24.354 24 5363

Wm18 22 BE54 228154 2310236

=30 21.7442 21.6195 218514

W=35 208213 2006102 09144

w2 =10 29.0994 29.4042 10 496

512 =512 =15 26.499 26. 798 26,8816

=20 24 8784 25,1843 25 1547

=15 237188 24.0512 241376

=10 22,8012 23.1637 2312473

=38 22,0279 22.3965 22 5062

wh =10 29.6007 30.0207 30,1433

512 x 512 27.1382 27.5495 27 6887

=20 25.5041 25.964 26.1 186

] 24.2672 248184 249782

o= 30 23.2643 23.9149 24,1045

=15 224208 23,1486 2313228

Fo 0= 10 28.5821 28.5956 28.7025
512% 512 25.4728 25.5213 156175 |

=10 23,3581 23.4603 13563

PR 21.7955 21.9042 2120154

2030 20.6055 20.6784 20 8706

=15 19.6868 19.6259 19.8154

F8 =10 29.0382 289781 29,1012

512 x 512 Pt 26.1317 261037 262387

=20 24.2006 24.2121 243382

] 22. 78RR 22.8208 229647

=30 21.7053 21.734 21883

P 20.8487 208181 210225

52 =10 29.3274 29.3933 20,4072

512 x 512 =15 26.5777 26,5264 26,5942

o= 20 24 895 24,6771 240128

238043 23.4976 238315

=30 23.059 22.7346 23,0627

_ 22.523 22.2268 215434

In Figures 5, 6, and 7, we perceptually compare some images
that were denoised by the three methods. The perceptual
qualityof the images denoised by BM3D and our method is
better than that of the BLS-GSM images. The highlighted
regions in the figures compare certain details of the denoised
images derived by all three methods with the corresponding

Table 111: Summary of Our PSNR Gain

Image Group Averge PSNR Gain
versls Versls
BLS-GSM BM3D
Group | (First seven images in Table 1) 1.0239 0.0207
Group 2 (Fingerprint + Baboon + Images in 0.2922 0.1268
Table 1)
All Images in Tables [ and 11 0.9403 0.0394

(d)

Figure 5: Comparison of the denoised images derived by
BLS-GSM, BM3D,and our algorithm. The noise standard

deviation is s= 25. (a) Original Lena image. (b) Denoised
result of the BLS-GSM algorithm. (c) Denoised result of the
BM3D algorithm. (d) Denoised result of our algorithm.

6. Conclusion

The Bayesian formula indicates that the denoising problem is
essentially a prior probability modeling and estimation task.
In this paper, we present constructive data-adaptive
procedure that derives a hidden graph structure from the
wavelet coefficients. The graph is then used to model the
prior probability of the original image for denoising
purposes. Moreover, we show that if the network is a
spanning tree, the standard BP algorithm can estimate MAP
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efficiently. We compare our denoised results with those
derived by other approaches, including BM3D, and
demonstrate that our method yields a better PSNR and better
perceptual quality on the textured areas of an image.
Extending our method to content sensitive wavelet patches is
an issue that merits future study. We will also investigate
ways to speed up our algorithm’s execution time.
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