ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Totally $\psi \alpha g$ -Continuous functions in Topological Spaces

V. Kokilavani¹, P. R. Kavitha²

¹Assistant Professor, Department of Mathematics, Kongunadu Arts and Science College, Coimbatore, Tamilnadu, India

Abstract: The aim of this paper is to define a new class of functions namely totally $\psi \alpha g$ -continuous functions and slightly $\psi \alpha g$ -continuous functions and study their properties. Additionally, we relate and compare these functions with some other functions in topological spaces.

Keywords: Totally $\psi \alpha g$ -continuous functions and Slightly $\psi \alpha g$ -continuous functions

1. Introduction

Continuity is an important concept in mathematics and many forms of continuous functions have been introduced over the years. Dr. V. Kokilavani and P. R. Kavitha [10] defined $\psi \alpha g$ -continuous functions. R. C. Jain [2] introduced the concept of totally continuous functions and slightly for topological spaces. In this paper, we define totally $\psi \alpha g$ -continuous functions and Slightly $\psi \alpha g$ -continuous functions and basic properties of these functions are investigated and obtained.

2. Prelimieries

Throughout this paper (X, τ) , (Y, σ) and (Z, η) or X, Y, Z represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A) and int(A) denote the closure and the interior of A respectively. The power set of X is denoted by P(X). If A is $\psi \alpha g$ -open and $\psi \alpha g$ -closed, then it is said to be $\psi \alpha g$ -clopen.

Definition: 2.1 A subset A of a topological space X is said to be a $\psi \alpha g$ -open[10] if $\psi cl(A) \subseteq U$ whenever $A \subseteq U$ and U is αg -open.

Definition: 2.2 A function $f:(X,\tau) \to (Y,\sigma)$ is called totally continuous [2] if $f^{-1}(V)$ is clopen set in X for each open set V of Y.

Definition: 2.3 A function $f:(X,\tau) \to (Y,\sigma)$ is called a $\psi \alpha g$ -continuous [10] if $f^{-1}(V)$ is $\psi \alpha g$ -open set of (X,τ) for every open set V of (Y,σ) .

Definition: 2.4 A function $f:(X,\tau) \to (Y,\sigma)$ is called slightly continuous [2] if the inverse image of every clopen set in Y is open in X.

Definition: 2.5 A function $f:(X,\tau) \to (Y,\sigma)$ is called a contra continuous [1] if $f^{-1}(V)$ is closed in (X,τ) for every open set V in (Y,σ) .

Definition: 2.6 A topological space X is said to be connected [9] if X cannot be expressed as the union off two disjoint non empty open sets in X.

Definition: 2.7 A topological space X is said to be $\psi \alpha g$ -connected if X cannot be expressed as a disjoint union of two non empty $\psi \alpha g$ -open sets.

Definition: 2.8 A map $f:(X,\tau) \to (Y,\sigma)$ is said to be pre $\psi \alpha g$ -open if the image of every $\psi \alpha g$ -open set of X is $\psi \alpha g$ -open in Y.

Definition: 2.9 A map $f:(X,\tau) \to (Y,\sigma)$ is said to be perfectly $\psi \alpha g$ -continuous if the inverse image of every $\psi \alpha g$ -open in (Y,σ) is both open and closed in (X,τ) .

Definition: 2.10 A function $f:(X,\tau) \to (Y,\sigma)$ is called strongly $\psi \alpha g$ -continuous if the inverse image of every $\psi \alpha g$ -open in (Y,σ) is open in (X,τ) .

Definition: 2.11 A space (X, τ) is called a locally indiscrete space [3] if every open set of X is closed in X.

Definition: 2.12 [10] Every open set is $\psi \alpha g$ -open and every closed set is $\psi \alpha g$ -closed.

3. Totally \psi \alpha g-Continuous Fucntions

Definition: 3.1 A function $(X, \tau) \rightarrow (Y, \sigma)$ is called totally $\psi \alpha g$ -continuous functions if the inverse image of every open set of (Y, σ) is both $\psi \alpha g$ -open and $\psi \alpha g$ -closed subset of (X, τ) .

Example: 3.2 Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$, $\sigma = \{Y, \phi, \{c\}, \{a, c\}, \{b, c\}\}$, $\psi \alpha g O(X, \tau) = \{X, \phi, \{b, c\}, \{a, c\}, \{a, b\}, \{a\}, \{b\}\}\}$ and $\psi \alpha g C(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}\}$. Let $g: (X, \tau) \to (Y, \sigma)$ be defined by g(a) = b, g(b) = a, g(c) = c. Since $g^{-1}(b) = a$, $g^{-1}(c) = c$ and $g^{-1}(b, c) = \{a, c\}$ is both $\psi \alpha g$ -open and $\psi \alpha g$ -closed in X. Therefore g is totally $\psi \alpha g$ -continuous.

Theorem: 3.3 Every totally $\psi \alpha g$ -continuous functions is $\psi \alpha g$ -continuous.

Volume 5 Issue 5, May 2016

²Assistant Professor, Department of Mathematics, Kongunadu Arts and Science College, Coimbatore, Tamilnadu, India

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Proof: Let V be an open set of (Y, σ) . Since f is totally $\psi \alpha g$ -continuous functions, $f^{-1}(V)$ is both $\psi \alpha g$ -open and $\psi \alpha g$ -closed in (X, τ) . Therefore f is $\psi \alpha g$ -continuous.

Remark: 3.4 The converse of the above theorem need not be true.

Example: 3.5 Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{b\}, \{a, b\}\}$, $\sigma = \{Y, \phi, \{a\}, \{a, c\}\}$. Let $g: (X, \tau) \to (Y, \sigma)$ be defined by g(a) = b, g(b) = a, g(c) = c. $\psi \alpha g O(X, \tau) = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}\}$ and $\psi \alpha g C(X, \tau) = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$. Clearly g is not totally $\psi \alpha g$ -continuous. Since $g^{-1}(\{a\}) = \{b\}$ is $\psi \alpha g$ -open in X but not $\psi \alpha g$ -closed. However g is $\psi \alpha g$ -continuous.

Theorem: 3.6 Every totally continuous function is totally $\psi \alpha g$ -continuous.

Proof: Let V be an open set of (Y, σ) . Since f is totally continuous functions, $f^{-1}(V)$ is both open and closed in (X, τ) . Since every open set is $\psi \alpha g$ -open and every closed set is $\psi \alpha g$ -closed. $f^{-1}(V)$ is both $\psi \alpha g$ -open and $\psi \alpha g$ -closed in (X, τ) . Therefore f is totally $\psi \alpha g$ -continuous.

Remark: 3.7 The converse of the above theorem need not be true.

Example: 3.8 Let $X = Y = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a, b\}\}$, $\tau^c = \{Y, \phi, \{c, d\}\}$, $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ Let $g: (X, \tau) \to (Y, \sigma)$ be defined by g(a) = a, g(b) = b, g(c) = c, g(d) = d. $\psi \alpha g O(X, \tau) = P(X) = \psi \alpha g C(X, \tau)$. Clearly g is not totally $\psi \alpha g$ -continuous but $g^{-1}(\{a, b\}) = \{a, b\}$ is open in X but not closed in X. Therefore g is not totally continuous.

Theorem: 3.9 Every perfectly $\psi \alpha g$ -continuous map is totally $\psi \alpha g$ -continuous.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be a perfectly $\psi \alpha g$ -continuous map. Let V be an open set of (Y,σ) . Then V is $\psi \alpha g$ -open in (Y,σ) . Since f is perfectly $\psi \alpha g$ -continuous, $f^{-1}(V)$ is both open and closed in (X,τ) , implies $f^{-1}(V)$ is both $\psi \alpha g$ -open and $\psi \alpha g$ -closed in (X,τ) . Therefore, f is totally $\psi \alpha g$ -continuous.

Remark: 3.10 The converse of the above theorem is need not be true.

Example: 3.11 Let $X = Y = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a, b\}\}$, $\tau^c = \{Y, \phi, \{c, d\}\}$, $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ Let $g: (X, \tau) \to (Y, \sigma)$ be defined by g(a) = a, g(b) = b, g(c) = c, g(d) = d, $\psi \alpha g O(X, \tau) = P(X) = \psi \alpha g C(X, \tau)$. $\psi \alpha g O(Y, \sigma) = \{Y, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$. Clearly g is totally $\psi \alpha g$ -continuous but $g^{-1}(\{a, b\}) = \{a, b\}$ is open in X but not closed in X. Therefore g is not perfectly continuous.

Remark: 3.12 The concept of totally $\psi \alpha g$ -continuous and strongly $\psi \alpha g$ -continuous are independent of each other.

Example: 3.13 Let $X = Y = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a, b\}\}$, $\tau^c = \{Y, \phi, \{c, d\}\}$, $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ Let $g: (X, \tau) \to (Y, \sigma)$ be defined by g(a) = a, g(b) = b, g(c) = c, g(d) = d, $\psi \alpha g O(X, \tau) = P(X) = \psi \alpha g C(X, \tau)$. $\psi \alpha g O(Y, \sigma) = \{Y, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$. Clearly g is totally $\psi \alpha g$ -continuous but $g^{-1}(\{b\}) = \{b\}$ is not open in X. Therefore g is not strongly $\psi \alpha g$ -continuous.

Example: 3.14 Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{a, c\}\{a, b\}\}$, $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$ Let $g: (X, \tau) \to (Y, \sigma)$ be defined by g(a) = a = g(b), g(c) = c . $\psi \alpha g O(X, \tau) = \{X, \phi, \{a\}, \{a, c\}\{a, b\}$, $\psi \alpha g C(X, \tau) = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ and $\psi \alpha g O(Y, \sigma) = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Clearly g is Strongly $\psi \alpha g$ -continuous but $g^{-1}(\{a\}) = \{a, b\}$ is $\psi \alpha g$ -open in X but not $\psi \alpha g$ -closed. Therefore g is not totally $\psi \alpha g$ -continuous.

Theorem: 3.15 If $f: X \to Y$ is a totally $\psi \alpha g$ -continuous map and X is $\psi \alpha g$ -connected, then Y is an indiscrete space.

Proof: Suppose that Y is not an indiscrete space. Let A be a non-empty open subset of Y. Since, f is totally $\psi \alpha g$ -continuous map, then $f^{-1}(A)$ is a non-empty $\psi \alpha g$ -clopen subset of X. Then $X = f^{-1}(A) \cup (f^{-1}(A))^C$. Thus, X is a union of two non-empty disjoint $\psi \alpha g$ -open sets which is contradiction to the fact that X is $\psi \alpha g$ -connected. Therefore, Y must be an indiscrete space.

Theorem: 3.16 Let $f: X \to Y$ and $g: Y \to Z$ be functions. Then $g \circ f: X \to Z$.

- (i)If f is $\psi \alpha g$ -irresolute and g is totally $\psi \alpha g$ -continuous then $g \circ f$ is totally $\psi \alpha g$ -continuous.
- (ii) If f is totally $\psi \alpha g$ -continuous g is continuous then $g \circ f$ is totally $\psi \alpha g$ -continuous.

Proof: (i) Let V be an open set in Z. Since, g is totally $\psi \alpha g$ -continuous map, $g^{-1}(V)$ is $\psi \alpha g$ -clopen in Y. Since f is $\psi \alpha g$ -irresolute, $f^{-1}(g^{-1}(V))$ is $\psi \alpha g$ -open and $\psi \alpha g$ -closed in X. Since $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$. Therefore, $g \circ f$ is totally $\psi \alpha g$ -continuous.

(ii) Let V be an open set in Z. Since, g is continuous, $g^{-1}(V)$ is open in Y. Since, f is totally $\psi \alpha g$ -continuous, $f^{-1}(g^{-1}(V))$ is $\psi \alpha g$ -clopen in X. Hence, $g \circ f$ is totally $\psi \alpha g$ -continuous.

4. Slightly ψαg-Continuous Fucntions

Definition: 4.1 A function $f:(X,\tau) \to (Y,\sigma)$ is called slightly $\psi \alpha g$ -continuous at a point $x \in X$ if for each clopen subset V of Y containing f(x), there exists a $\psi \alpha g$ -open subset U in X containing x such that $f(U) \subseteq V$. The function f is said to be slightly $\psi \alpha g$ -continuous if f is slightly $\psi \alpha g$ -continuous at each of its points.

Definition: 4.2 A function $f:(X,\tau) \to (Y,\sigma)$ is said to be slightly $\psi \alpha g$ -continuous if the inverse image of every clopen set in Y is $\psi \alpha g$ -open in X.

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Example: Let $X = Y = \{a, b, c, d\}$ $\tau = \{X, \phi, \{a, b\}, \{a, b, c\}\}\$, $\sigma = \{Y, \phi, \{a\}, \{b, c, d\}\}\$ and $\psi \alpha g O(X, \tau) =$

Let $g:(X,\tau) \to (Y,\sigma)$ be defined by g(a) = b, g(b) =a g(c) = d, g(d) = c. Clearly g is Slightly $\psi \alpha g$ continuous.

Proposition: 4.4 The definition 4.1 and 4.2 are equivalent.

Proof: Suppose the definition 4.1 holds. Let V be a clopen set in Y and $x \in f^{-1}(V)$. Then $f(x) \in V$ and thus there exists a $\psi \alpha g$ -open set U_x such that $x \in U_x \subseteq f^{-1}(V)$ and $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$. Since, arbitrary union of $\psi \alpha g$ open set is $\psi \alpha g$ -open. $f^{-1}(V)$ is $\psi \alpha g$ -open in X and therefore, f is slightly $\psi \alpha g$ -continuous.

Suppose, the definition 4.2 holds. Let $f(x) \in V$ where V is a clopen set in Y. Since, f is slightly $\psi \alpha g$ -continuous, $x \in f^{-1}(V)$ where $f^{-1}(V)$ is $\psi \alpha g$ -open in X. Let U =f-1V. Then U is $\psi \alpha g$ -open in X, $x \in X$ and $f(U) \subseteq V$.

Theorem: 4.5 For a function $f:(X,\tau) \to (Y,\sigma)$, the following statements are equivalent.

- (i) f is slightly $\psi \alpha g$ -continuous.
- (ii) The inverse image of every clopen set V of Y is $\psi \alpha g$ open in X.
- (iii) The inverse image of every clopen set V of Y is $\psi \alpha g$ closed in X.
- (iv) The inverse image of every clopen set V of Y is $\psi \alpha g$ clopen in X.

Proof: (i) \Rightarrow (ii): Follows from the proposition 4.4.

(ii) \Rightarrow (iii): Let V be a clopen set in Y which implies V^{C} is clopen in Y. By (ii), $f^{-1}(V^{C}) = (f^{-1}(V))^{C}$ is $\psi \alpha g$ -open in X. Therefore, $f^{-1}(V)$ is $\psi \alpha g$ -closed in X.

(iii) \Rightarrow (iv): By (ii) and (iii), $f^{-1}(V)$ is $\psi \alpha g$ -clopen in X.

(iv) \Rightarrow (i): Let V be a clopen set in Y containing f(x), by (iv), $f^{-1}(V)$ is $\psi \alpha g$ -clopen in X. Take $U = f^{-1}(V)$, then $f(U) \subseteq V$. Hence, f is slightly $\psi \alpha g$ -continuous.

Theorem: 4.6 Every slightly continuous function is slightly $\psi \alpha g$ -continuous.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be a slightly continuous function. Let V be a clopen set in Y. Then, $f^{-1}(V)$ is open in X. Since, every open set is $\psi \alpha g$ -open. Hence, f is slightly $\psi \alpha g$ -continuous.

Remark: 4.7 The converse of the above theorem need not be true as can be seen from the following example.

Example: 4.8 Let $X = Y = \{a, b, c, d\}$ $\tau = \{X, \phi, \{a, b\}, \{a, b, c\}\}\$, $\sigma = \{Y, \phi, \{a\}, \{b, c, d\}\}\$ and $\psi \alpha g O(X, \tau) =$

 $X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a,$ Let $g:(X,\tau) \to (Y,\sigma)$ be defined by g(a) = b, g(b) =a g(c) = d, g(d) = c. Clearly g is Slightly $\psi \alpha g$ continuous but not slightly continuous. Since $q^{-1}(\{a\}) =$ $\{b\}$ where $\{a\}$ is clopen in Y but $\{b\}$ is not open in X.

Theorem: 4.9 Every $\psi \alpha g$ -continuous function is slightly $\psi \alpha g$ -continuous.

Let V be a clopen set in Y. Then, $f^{-1}(V)$ is $\psi \alpha g$ -open and $\psi \alpha g$ -closed in X. Hence, f is slightly $\psi \alpha g$ -continuous.

> Remark: 4.10 The converse of the above theorem need not be true as can be seen from the following example.

> **Example:** 4.11 Let $X = \{a, b, c\}$, $Y = \{a, b\}$, $\tau = \{a, b\}$ $\{X, \phi, \{a\}, \{b\}, \{a, b\}\}\$, $\sigma = \{Y, \phi, \{a\}\}\$ and $\psi \alpha g O(X, \tau) =$ $\{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\$. Let $g: (X, \tau) \to (Y, \sigma)$ be defined by g(a) = b, g(b) = g(c) = a. The function g is Slightly $\psi \alpha g$ -continuous but not $\psi \alpha g$ -continuous. Since $g^{-1}(\{a\}) = \{b, c\}$ is not $\psi \alpha g$ -open in X.

> **Theorem:** 4.12 Every contra $\psi \alpha g$ -continuous function is slightly $\psi \alpha g$ -continuous.

> **Proof:** Let $f:(X,\tau) \to (Y,\sigma)$ be a contra $\psi \alpha g$ -continuous function. Let V be a clopen set in Y. Then, $f^{-1}(V)$ is $\psi \alpha g$ open in X. Hence, f is slightly $\psi \alpha g$ -continuous.

> Remark: 4.13 The converse of the above theorem need not be true as can be seen from the following example.

> **Example:** 4.14 Let $X = Y = \{a, b, c\}$ $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}, \sigma = \{Y, \phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}\}$ and $\sigma^c = \{Y, \phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}\$ and $\psi \alpha g O(X, \tau) =$ $\{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\$ and Let $g: (X, \tau) \to (Y, \sigma)$ be defined by g(a) = a, g(b) = c, g(c) = b. The function g(c) = b. is Slightly $\psi \alpha g$ -continuous but not contra $\psi \alpha g$ -continuous. Since $g^{-1}(\{b\}) = \{c\}$ is not $\psi \alpha g$ -open in X.

> **Remark: 4.15** Composition of two slightly $\psi \alpha g$ -continuous need not be slightly $\psi \alpha g$ -continuous as it can be seen from the following example.

> **Example:** 4.16 Let $X = Y = \{a, b, c, d\}, Z = \{a, b, c\}$ and the topologies are $\tau = \{X, \phi, \{a\}, \{a, b\}, \{a, b, c\}\}\$, $\sigma =$ $\{Y, \phi, \{a\}, \{b, d\}\}\$ and $\eta = \{Z, \phi, \{b\}, \{a, c\}\}\$. Define $f:(X,\tau)\to (Y,\sigma)$ by f(a)=b, f(b)=a, f(c)=c, f(d) = d $\psi \alpha g O(X, \tau) =$ $(X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{a, b, c\},)$

> $\{a, b, d\}, \{a, c, d\}$ Clearly f is Slightly $\psi \alpha g$ -continuous. Define $g:(Y,\sigma) \rightarrow$ (Z,η) by g(a) = a, g(b) = b = g(c), g(d) = c.

> $\psi \alpha g O(Y, \sigma) = P(Y)$. Clearly, g is Slightly $\psi \alpha g$ continuous. But $g \circ f: (X, \tau) \to (Z, \eta)$ is not Slightly $\psi \alpha g$ continuous. Since $(g \circ f)^{-1}(\{a,c\}) = f^{-1}(g^{-1}(\{a,c\})) =$ $f^{-1}(\{a,d\}) = \{b,d\} \text{ is not } \psi \alpha g \text{-open in } (X,\tau).$

Theorem: 4.17 Let $f: X \to Y$ and $g: Y \to Z$ be functions.

- (i) If f is $\psi \alpha g$ -irresolute and g is slightly $\psi \alpha g$ -continuous then $(g \circ f)$ is slightly $\psi \alpha g$ -continuous.
- (ii) If f is $\psi \alpha g$ -irresolute and g is $\psi \alpha g$ -continuous then $(g \circ f)$ is slightly $\psi \alpha g$ -continuous.

Paper ID: 14051604

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

- (iii) If f is $\psi \alpha g$ -irresolute and g is slightly continuous then $(g \circ f)$ is slightly $\psi \alpha g$ -continuous.
- (iv) If f is $\psi \alpha g$ -continuous and g is slightly continuous then $(g \circ f)$ is slightly $\psi \alpha g$ -continuous.
- (v) If f is strongly $\psi \alpha g$ -continuous and g is slightly $\psi \alpha g$ -continuous then $(g \circ f)$ is slightly continuous.
- (vi) If f is slightly $\psi \alpha g$ -continuous and perfectly $\psi \alpha g$ -continuous then $(g \circ f)$ is $\psi \alpha g$ -irresolute.
- (vii) If f is slightly $\psi \alpha g$ -continuous and g is contra continuous then $(g \circ f)$ is slightly $\psi \alpha g$ -continuous.
- (viii) If f is $\psi \alpha g$ -irresolute and g is contra $\psi \alpha g$ -continuous then $(g \circ f)$ is slightly $\psi \alpha g$ -continuous.
- **Proof:** (i) Let V be a clopen set in Z. Since g is slightly $\psi \alpha g$ -continuous, $g^{-1}(V)$ is $\psi \alpha g$ -open in Y. Since f is $\psi \alpha g$ -irresolute, $f^{-1}(g^{-1}(V))$ is $\psi \alpha g$ -open in X. Since $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$, $g \circ f$ is slightly $\psi \alpha g$ -continuous.
- (ii) Let V be a clopen set in Z. Since g is $\psi \alpha g$ -continuous, $g^{-1}(V)$ is $\psi \alpha g$ -open in Y. Since f is $\psi \alpha g$ -irresolute, $f^{-1}(g^{-1}(V))$ is $\psi \alpha g$ -open in X. Hence $g \circ f$ is slightly $\psi \alpha g$ -continuous.
- (iii) Let V be a clopen set in Z. Since g is slightly continuous, $g^{-1}(V)$ is open in Y. Since f is $\psi \alpha g$ -irresolute, $f^{-1}(g^{-1}(V))$ is $\psi \alpha g$ -open in X. Hence $g \circ f$ is slightly $\psi \alpha g$ -continuous.
- (iv) Let V be a clopen set in Z. Since g is slightly continuous, $g^{-1}(V)$ is open in Y. Since f is $\psi \alpha g$ -continuous, $f^{-1}(g^{-1}(V))$ is $\psi \alpha g$ -open in X. Hence $g \circ f$ is slightly $\psi \alpha g$ -continuous.
- (v) Let V be a clopen set in Z. Since g is slightly $\psi \alpha g$ -continuous, $g^{-1}(V)$ is $\psi \alpha g$ -open in Y. Since f is strongly $\psi \alpha g$ -continuous, $f^{-1}(g^{-1}(V))$ is open in X. Therefore $g \circ f$ is slightly continuous.
- (vi) Let V be a $\psi \alpha g$ -open set in Z. Since g is perfectly $\psi \alpha g$ -continuous, $g^{-1}(V)$ is open and closed in Y. Since f is slightly $\psi \alpha g$ -continuous, $f^{-1}(g^{-1}(V))$ is $\psi \alpha g$ -open in X. Hence $g \circ f$ is $\psi \alpha g$ -irresolute.
- (vii) Let V be a clopen set in Z. Since g is contra continuous, $g^{-1}(V)$ is open and closed in Y. Since f is slightly $\psi \alpha g$ -continuous, $f^{-1}(g^{-1}(V))$ is $\psi \alpha g$ -open in X. Hence $g \circ f$ is slightly $\psi \alpha g$ -continuous.
- (viii) Let V be a clopen set in Z. Since g is contra $\psi \alpha g$ -continuous, $g^{-1}(V)$ is $\psi \alpha g$ -open and $\psi \alpha g$ -closed in Y. Since f is $\psi \alpha g$ -irresolute, $f^{-1}(g^{-1}(V))$ is $\psi \alpha g$ -open and $\psi \alpha g$ -closed in X. Hence $g \circ f$ is slightly $\psi \alpha g$ -continuous.
- **Theorem: 4.18** If the function $f:(X,\tau) \to (Y,\sigma)$ is slightly $\psi \alpha g$ -continuous and (X,τ) is $\psi_{\alpha g} T_{1/2}$ space, then f is slightly continuous.
- **Proof:** Let V be a clopen set in Z. Since g is slightly $\psi \alpha g$ -continuous, $f^{-1}(V)$ is $\psi \alpha g$ -open in X. Since X is $\psi_{\alpha g} T_{1/2}$ space, $f^{-1}(V)$ is open in X. Hence f is slightly continuous.
- **Theorem: 4.19** Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\eta)$ be functions. If f is surjective and pre $\psi \alpha g$ -open and $(g \circ f):(X,\tau) \to (Z,\eta)$ is slightly $\psi \alpha g$ -continuous, then g is slightly $\psi \alpha g$ -continuous.
- **Proof:** Let V be a clopen set in (Z, η) . Since $(g \circ f): (X, \tau) \to (Z, \eta)$ is slightly $\psi \alpha g$ -continuous,

 $f^{-1}(g^{-1}(V))$ is $\psi \alpha g$ -open in X. Since, f is surjective and pre $\psi \alpha g$ -open $f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$ is $\psi \alpha g$ -open. Hence g is slightly $\psi \alpha g$ -continuous.

Theorem: 4.20 Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\eta)$ be functions. If f is surjective and pre $\psi \alpha g$ -open and $\psi \alpha g$ -irresolute, then $(g \circ f):(X,\tau) \to (Z,\eta)$ is slightly $\psi \alpha g$ -continuous if and only if g is slightly $\psi \alpha g$ -continuous.

Proof: Let V be a clopen set in (Z, η) . Since $(g \circ f): (X, \tau) \to (Z, \eta)$ is slightly $\psi \alpha g$ -continuous, $f^{-1}(g^{-1}(V))$ is $\psi \alpha g$ -open in X. Since, f is surjective and pre $\psi \alpha g$ -open $f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$ is $\psi \alpha g$ -open in Y. Hence g is slightly $\psi \alpha g$ -continuous.

Conversely, let g is slightly $\psi \alpha g$ -continuous. Let V be a clopen set in (Z, η) , then g is $\psi \alpha g$ -open in Y. Since, f is $\psi \alpha g$ -irresolute, $f^{-1}(g^{-1}(V))$ is $\psi \alpha g$ -open in X. $(g \circ f): (X, \tau) \to (Z, \eta)$ is slightly $\psi \alpha g$ -continuous.

Theorem: 4.21 If f is slightly $\psi \alpha g$ -continuous from a $\psi \alpha g$ -connected space (X, τ) onto a space (Y, σ) then Y is not a discrete space.

Proof: Suppose that Y is a discrete space. Let V be a proper non empty open subset of Y. Since, f is slightly $\psi \alpha g$ -continuous, $f^{-1}(V)$ is a proper non empty $\psi \alpha g$ -clopen subset of X which is a contradiction to the fact that X is $\psi \alpha g$ -connected.

Theorem: 4.22 If $f:(X,\tau) \to (Y,\sigma)$ is a slightly $\psi \alpha g$ -continuous surjection and X is $\psi \alpha g$ -connected, then Y is connected.

Proof: Suppose Y is not connected, then there exists non empty disjoint open sets U and V such that $Y = U \cup V$. Therefore, U and V are clopen sets in V. Since, f is slightly $\psi \alpha g$ -continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are non empty disjoint $\psi \alpha g$ -open in X and $X = f^{-1}(U) \cup f^{-1}(V)$. This shows that X is not $\psi \alpha g$ -connected. This is a contradiction and hence, Y is connected.

Theorem: 4.23 If $f:(X,\tau) \to (Y,\sigma)$ is a slightly $\psi \alpha g$ continuous and (Y,σ) is locally indiscrete space then f is $\psi \alpha g$ -continuous.

Proof: Let V be an open subset of Y. Since, (Y, σ) is a locally indiscrete space, V is closed in Y. Since, f is slightly $\psi \alpha g$ -continuous, $f^{-1}(V)$ is $\psi \alpha g$ -open in X. Hence, f is $\psi \alpha g$ -continuous.

Theorem: 4.24 If $f:(X,\tau) \to (Y,\sigma)$ is a slightly $\psi \alpha g$ -continuous and A is an open subset of X then the restriction $f|_A:(A,\tau_A) \to (Y,\sigma)$ is slightly $\psi \alpha g$ -continuous.

Proof: Let V be an clopen subset of Y. Then $(f|_A)^{-1}(V) = f^{-1}(V) \cap A$. Since, $f^{-1}(V)$ is $\psi \alpha g$ -open and A is open, $(f|_A)^{-1}(V)$ is $\psi \alpha g$ -open in the relative topology of A. Hence, $f|_A: (A, \tau_A) \to (Y, \sigma)$ is slightly $\psi \alpha g$ -continuous.

Volume 5 Issue 5, May 2016

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

References

- [1] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci. 19(1996), 303-310
- [2] RC Jain, The role of regularly open sets in general topology, Ph.D Thesis, Meerut 1980.
- [3] S. Jafari, T. Noiri, Contra-super-continuous functions, Ann. Univ. Sci. Budapest 42(1999), 27-34.
- [4] S. N. Maheswari and SS Thakur, On α-irresolute maps Tamkang J.Math11(1980) 209-214.
- [5] S.Pious Missier and P. Anbarasi Rodrigo, Some notions of nearly open sets in topological spaces, IJMA 4(12), 2013, 1-7.
- [6] S.Pious Missier and P. Anbarasi Rodrigo, Strongly α^* -continuous functions in topological spaces, IOSR-JM, Volume 10, Issue 4 Ver. I(Jul-Aug. 2014), PP 55-60
- [7] S.Pious Missier and P. Anbarasi Rodrigo, Contra α^* -continuous functions in topological spaces, IJMER, Vol. 4 Iss.8 Aug. 2014 PP 1-6
- [8] S.Pious Missier and P. Anbarasi Rodrigo, On α^* continuous functions in topological spaces, OUTREACH Volume VII 2014 148-154
- [9] S.Pious Missier and P. Anbarasi Rodrigo, On α^* -closed functions in topological spaces, (communicated)
- [10] V.Kokilavani and P.R. Kavitha, On $\psi \alpha g$ -closed sets in topological spaces, IJMA-7(1), 2016, 1-7
- [11] Willard, S., General Topology, (Addison Wesley, 1970).

Online): 23/9