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1. Introduction
Let A denote the class of functions f (Z) of the form

z)=z+ianz”, (1)
n=2

which  are disk

Y = {Z e X: |Z| < 1}. Further, by ¥ we shall denote the

analytic in the open unit

class of functions f € A which are univalentin Y .
For T € A givenby (1) and g(Z) given by
z)=2+>b2", )
n=2

their convolution (or Hadamard product), denoted by
(f *g),is defined as

(f=g)z —Z+Za

Note that f *g € A .

(zeY) 3)

A function f € A issaid tobein f—US (), the class of

p - uniformly starlike functions of order ¢ , 0 < <1 , if
satisfies the condition

NEETR
and a function f € A is said to be in f—-UC(«), the

class of [ - uniformly convex functions of order «,

+a (£20), 4

0<a <1, if satisfies the condition

zf zf
Re{l f. } ﬂ% 3 %+a (£=0). (5)
Uniformly starlike and umformly convex functions were first

introduced by [1, 2] and then studied by various authors [3,
4]. It is known that f—US(ar) or f—UC(er) if and only

zf (z) 2f (2)
f(z) . f(2)

in the conic domain R 5.« Which is included in the right half

, respectively, takes all the values

plane given by
Ry, =@=U+iveC:u>p (u—1)2+v2 +a,

£>0 and 0<a<l1 6)

Denote by Py (,B >0,0<a< 1) of functions p, such that

pE p.a

Caratheodory functions.

where P denotes well known class of

The function Pﬂ ., Mmaps the unit
disk conformally onto the domain R, , such that 1€ R,

and aRM is a curve defined by the -equality

2
Ry, —a)—u+iVeC:u2:[ﬂ (u—1)2+v2 +a) ,

£=20 and O0<a<l. @)
From elementary computations we see that (7) represents
conic sections symmetric about the real axis. Thus R pa 18
an elliptic domain for /> 1, a parabolic domain for =1,
a hyperbolic domain for 0 < <1 and the right half plane
u>a,for f=0.

In [5], Sakaguchi (1959) defined the class SS of starlike

functions with respect to symmetric points as follows:

Let f € A . Then f is said to be starlike with respect to

symmetric points in Y if and only if

Re{—2H @ L., (zeY) 8)
f(2)-f(-2)

Recently, Owa et. al. (2007) [6] defined and studied the

class S, (a,t),

Volume 5 Issue 5, May 2016

WWW.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: 11051602

1072




International Journal of Science and Research (1JSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2016): 6.14 | Impact Factor (2015): 6.391

Re{(l—t)zf'(z)
f(2)- f(t2)

where 0<a<l[t|<Lt=l. 9)
In 2008, Selvaraj and Karthikeyan [7] defined the following
operator D' (al,ﬂl )f Y > Y by

D} (e:8) T (2) = F(2)*Gys(1.3:2).

D} (e:8) f(2) = (1= ) (2)*Gy 5(.3:2)
+22(1(2)*Gy (. 3,52))

D7 (a:8) f(2) = DD} (a:8) f (2),

}>a (zeU),

(10)
where me N ZNU{O} and 4 >0.
If f € A, then from (10) we may easily deduce that
D} (a:8) (D)
= Z+Z[1+(n—1)/1]ml"n(a])anz” (11)

@)y 1
(B (B, (Nn=1)

Special cases of the operator Dj (¢;3)f includes

where I, (a;) =

various other linear operators which were considered in many
earlier work on the subject of analytic and univalent

functions. If we let M=0 in D} (¢;5,) f . we have
Di(e:8) T (D)= Hy(ei:8) (D)

where H;,S(al;ﬂl) is Dziok-Srivastava operator for

functions in A [8])
q=2,s=l,o,=p,,=1 and A=1, we get the
operator introduced by Salagean (1983)([9]).

Definition 1.1 A function f(z) € A is said to be in the

class k— Y2 (A, a,, B,,7.t) ifforall ze Y,

(see and for

| a-vr(Df (@A) f@)
D} (a0 3) f()-D} (@, ) f(@2)

(1-02(0f (. 8) @) |

> k| — - (12)
DM (a1, 3,) f(2)-DF (a1, 3,) f(tz)‘
for 20, k,m>0, [t|<1, t#land 0<y<I.
Furthermore, we say that a function

f(Z)ek—YZS(/”L,aI,,BI,}/,t) is in the subclass
K-—YET (A4, e, 8,7.t) if T(2) is of the following

[ee)

form: (z)- Z—Zanzn

n=2
The main objective of this paper is to study the coefficient
estimates, extreme points, distortion bounds and closure

properties for f(z2)ek—YZT S(ﬁ,, 0‘1’ﬂ1>7at) by fixing

second coefficients.

(13)

(an =0.neN).

Similar other classes of univalent functions with fixed second
coefficients have been extensively studied by Aouf
(1997)[10, 11], S. M. Khairnar et. al., (2010), [12], Darwish
(2008)[13], and others see [14].

2. Coefficient Estimate

Lemma 2.1 Let @=Uu+iv.Then Re@w> « if and only if
|a>—(1+a] S|a)+(l+ax.

Lemma 2.2 Let ®=U+IiV and «,y are real numbers.

Then Reco>a|a)—1|+}/ if and only if

Re{oll+0e")-ce}> .

Theorem 2.3 Let the function f(Z) be defined by (13).
Then f(2)ek—-YZT S(ﬂ,, al,ﬂl,y,t) if and only if

iCn(m,ﬁ,,k,y)an <(1-y),

n=2
Cn(m,ﬂ,k,y)
where m >
=(1+(=DA)" Ty(@)[n(k+1)=(k+7)u, ]
220, km>0, 0<y<l, [f<1, t#l and

U, =1+t +t% 4+ +t".

(14)

The result is sharp for the function f (Z) is given by
1- Y 7"
C,(m, 4.k, %)
Proof. By definition f(z) ek — YET  (1,,,f,.7.t) if

and only if the condition (12) is satisfied.
Then by Lemma 2.1, we have

f(z)=z2-

| (-02(07 (. 8) 1) (
D? (alaﬂl) f(Z)—D? (alaﬁl) f(tZ)

keiH ) _ kei&

2y, —n<O=r.
It is also written as

. (l—t)z(Dg‘ (al,ﬂl)f(z)) (1+kei9)
D7 (. 4) f(2)-D} (a1, ) f (t2)

 ke’Df (a1, 4) f(2)-Df (@, 8) f (t2) N
DY (er.5) f(2)-D (. ) ()

Let A(z)=(1—t)z(D;1 (a,/3) f(z)) (1+ke“")
ke (D] (@1, 4) (2)-DJ (a1, 3,) f (@)
and B(2)=DM (e, 8)f(2)—-D] (e, 5,)f (t2).

From Lemma 2.1 and Lemma 2.2,

|A()+(1-»)B(2)| 2| A) - (1+7)B(2)| for 0<y<l.
Using a simple computation,

|A@)+(1-7)B(2)|>

(15)
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|1—t|{(2—7/)|z|—2(1+(n—l)ﬂ)m Ty (ep)[n+1-p)u, Ja, |2

—k21+(n DA)'T, (e)[n-u, ||}

Also,|A(2)—(1+7)B(2)| <

|l—t|{y|z| +Z(1+(n ~DA)" T (e)[n-1+p)u, Ja|2]"

n=2

+ ki(l+ (n—=1A)"T,(a)n —un]an|z|”}.

n=2

|A(2)+(1-7)B(2)| | A(2) - (1+ )B(2)|

> {2(1—7)|z|—22(1+(n—1)/1)m r ()

n=2

[n(k+1)=(k+7)u, |a,|2" }

Now

> 0.
or

o0

Z(1+(n—1)/1)'“ Tl n(k+1)=(k+7)u, ]a,

n=2

<(1=yp).

which gives the desired estimation.

Conversely, suppose that (14) holds. Then we must show that

(14)2[%'“ (a1.81) f(z)] [1+keigj—kei9[D?(a1,ﬂ1) 1@-0M (a1, /1) f(tz)]
o (a1.1) @) -DF (a1./1) T @)

Re

>y.

Choosing the values of Z on the positive real axis where
0<Z=r <1, the above inequality reduces to

(17y)72(1+(n71)/1)m
n=2

o0
1—2(1 +(-1)2)" Tp(ay)upanz"™!
n=2

Fn(al)(n(l +ke'?)—up(y + keie)) agz"!

>0.

Since  Re(—e'?) > —‘em‘ =—1, the above

reduces to
(17y)72(1+(n71),1)m
n=2

o0
1 —2(1 +(=1)2)" Tp (e )upanr™™!
n=2

inequality

(@) (n(1+K) = (7 +K)up ) apr™™!

0.

Letting I — 17, we have desired conclusion.

Corollary 2.4 Let the function f(z) defined by (13) be in
the class kK — YZT ,(1,,, 3,,7,t), then

o < (1-7)
T+ ((n—l)u)mrn(aa[n(k+1)—(k+7)un]
-y
Cn(m,ﬂ,,k,y/) (n22).
(16)
where

Co(m, 4.k, 7)=(1+(n=DA)'T, (e)[n(k + 1)~ (k + y u, ]
,A20,km>0and 0<y <I.
Setting N =2 in (16), we have

< (1_7)(ﬂ1)

) (1+ﬂ)m[82+k—7)—t(7+k)](061)
(1_7 (ﬂl)

- Cz(m,/i,k,y)(al)'

where G (. 4k )= (12 A2+ k— ) —t(y +K)]

Let k—YZTS(C,/L al,ﬂl,]/,t) denote the class of

functions f(2) in k—YZTS(/l,al,,BI,]/,t) of the form

. c(1-7)(8) > <~ on
f(z)_Z_C2(m,/1,yk,y)(a1)z —;anz

(a,>0),0<c<l.

a‘2
(17

(18)

Remark 2.1 If ; = 3, =1, then the result is reduced to the

class k—?Zs(ﬂ,,u,]/,t) studied by Murat Caglar and
Orhan [15]. Take t=0, =0 and A =1, this result is
reduced into the class T(N,«) studied by Aouf [10]. If
t=0, =0, o= =1 and A =1, then the result
was reduced into the class UCT (e, ) by Khairanar
(2010)[12].

Theorem 2.5 Let the function f(Z) be defined by (18).
Then f(z) in k —YZTS(C,/I, al,ﬂl,y,t) if and only if

icn (m,A,k,7)a, <(1-y)1-c) (19)
n=3
Proof. Substituting

- C(l - 7)(ﬂ1 )
2 5
Cz(ma/la k’7)(a1)
simplifying we get the result.
Corollary 2.6 Let the function f(z) defined by (18) be in

the class kK—-YXZT s(C, Aa, B, }/,t) , then

(1—y)i-c)

"T C,(mAk,y)

0<c<l,in (14) and

(n>3) 0<c<l. (20
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3. Extreme Points

Theorem 3.1 Let
f, (Z) =7-

and

fol2)=

C(I_J/)(ﬁl) 72
C,(c,m, 2.k, 7))

ey

. C(I_V)( 1) 72 _ (
C,(c,m, 4.k, 7 )e,)

yNl-c) _,
zZ
C,(m, A,k,y)
(22)
class

for n=34,--. Then f(z) is in the

k—YZTS(C,/I,al,ﬂI,]/,t) if and only if it can be

expressed in the form f(2) = Z/,tn f.(2), 23)
n—2

where £, =20 and Z:lz'un =1.

Proof. We suppose that f(Z) can be expressed in the form
(23). Then we have

RN 7.3 N 97 3 VA
n .
C,(c,m Ak, ¥Ney) C,(m,A.k,y)
(24)
i lcynCn(m/Iky)
Since &3 Cn(mAk7)  (-n (25)
<(1-0)(1- 1)
<(-7)
it follows from (14) that f(z) is in the class
k—YZT, (C, A, B, 7/). Conversely, suppose that
f(z) defined by (18) is in the class
k—-YZT S(C,ﬂ,, a,p, }/). Then, by using (20), we get
L UZOUZ) (53 26)
C,(m,2,k,y)
Setting
C.(m,A,k,
= Man (n>3) @7)
(1-c)(1-7)
and 41, =1-3 4., (28)
n=3
we have (23). This completes the proof of the theorem.
Corollary 3.2 The extreme points of the class

k—YZT, (c, 1., B,7.t) are functions f,(z), n>2
given by (3.1).

4. Growth and Distortion Theorem

The following lemmas are required in our investigation of
growth and distortion properties of the general class

k—YZTS(C,/I,al,ﬁl,y,t).

Lemma 4.1 Let the function f,(Z) be defined by

cll-7)(A1 1-y)(1-c
f3()=z- Cz(En,iJ(),(y)()al) 22 (_(‘,3(m)flky)) 3,
For some n. Then for 0<r <1 and 0<c<1,
_7/)(ﬂ1) r2_ (1_7)(1_C) r3
C3(m=ﬂ’k’7)
(30)
and

29

NI c(l
L oy ey Py

with equality for @=0. For either 0<C<C,
0<r<ryorc,<c<I,

i0 c(l-»)B) 2 (1-y)i-c) ;
A N N Wy P LY e L
(31)

with equality for @ =7 . Further, for 0<C<C, and
rh,<r<I,

22 (1-p)2 B
(Ca(m. ko)) 2

‘f3(rei'9)

2(1-)BECs (. A.k.7)
2(1-¢)(C, (m,/l,k,y))z af

L 200 - 7)(/51)}

(C3(m, 2.k ;/))

2a-o0-1*(4) W

2(Co(m. 2k, ) (C3(m.Ak.r) e

(1-0’(1-»)°
(Cs(mak.r))

(32)
with equality for

2 Cos-l[c(l—c)(l—y)(ﬁl )’ —c(Cg(m,ﬂ,k,y))(ﬂl)J

4(1=c)(C,(m, 2.k, ¥ )Nex, )r
(33)
where

[a=n8)=3(Ca(m k) (en)-C3(m Ak ) () [+ 5

¢ 20-7(A) ’
(34)

¢ :{[(1—y>(ﬂ1)—4(02(m,ﬂ,km))(al)—cs(Mk#)(ﬁlﬂz

1
+16C5 (M, 4.k, 7) (1= X))} 2

—2(1—C)(C2(m’ﬂ’ek’7)(a1))+ rO* (35)
c(1-c)(1-7)(B,) ’

1

and I, =

2
0 :{4(17‘:)2 (c2(m.2.k.7)) (a12)+c2(170)(177)c3(m,/Lk,?)(/)’]z)}z :

Proof. We employ the same technique as used by Silverman
and Silvia (1981)([16]), since

012
0 f3(re'9)
= 2(17;/)1’3 sin@ x
00
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c(B) o(1=0)1=)A]) ,_4a-o
{Cz(m,l,kl,;/)(oq) Cz(m,i,k,}/)C3(m,i,k,y)(oq)r2 ' C3(m,A.k,7) o] (36)
we can see that
a‘f (re‘g)‘2
A3 4
06
for 6 =0, 8, =7 and
. = goc | CU=0I=NB)” ~C(B)C(m, Ak, 7)
} 4(1-c)C, (m, 4.k, y Nex,)r
(37)

Since 6, is a valid root only when —1<cos@, <1, we
have a third root if and only if I, <r <1 and 0<cC<Cc,.
Thus the results of Lemma 4.1 follow upon comparing the

f, (reigk ), (k = 1,2,3) on the appropriate

extremal values

intervals.
Lemma 4.2 Let the function f (z) (n>4) be defined by
(22). Then

n(reigl <[f,(-r) (n>4). (38)
Proof. Since
fn(z):Z— C(l_y)( l) 72 _ (1—]/)(1—C) /"
Cz(c’m’/l’k’}/)(al) Cn(m,ﬂ,,k,}/)

L (=p)i-c)

r" is a decreasing function of N, we
C,(m,2,k,»)
c =1 (A1) 2

o3 -,
have ‘fn[rel j‘* r Co (c.m. A.k, 7)(0‘1)

L =@ —c)

Cn(m/lk;/)

—fq4(—r).

which proves (38).

Theorem 4.3 Let the function f(z) defined by (18) be in

the class k—YZTS(C,/I,aI,,BI,y,t). Then, for

0<r<l,

c1-NB) >

1-9(1-7)
C, (m, AK, y)(al)

C,(m, 4.k, 7)
(39)
Z2=r and

‘f(rem)zr—

with  equality for f,(2) at

10|

where maxe‘ f, (rem)‘ is given by Lemma 4.1.

‘ f (rei‘gl < max ax (40)

The proof of this theorem is obtained by comparing the
bounds given by Lemma 4.1 and Lemma 4.2. Putting C=1
in theorem 4.3, we obtain the following corollary.

Corollary 4.4 Let the function f (z) defined by (13) be in
the class k—YZTS(C,/I,al,,B],}/,t). Then, for

0<r<I1,

(-1

_ @) -NB) -
Cz(m’}“’kﬂ/)(al) ‘

r_ - Mz
C, (m,/l, k,}/)(al)

rr<|f@)<r+

(41)
The result is sharp for the function
f(Z): (l_y)(ﬁl) 22. (42)

B Cz(ma/?’a K, 7)(051)

Putting C=1 and K=0 in theorem 4.3, we obtain the
following corollary.

Corollary 4.5 Let the function f(z) defined by (13) be in
the class k—YETS(C,/I,al,ﬁl,y,t). Then, for

0<r<1,

(1-7)(8)

) =B .
Cz(m,ﬂ,,O, 7)(051) ‘

C,(m, 2,0,7 e,

(43)
function

r’<|fo)<r+

The result is sharp for the
1—
C2 (ma/?“a k: 7)(“1)
Remark 4.1 If o, = =1, m=1 and t=-1 then the
above result (corollary 4.4) is reduced to the class

S.(4,K, ) studied by C.Selvaraj et.al. (2009)[17],

(44)

(I=y)

~_ U7 L A=nNB)
2(1+K)(1+ 1)

2(1+k)(1+ 4)

(45)
Lemma 4.6 Let the function f,(z) be defined by (29).
Then, for 0<r<1l and 0<c <1,

2C(1 - 7)(:81 )

C,(m. 2.k, Ner)

P<]f(2) <

30-p10).
Cy(m, 4,k,7)
(46)
with equality for @=0. For either 0<C<C, and
r<r<i,

f,(re')>1-
[fa(re")

2c(1-7)43)

3-r)i-o)
C,(m. k. Nar)

C
C,(m, A,k,y)

(47)
with equality for &= 77 . Furthermore, for 0 <C<C, and
n<r<l,

g Cz(l_y)ﬂlz(:}(m,ﬂ,,k,}/)
f <
fre”) <{[H3(1-c)(Cz(m,i,k,7))zaf ]

{ﬁﬂrww 6wmkmm%

‘f;(re“g)‘ <1+
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with equality for
0 — ool 31=0=p)B )" ~c(Cy(m.A.k.7)\A)
6(1_ C)(Cz (m’ ﬂ” k’ 7))(0(, )I’

(49)
where
_ 3[(1‘ 7)( 1)_ 6(C2(m’ A, k’}/))(al )_Cz(m’/i’ k, 7)(ﬂ1 )]"' cl*
1 6(1-7)(5) ’
(50)

= Ho-n-ecm ik la)-Cmiksks)f
+72C,(m, k7 X1- 7)) (B) 2

and I, = _6(1_0)(C2(m9/1’k97/)(0[1))+ rl* , (51)
6c(1-c)(1=7)(5,)

1
i = Bo(1-0P (Com Ak ) (@) +1263(1-c)(1- )G, m. Ak XA
The proof is omltted
Theorem 4.7 Let the function f(z) defined by (18) be in

the class k—YZTS(C,/I,al,,Bl,y,t). Then, for
0<r<I1,
|f3'(rei9121_ cd-nN) . A-0U-y) »
Cz(m,/l,k,}/)(al) C3(m,/1,k,}/)
(52)

with equality for f,(Z) at Zz=r and
~f, (—r)} (53)

where maxg‘ f (reie)‘ is given by Lemma 4.6.

i0

‘ f3 (reiel < max jmax
4

5. Radii of Starlikeness and Convexity

Theorem 5.1 Let the function f (z) defined by (18) be in
the class k—YZTS(C,/I,al,ﬁl,y,t). Then f(2) is
order p (0<p<1) in the
| | C ,0,M, A k,}/) where rl(C,p, m,/l,k,;/) is the

Iargest value for which
c-rCE-—pP)(A)

starlike of disc

L= -c)(n—p) n-1

Co(m Ak )(e1) | Cn(miko) (54)
=1-p (n=3).

The result is sharp with the extremal function
oSN 2 (1-9)0-0) n (55

Co (m, A,k,y)(e1) Cn (m, 4.k, 7/)

Proof. It suffices to show that
7t (2)
f(2)

for |Z| =1, (C, p£,Mm,A, k,]/). We note that

-1

<l-p (0Lp<])

c(l-7)8)

zf'(z)_l‘ -G Ak y)a )an;(n Da,r™
f(z) - _ ( 7)(/31) I
Cm ko) 2
<l-p,

(56)
|z|<r ifand only if

cl-7)2-p)B), < _ -l
Cz(m,/i,k,y)(al)HnZ;‘(n par <l-p

(57)
Since f(Z) is in the class k—YZTS(C,/l,Otl,,Bl,y/),
from (14) we may take
an :wﬂn (n:3’4’5’...)
C,(m,2,k,»)

where £, 20 and Z:O:},un <l1.

(58)

For each fixed I, we choose the positive integer

N, =N, (r) for which % is maximal. Then it
n ma ) 97/
o
follows that
i(n_p)a rn—l < (I_C)(l_y)(no _Io)rno_l. (59)
& ” C,,(m.2.k,7)

Hence starlike is of

f(z) is
|Z| =, (C, 0,m, 1.k, 7/) provided that

l=rf2=p)B),  (=M1=ch=p) ot
C,(m /lk,y)(al) C, (M 2.k,7) -

order p in

(60)
We find the value I = rl(C,p, m,ﬂ,k,]/) and the

corresponding integer N, (I,) so that

li=pk2=p)p), , (1=7XI=cky—p) nn

=1-p.
C,(m, 4, k,j/)(al) C,, (m2.k,7)
(61)
Then this value I}, is the radius of starlikeness of order p
for  functions f(z) belonging to the class

k—YZTS(C,/I,aI,ﬂl,y,t).

In similar manner, we can prove the following theorem
concerning the radius of convexity of p for functions in the
class K—YXT S(C, /I,al,ﬁl,y,t).

Theorem 5.2 Let the function f(z) defined by (18) be in
the class k—YZT (c,A,,f,7.t). Then f(z) is
(0 p<1) in the disc

convex of order p,
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2| =r,(c. p,m, 4.k, 7), where 1,(c, p,m, 2.k, ) is the

largest value for which

26(1-)E-P)(A) ,  (=)(-)n(n-p) i
Co (M. Ak, 7)) (1) Cn (m. 4.k, )
(n=3).

(62)

=1—p

The result is sharp for the function f(Z) given by (55).
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