Fixed Coefficients for Certain Subclass of Univalent Functions using Hypergeometric Function

C. Selvaraj, T. R. K. Kumar, Thirupathi

1Department of Mathematics, Presidency College, Chennai, Tamilnadu, India
2Department of Mathematics, R.M.K. Engineering College, Tamilnadu, India
3Department of Mathematics, R.M.K. Engineering College, Tamilnadu, India

Abstract: When object of the present paper is to determine coefficient estimates, distortion bounds, closure theorems and extreme points for functions \(f(z) \) belonging to a new subclass of uniformly starlike functions.

Keywords: Univalent, Uniformly starlike function, Hypergeometric function.

1. Introduction

Let \(A \) denote the class of functions \(f(z) \) of the form
\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n,
\]
which are analytic in the open unit disk \(Y = \{ z \in X : |z| < 1 \} \). Further, by \(\Sigma \) we shall denote the class of functions \(f \in A \) which are univalent in \(Y \).

For \(f \in A \) given by (1) and \(g(z) \) given by
\[
g(z) = z + \sum_{n=2}^{\infty} b_n z^n,
\]
their convolution (or Hadamard product), denoted by \((f * g)\), is defined as
\[
(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n, \quad (z \in Y)
\]
(3)

Note that \(f * g \in A \).

A function \(f \in A \) is said to be in \(\beta - US(\alpha) \), the class of \(\beta \) - uniformly starlike functions of order \(\alpha \), \(0 \leq \alpha < 1 \), if and only if
\[
\left| \frac{zf''(z)}{f'(z)} \right| > \beta \left| \frac{zf'(z)}{f(z)} \right| + 1 + \alpha \quad (\beta \geq 0),
\]
(4)

and a function \(f \in A \) is said to be in \(\beta - UC(\alpha) \), the class of \(\beta \) - uniformly convex functions of order \(\alpha \), \(0 \leq \alpha < 1 \), if and only if
\[
\left| 1 + \frac{zf''(z)}{f'(z)} \right| > \beta \left| \frac{zf'(z)}{f(z)} \right| + \alpha \quad (\beta \geq 0).
\]
(5)

Uniformly starlike and uniformly convex functions were first introduced by [1, 2] and then studied by various authors [3, 4]. It is known that \(\beta - US(\alpha) \) or \(\beta - UC(\alpha) \) if and only if

In [5], Sakaguchi (1959) defined the class \(S_1 \) of starlike functions with respect to symmetric points as follows:

Let \(f \in A \). Then \(f \) is said to be starlike with respect to symmetric points in \(Y \) if and only if
\[
\left| \frac{zf'(z)}{f(z) - f'(-z)} \right| > 0 \quad (z \in Y).
\]
(8)

Recently, Owa et. al. (2007) [6] defined and studied the class \(S_1(\alpha, t) \),

Volume 5 Issue 5, May 2016

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY
by (see [8]) and for all
\[D_k^m(a_1, \beta_1)f(z) = \frac{1}{(n!)} \left(\sum_{j=0}^{n} \frac{(m+j-1)!}{j!(n-j)!} (a_1)_j \right) f(z), \]
where \(n \in \mathbb{N} \) and \(\lambda \geq 0 \).

If \(f \in \mathcal{A} \), then from (10) we may easily deduce that
\[D_k^m(a_1, \beta_1)f(z) = z + \sum_{n=2}^{\infty} \left(\sum_{j=0}^{n} \frac{(m+j-1)!}{j!(n-j)!} (a_1)_j \right) \frac{z^n}{n^n} \]
where \(\Gamma_n(a_1) = \frac{(a_1)_{n-1}}{(\beta_1)_{n-1}} = \frac{(a_1)_{n-1}}{(\beta_1)_{n-1}} (n-1)! \).

Special cases of the operator \(D_k^m(a_1, \beta_1)f \) includes various other linear operators which were considered in many earlier work on the subject of analytic and univalent functions. If we let \(m = 0 \) in \(D_k^m(a_1, \beta_1)f \), we have
\[D_0^m(a_1, \beta_1)f(z) = H^1_q(a_1, \beta_1)f(z) \]
where \(H^1_q(a_1, \beta_1) \) is Dziok-Srivastava operator for functions in \(\mathcal{A} \) (see [9]) and for \(q = 2, s = 1, a_1 = \beta_1, a_2 = 1 \) and \(\lambda = 1 \), we get the operator introduced by Salagean (1983)([9]).

Definition 1.1 A function \(f(z) \in \mathcal{A} \) is said to be in the class \(k - \Sigma \lambda \alpha \beta \gamma \) if it satisfies
\[\Re \left[\frac{(1-t)z \left(D_k^m(a_1, \beta_1)f(z) \right)}{D_k^m(a_1, \beta_1)f(z) - D_k^m(a_1, \beta_1)f(tz)} \right] \geq \frac{1}{1+\gamma} \]
(12)
for \(\lambda \geq 0, \ km \geq 0, \ |t| \leq 1, \ t \neq 1 \) and \(0 \leq \gamma < 1 \).

Furthermore, we say that a function \(f(z) \in k - \Sigma \lambda \alpha \beta \gamma \) is in the subclass \(k - \Sigma \lambda \alpha \beta \gamma \) if \(f(z) \) is of the following form:
\[f(z) = \sum_{n=2}^{\infty} a_n z^n \quad (a_n > 0, n = \infty). \]

The main objective of this paper is to study the coefficient estimates, extreme points, distortion bounds and closure properties for \(f(z) \in k - \Sigma \lambda \alpha \beta \gamma \) by fixing second coefficients.

Similar other classes of univalent functions with fixed second coefficients have been extensively studied by Aouf (1997)[10, 11], S. M. Khamar et. al., (2010), [12], Darwish (2008)[13], and others see [14].

2. Coefficient Estimate

Lemma 2.1 Let \(\omega = u + iv \). Then \(\Re \omega \geq \alpha \) if and only if
\[|\omega - (1+\alpha)| \leq |\omega + (1+\alpha)|. \]

Lemma 2.2 Let \(\omega = u + iv \) and \(\alpha, \gamma \) are real numbers. Then \(\Re \omega > \alpha|\omega| + \gamma \) if and only if
\[\Re \omega(1+\alpha e^{i\theta}) - \alpha e^{i\theta} > \gamma. \]

Theorem 2.3 Let the function \(f(z) \) be defined by (13). Then \(f(z) \in k - \Sigma \lambda \alpha \beta \gamma \) if and only if
\[\sum_{n=2}^{\infty} C_n \left(m, \lambda, \alpha, \beta, \gamma, t \right) \]
where
\[C_n = \frac{1}{k+1} \left(\gamma \right) \left(n+1 \right) u_n \]
and \(u_n = 1+t+t^2+\cdots+t^n \).

The result is sharp for the function \(f(z) \) is given by
\[f(z) = \frac{z - \frac{1}{1-\gamma} \sum_{n=2}^{\infty} C_n \left(m, \lambda, \alpha, \beta, \gamma, t \right) z^n}{C_n \left(m, \lambda, \alpha, \beta, \gamma, t \right) \sum_{n=2}^{\infty} C_n \left(m, \lambda, \alpha, \beta, \gamma, t \right) z^n}. \]

Proof. By definition \(f(z) \in k - \Sigma \lambda \alpha \beta \gamma \) if and only if the condition (12) is satisfied. Then by Lemma 2.1, we have
\[\Re \left[\frac{(1-t)z \left(D_k^m(a_1, \beta_1)f(z) \right)}{D_k^m(a_1, \beta_1)f(z) - D_k^m(a_1, \beta_1)f(tz)} \right] \geq \frac{1}{1+\gamma} \]
(15)
for \(\lambda \geq 0, \ km \geq 0, \ |t| \leq 1, \ t \neq 1 \) and \(0 \leq \gamma < 1 \).
\[|1 - i| (2 - \gamma) |z| - \sum_{n=2}^{\infty} (1 + (n - 1)\lambda) \Gamma_n(\alpha_i) \left[n + (1 - \gamma)u_n \right] a_n |z|^n \]

Also, \[A(z) - (1 + \gamma) B(z) \leq \]

\[\left\{ 2 (1 - \gamma) |z| - 2 \sum_{n=2}^{\infty} (1 + (n - 1)\lambda) \Gamma_n(\alpha_i) \left[n (k + 1) - (k + \gamma)u_n \right] a_n \right\} \geq 0. \]

or

\[\sum_{n=2}^{\infty} (1 + (n - 1)\lambda) \Gamma_n(\alpha_i) \left[n (k + 1) - (k + \gamma)u_n \right] a_n \leq (1 - \gamma). \]

which gives the desired estimation.

Conversely, suppose that (14) holds. Then we must show that

\[\left\{ 1 - 2 \sum_{n=2}^{\infty} (1 + (n - 1)\lambda) \Gamma_n(\alpha_i) \left[n + (1 - \gamma)u_n \right] a_n \right\} \geq 0. \]

Choosing the values of \(z \) on the positive real axis where \(0 \leq z = r < 1 \), the above inequality reduces to

\[(1 - \gamma) - \sum_{n=2}^{\infty} (1 + (n - 1)\lambda) \Gamma_n(\alpha_i) (n + (1 + \epsilon)u_n - (\gamma + k)u_n) a_n |z|^{n-1} \]

\[\geq 0. \]

Since \(Re(-e^{i\theta}) \geq -e^{i\theta} \) \(= -1 \), the above inequality reduces to

\[\left\{ 1 - \sum_{n=2}^{\infty} (1 + (n - 1)\lambda) \Gamma_n(\alpha_i) (n + (1 + \epsilon)u_n) a_n \right\} e^{i\theta} \geq 0. \]

Letting \(r \to 1 \), we have desired conclusion.

Corollary 2.4 Let the function \(f(z) \) defined by (13) be in the class \(k - \Sigma T \), then

Theorem 2.5 Let the function \(f(z) \) be defined by (18). Then \(f(z) \) in \(k - \Sigma T \) if and only if

\[\sum_{n=2}^{\infty} (m, \lambda, k, \gamma) a_n \leq (1 - \gamma |1 - c| \\text{ if } \lambda = 1. \]

Proof. Substituting

\[a_n = \frac{c(1 - \gamma) \beta \gamma}{C_2(m, \lambda, k, \gamma) (\alpha_i)}, \]

simplifying we get the result.

Corollary 2.6 Let the function \(f(z) \) defined by (18) be in the class \(k - \Sigma T \), then

\[a_n \leq \frac{(1 - \gamma) |1 - c|}{C_2(m, \lambda, k, \gamma)} \quad (n \geq 3), \quad 0 \leq c \leq 1. \]
3. Extreme Points

Theorem 3.1 Let

\[f_1(z) = z - \frac{c(1-\gamma)(\beta_1)}{C_1(c, m, \lambda, k, \gamma)(\alpha_1)} z^2 \]

and

\[f_n(z) = z - \frac{c(1-\gamma)(\beta_1)}{C_1(c, m, \lambda, k, \gamma)(\alpha_1)} z^2 - \frac{(1-\gamma)(1-c)}{C_n(m, \lambda, k, \gamma)(\alpha_1)} z^n \]

for \(n = 3, 4, \ldots \). Then \(f(z) \) is in the class \(k - \Sigma T_{c, \lambda, \alpha_1, \beta_1, \gamma, t} \) if and only if it can be expressed in the form

\[f(z) = \sum_{n=2}^{\infty} \mu_n f_n(z), \]

where \(\mu_n \geq 0 \) and \(\sum_{n=2}^{\infty} \mu_n = 1 \).

Proof. We suppose that \(f(z) \) can be expressed in the form (23). Then we have

\[f_n(z) = z - \frac{c(1-\gamma)(\beta_1)}{C_1(c, m, \lambda, k, \gamma)(\alpha_1)} z^2 - \frac{(1-\gamma)(1-c)}{C_n(m, \lambda, k, \gamma)(\alpha_1)} z^n \]

where \(\mu_n \geq 0 \) and \(\sum_{n=2}^{\infty} \mu_n = 1 \).

It follows from (14) that \(f(z) \) is in the class \(k - \Sigma T_{c, \lambda, \alpha_1, \beta_1, \gamma} \). Conversely, suppose that \(f(z) \) defined by (18) is in the class \(k - \Sigma T_{c, \lambda, \alpha_1, \beta_1, \gamma} \). Then, by using (20), we get

\[a_n \leq \frac{(1-c)(1-\gamma)}{C_n(m, \lambda, k, \gamma)} (n \geq 3) \]

and

\[\mu_n = \frac{C_n(m, \lambda, k, \gamma)}{(1-c)(1-\gamma)} a_n \]

where

\[\sum_{n=2}^{\infty} \mu_n = 1 \]

we have (23). This completes the proof of the theorem.

Corollary 3.2 The extreme points of the class \(k - \Sigma T_{c, \lambda, \alpha_1, \beta_1, \gamma, t} \) are functions \(f_n(z) \), \(n \geq 2 \) given by (3.1).

4. Growth and Distortion Theorem

The following lemmas are required in our investigation of growth and distortion properties of the general class \(k - \Sigma T_{c, \lambda, \alpha_1, \beta_1, \gamma, t} \).

Lemma 4.1 Let the function \(f_3(z) \) be defined by

\[f_3(z) = z - c(1-\gamma)(\beta_1) \frac{z^2}{C_2(m, \lambda, k, \gamma)(\alpha_1)} - \frac{(1-\gamma)(1-c)}{C_3(m, \lambda, k, \gamma)} z^3, \]

for some \(n \). Then for \(0 \leq r < 1 \) and \(0 \leq \theta \leq 1 \),

\[\left| f_3(re^{i\theta}) \right| \geq r \left[1 - c(1-\gamma)(\beta_1) \frac{r^2}{C_2(m, \lambda, k, \gamma)(\alpha_1)} - \frac{(1-\gamma)(1-c)}{C_3(m, \lambda, k, \gamma)} r^3 \right] \]

with equality for \(\theta = 0 \). For either \(0 \leq c < c_0 \) and \(0 \leq r < r_0 \) or \(c_0 \leq c \leq 1 \),

\[\left| f_3(re^{i\theta}) \right| \leq r + c(1-\gamma)(\beta_1) \frac{r^2}{C_2(m, \lambda, k, \gamma)(\alpha_1)} - \frac{(1-\gamma)(1-c)}{C_3(m, \lambda, k, \gamma)} r^3 \]

with equality for \(\theta = \pi \). Further, for \(0 \leq c \leq c_0 \) and \(r_0 \leq r < 1 \),

\[\left| f_3(re^{i\theta}) \right| \leq r + \frac{c(1-\gamma)(\beta_1)}{C_2(m, \lambda, k, \gamma)(\alpha_1)} r^2 - \frac{(1-\gamma)(1-c)}{C_3(m, \lambda, k, \gamma)} r^3 \]

with equality for \(\theta = \pi \).
we can see that
\[
\frac{\partial}{\partial \theta} f_3(ke^{i\theta}) = 0
\]
for \(\theta_1 = 0, \theta_2 = \pi\) and
\[
\theta_3 = \cos^{-1}\left(\frac{1/c - (1-c)(1-\gamma)(\beta_1)}{4/c_{21} + 4/c_{22} + 4/c_{23} + 4/c_{24}}\right)
\]
Since \(\theta_3\) is a valid root only when \(-1 \leq \cos \theta_3 \leq 1\), we have a third root if and only if \(r \leq r < 1\) and \(0 \leq c < c_0\). Thus the results of Lemma 4.1 follow upon comparing the extremal values \(f_3(ke^{i\theta_k})\), \(k = 1, 2, 3\) on the appropriate intervals.

Lemma 4.2 Let the function \(f_n(z)\) \((n \geq 4)\) be defined by (22). Then
\[
\left|f_n'(ke^{i\theta})\right| \leq |f_4'(-r)| \quad (n \geq 4).
\]
Proof. Since
\[
f_n(z) = z - \frac{c(1-\gamma)(\beta_1)}{C_2^n(m, \lambda, k, \gamma)(\alpha_1)}z^2 - \frac{(1-\gamma)(1-c)}{C_1^n(m, \lambda, k, \gamma)}z^n
\]
and \((1-\gamma)(1-c)\) is a decreasing function of \(n\), we have
\[
\left|f_n'(ke^{i\theta})\right| \leq r + \frac{c(1-\gamma)(\beta_1)}{C_2^n(m, \lambda, k, \gamma)(\alpha_1)}^2 + \frac{(1-\gamma)(1-c)}{C_1^n(m, \lambda, k, \gamma)}r^n = -f_4'(-r),
\]
which proves (38).

Theorem 4.3 Let the function \(f(z)\) defined by (18) be in the class \(k - \Sigma \mathcal{T}_r(c, \lambda, \alpha_1, \beta_1, \gamma, t)\). Then, for \(0 \leq r < 1\),
\[
f(ke^{i\theta}) \geq r - \frac{c(1-\gamma)(\beta_1)}{C_2^n(m, \lambda, k, \gamma)(\alpha_1)}r^2 - \frac{(1-\gamma)(1-c)}{C_1^n(m, \lambda, k, \gamma)}r^n
\]
with equality for \(f_3(z)\) at \(z = r\) and
\[
f(ke^{i\theta}) \leq \max_{\theta} \left\{f_3(ke^{i\theta}) - f_4'(-r)\right\}
\]
where \(\max_{\theta} f_3(ke^{i\theta})\) is given by Lemma 4.1.

The proof of this theorem is obtained by comparing the bounds given by Lemma 4.1 and Lemma 4.2. Putting \(c = 1\) in theorem 4.3, we obtain the following corollary.

Corollary 4.4 Let the function \(f(z)\) defined by (13) be in the class \(k - \Sigma \mathcal{T}_r(c, \lambda, \alpha_1, \beta_1, \gamma, t)\). Then, for \(0 \leq r < 1\),
\[
r - \frac{(1-\gamma)(\beta_1)}{C_1^n(m, \lambda, k, \gamma)(\alpha_1)}r^2 \leq |f(z)| \leq r + \frac{(1-\gamma)(\beta_1)}{C_1^n(m, \lambda, k, \gamma)(\alpha_1)}r^n.
\]
The result is sharp for the function
\[
f(z) = z - \frac{(1-\gamma)(\beta_1)}{C_2^n(m, \lambda, k, \gamma)(\alpha_1)}z^2.
\]
Putting \(c = 1\) and \(k = 0\) in theorem 4.3, we obtain the following corollary.

Corollary 4.5 Let the function \(f(z)\) defined by (13) be in the class \(k - \Sigma \mathcal{T}_r(c, \lambda, \alpha_1, \beta_1, \gamma, t)\). Then, for \(0 \leq r < 1\),
\[
r - \frac{(1-\gamma)(\beta_1)}{C_2^n(m, \lambda, k, \gamma)(\alpha_1)}r^2 \leq |f(z)| \leq r + \frac{(1-\gamma)(\beta_1)}{C_1^n(m, \lambda, k, \gamma)(\alpha_1)}r^n.
\]
The result is sharp for the function
\[
f(z) = z - \frac{(1-\gamma)(\beta_1)}{C_1^n(m, \lambda, k, \gamma)(\alpha_1)}z^2.
\]

Remark 4.1 If \(\alpha_1 = \beta_1 = 1, m = 1\) and \(t = -1\) then the above result (corollary 4.4) is reduced to the class \(S_c(\lambda, k, \beta)\) studied by C.Selvaraj et.al. (2009)[17].

Lemma 4.6 Let the function \(f_3(z)\) be defined by (29). Then, for \(0 \leq r < 1\) and \(0 \leq c \leq 1\),
\[
|f_3'(ke^{i\theta})| \geq 1 - \frac{2c(1-\gamma)(\beta_1)}{C_2^n(m, \lambda, k, \gamma)(\alpha_1)}r - \frac{(1-\gamma)(1-c)}{C_1^n(m, \lambda, k, \gamma)}r^n
\]
with equality for \(f_3(z)\) at \(z = r\) and
\[
f_3'(ke^{i\theta}) \leq \max_{\theta} \left\{f_3'(ke^{i\theta}) - f_4'(-r)\right\}
\]
where \(\max_{\theta} f_3'(ke^{i\theta})\) is given by Lemma 4.1.
with equality for
\[\theta = \cos^{-1}\left(\frac{3c(1-c)(1-\gamma)(\beta_1)^2-c(C_1(m, \lambda, k, \gamma))/(\alpha_1)}{6(1-c)(C_2(m, \lambda, k, \gamma)/(\alpha_1))}\right) \]

where
\[c_1 = \frac{3[(1-\gamma)/(\beta_1)-6C_1(m, \lambda, k, \gamma)/(\alpha_1)-C_1(m, \lambda, k, \gamma)/(\beta_1)]}{6(1-c)/(\alpha_1)} \]

\[c_1^* = \left[3[(1-\gamma)/(\beta_1)-6C_1(m, \lambda, k, \gamma)/(\alpha_1)-C_1(m, \lambda, k, \gamma)/(\beta_1)]\right]^2 \]

and
\[r_1 = \frac{-6(1-c)(C_1(m, \lambda, k, \gamma)/(\alpha_1)+r_1^*)}{6c(1-c)/(1-\gamma)/(\beta_1)} \]

The proof is omitted.

Theorem 4.7 Let the function \(f(z) \) defined by (18) be in the class \(k - \Sigma T_s(c, \lambda, \alpha_1, \beta_1, \gamma, t) \). Then for \(0 \leq r < 1 \),

\[|f'(r e^{i\theta})| \geq 1 - \frac{c(1-\gamma)/(\beta_1)}{C_1(m, \lambda, k, \gamma)/(\alpha_1)} r - (1-c)/(1-\gamma) \]

with equality for \(f'(z) \) at \(z = r \) and
\[|f'(r e^{i\theta})| \leq \max_{\alpha} |f'(r e^{i\theta})| - |f'(r e^{i\theta})| \]

where \(\max_{\alpha} |f'(r e^{i\theta})| \) is given by Lemma 4.6.

5. Radii of Starlikeness and Convexity

Theorem 5.1 Let the function \(f(z) \) defined by (18) be in the class \(k - \Sigma T_s(c, \lambda, \alpha_1, \beta_1, \gamma, t) \). Then \(f(z) \) is starlike of order \(\rho \) \((0 \leq \rho < 1) \) in the disc
\[|z| = r_1(c, \rho, m, \lambda, k, \gamma) \]

where \(r_1(c, \rho, m, \lambda, k, \gamma) \) is the largest value for which
\[\frac{c(1-\gamma)/(\beta_1)}{C_2(m, \lambda, k, \gamma)/(\alpha_1)} r + \frac{(1-\gamma)(1-c)/(n-\rho)}{c_n(m, \lambda, k, \gamma)} r^{n-1} \leq 1 - \rho \]

The result is sharp with the extremal function
\[r_n(z) = z - \frac{c(1-\gamma)/(\beta_1)}{C_2(m, \lambda, k, \gamma)/(\alpha_1)} z^2 - \frac{(1-\gamma)(1-c)}{c_n(m, \lambda, k, \gamma)} z^n. \]

Proof. It suffices to show that
\[\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq 1 - \rho \quad (0 \leq \rho < 1) \]

for \(|z| = r_1(c, \rho, m, \lambda, k, \gamma) \). We note that
\[|zf'(z)/f(z)| - 1 = \frac{c(1-\gamma)/(\beta_1)}{C_1(m, \lambda, k, \gamma)/(\alpha_1)} \frac{r + \sum_{n=3}^{\infty} (n-1) a_n r^{n-1}}{1 - \frac{c(1-\gamma)/(\beta_1)}{C_1(m, \lambda, k, \gamma)/(\alpha_1)} \sum_{n=3}^{\infty} a_n r^{n-1}} \]
\[\leq 1 - \rho, \]

(56)

Since \(f(z) \) is in the class \(k - \Sigma T_s(c, \lambda, \alpha_1, \beta_1, \gamma, t) \), from (14) we may take
\[a_n = \frac{(1-c)(1-\gamma)}{C_1(m, \lambda, k, \gamma)/(\alpha_1)} \mu_n \quad (n = 3, 4, 5, \ldots) \]

where \(\mu_n \geq 0 \) and \(\sum_{n=3}^{\infty} \mu_n \leq 1 \).

For each fixed \(r \), we choose the positive integer
\[n_0 = n_0(r) \]

for which \(\frac{n_0 - \rho}{C_1(m, \lambda, k, \gamma)/(\alpha_1)} \) is maximal. Then it follows that
\[\sum_{n=3}^{\infty} (n-\rho) a_n r^{n-1} \leq \frac{c(1-\gamma)(1-c)/(n_0 - \rho)}{C_1(m, \lambda, k, \gamma)/(\alpha_1)} r^{n_0-1} \]

(59)

Hence \(f(z) \) is starlike of order \(\rho \) in \(|z| = r_1(c, \rho, m, \lambda, k, \gamma) \) provided that
\[\frac{(1-\gamma)(1-c)/(n_0 - \rho)}{C_1(m, \lambda, k, \gamma)/(\alpha_1)} \mu_n \leq 1 - \rho. \]

(60)

We find the value \(r_1 = r_1(c, \rho, m, \lambda, k, \gamma) \) and the corresponding integer \(n_0(r_1) \) so that
\[\frac{(1-\gamma)(1-c)/(n_0 - \rho)}{C_1(m, \lambda, k, \gamma)/(\alpha_1)} \mu_n = 1 - \rho. \]

(61)

Then this value \(r_0 \) is the radius of starlikeness of order \(\rho \) for functions \(f(z) \) belonging to the class \(k - \Sigma T_s(c, \lambda, \alpha_1, \beta_1, \gamma, t) \).

In similar manner, we can prove the following theorem concerning the radius of convexity of \(\rho \) for functions in the class \(k - \Sigma T_s(c, \lambda, \alpha_1, \beta_1, \gamma, t) \).

Theorem 5.2 Let the function \(f(z) \) defined by (18) be in the class \(k - \Sigma T_s(c, \lambda, \alpha_1, \beta_1, \gamma, t) \). Then \(f(z) \) is convex of order \(\rho \), \((0 \leq \rho < 1) \) in the disc
\[z = r_2(c, \rho, m, \lambda, k, \gamma) \], where \(r_2(c, \rho, m, \lambda, k, \gamma) \) is the largest value for which
\[
\frac{2c(1 - \rho)(2 - \gamma)(\alpha)}{C_2(m, \lambda, k, \gamma)} + \frac{(1 - \rho)(1 - c)(n - \rho)}{C_n(m, \lambda, k, \gamma)} \leq 1 - \rho \quad (n \geq 3).
\]

The result is sharp for the function \(f(z) \) given by (55).

References