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1. Introduction 
 
Let   denote the class of functions  zf  of the form 
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 which are analytic in the open unit disk 
 1<:= zz  . Further, by   we shall denote the 

class of functions f  which are univalent in  . 

For f  given by (1) and  zg  given by  
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 their convolution (or Hadamard product), denoted by 
 gf  , is defined as  
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Note that  gf . 
 
A function f  is said to be in )( US , the class of 
 - uniformly starlike functions of order  , 1<0   , if 
satisfies the condition  
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 and a function f  is said to be in )( UC , the 
class of  - uniformly convex functions of order  , 

1<0  , if satisfies the condition  
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Uniformly starlike and uniformly convex functions were first 
introduced by [1, 2] and then studied by various authors [3, 
4]. It is known that )( US  or )( UC  if and only 

if 
)(
)(1

zf

zzf
'

''

  or 
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)(
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zzf '

, respectively, takes all the values 

in the conic domain  ,R  which is included in the right half 
plane  given  by  
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0 0 < 1and  
                                                      

(6) 
 
Denote by  1<0,0,  P  of functions p, such that 

 ,Pp , where P denotes well known class of 

Caratheodory functions. The function  ,P  maps the unit 

disk conformally onto the domain  ,R  such that  ,1 R  

and  ,R  is a curve defined by the equality       
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0 0 < 1and   .                                                     (7) 

From elementary computations we see that (7) represents 
conic sections symmetric about the real axis. Thus  ,R  is 

an elliptic domain for 1> , a parabolic domain for 1= , 
a hyperbolic domain for 1<<0   and the right half plane 

>u , for 0= . 
 
In [5], Sakaguchi (1959) defined the class sS  of starlike 
functions with respect to symmetric points as follows: 
 
Let f . Then f  is said to be starlike with respect to 
symmetric points in   if and only if 

  .0>
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 Recently, Owa et. al. (2007) [6] defined and studied the 
class  tSs , ,  
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 In 2008, Selvaraj and Karthikeyan [7] defined the following 
operator    :, 11 fDm   by  

0
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    Special cases of the operator fDm );( 11   includes 
various other linear operators which were considered in many 
earlier work on the subject of analytic and univalent 
functions. If we let 0=m  in fDm );( 11  , we have 

)();(=)();( 11
1

11
0 zfzfD q  

 
where );( 11

1
, sq  is Dziok-Srivastava operator for 

functions in   (see [8]) and for 
1=,=1,=2,= 211 sq  and 1= , we get the 

operator introduced by Salagean (1983)([9]).  
Definition 1.1  A function )(zf  is said to be in the 

class  tk s ,,,, 11   if for all z ,  
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 for 0 , 0, mk , 1t , 1t  and 1<0  .  
       Furthermore, we say that a function 

 tkzf s ,,,,)( 11   is in the subclass 

 tk s ,,,, 11   if )(zf  is of the following 

form:    = 0, .
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 The main objective of this paper is to study the coefficient 
estimates, extreme points, distortion bounds and closure 
properties for  tkzf s ,,,,)( 11   by fixing 
second coefficients. 

Similar other classes of univalent functions with fixed second 
coefficients have been extensively studied by Aouf 
(1997)[10, 11], S. M. Khairnar et. al., (2010), [12], Darwish 
(2008)[13], and others see [14]. 
 
2. Coefficient Estimate 
 
Lemma 2.1  Let ivu = . Then  Re  if and only if 

   .11     
 

Lemma 2.2  Let ivu =  and  ,  are real numbers. 

Then  1>Re  if and only if 

   .>1   ii eeRe    
  
Theorem 2.3  Let the function )(zf  be defined by (13). 

Then  tkzf s ,,,,)( 11   if and only if  
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The result is sharp for the function )(zf  is given by 
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Proof. By definition  tkzf s ,,,,)( 11   if 
and only if the condition (12) is satisfied. 
Then by Lemma 2.1, we have  
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From Lemma 2.1 and Lemma 2.2,  
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 Using a simple computation,  
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which gives the desired estimation. 
Conversely, suppose that (14) holds. Then we must show that  
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Choosing the values of z  on the positive real axis where 
1<=0 rz , the above inequality reduces to  
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Letting 1r , we have desired conclusion.  
  
Corollary 2.4 Let the function )(zf  defined by (13) be in 

the class  tk s ,,,, 11  , then  
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.
,,,

1
21

1

12

1

1

1
2








kmC

ktk
a

m









           (17) 

 where         ktkkmC
m

  21=,,,2 . 

Let  tck s ,,,,, 11   denote the class of 

functions )(zf  in  tk s ,,,, 11   of the form  
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Remark 2.1 If 1== 11  , then the result is reduced to the 

class  tk s ,,,~
  studied by Murat Caglar and 

Orhan [15]. Take 0=t , 0=  and 1= , this result is 

reduced into the class ),( nT  studied by Aouf [10]. If 

0=t , 0= , 1== 11   and 1= , then the result 

was reduced into the class ),( UCT  by Khairanar 

(2010)[12].  
  
Theorem 2.5  Let the function )(zf  be defined by (18). 
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3. Extreme Points 
 

Theorem 3.1  Let   
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 it follows from (14) that )(zf  is in the class 
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 we have (23). This completes the proof of the theorem.  
  
Corollary 3.2 The extreme points of the class 

 tck s ,,,,, 11   are functions )(zfn , 2n  

given by (3.1).  

 
4. Growth and Distortion Theorem 
 
The following lemmas are required in our investigation of 
growth and distortion properties of the general class 
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 Since 3  is a valid root only when 1cos1 3   , we 

have a third root if and only if 1<0 rr   and 0<0 cc . 
Thus the results of Lemma 4.1 follow upon comparing the 
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 The proof of this theorem is obtained by comparing the 
bounds given by Lemma 4.1 and Lemma 4.2. Putting 1=c  
in theorem 4.3, we obtain the following corollary.  
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The result is sharp for the function    
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The proof is omitted.  
Theorem 4.7 Let the function )(zf  defined by (18) be in 

the class  tck s ,,,,, 11  . Then, for 

1<0 r , 

 

 
   

2

312

1
3 ,,,

))(1(1
)(,,,

))((11 r
kmC

c
r

kmC

c
ref i'







 



  

                     (52) 
 with equality for )(3 zf '  at rz =  and  

    ,)(,)(maxmax 433 rfrefref 'i'i'  



  (53) 

 where )(max 3



i' ref  is given by Lemma 4.6.  

 
5. Radii of Starlikeness and Convexity 
 

Theorem 5.1  Let the function )(zf  defined by (18) be in 

the class  tck s ,,,,, 11  . Then )(zf  is 

starlike of order   1)<(0   in the disc 

  ,,,,,= 1 kmcrz , where   ,,,,,1 kmcr  is the 
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 The result is sharp with the extremal function  
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 Proof. It suffices to show that  
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for   ,,,,,= 1 kmcrz . We note that  
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 rz   if and only if  
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 Since )(zf  is in the class   ,,,, 11ck s , 
from (14) we may take  
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 where 0n  and 1
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For each fixed r , we choose the positive integer 
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 Hence )(zf  is starlike is of order   in 

  ,,,,,= 1 kmcrz  provided that  
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 We find the value   ,,,,,= 11 kmcrr  and the 

corresponding integer )( 00 rn  so that  
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 Then this value 0r  is the radius of starlikeness of order   

for functions )(zf  belonging to the class 

 tck s ,,,,, 11  .  
 
 In similar manner, we can prove the following theorem 
concerning the radius of convexity of   for functions in the 

class  tck s ,,,,, 11  .  

Theorem 5.2 Let the function )(zf  defined by (18) be in 

the class  tck s ,,,,, 11  . Then )(zf  is 

convex of order  , 1)<(0   in the disc 
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  ,,,,,= 2 kmcrz , where   ,,,,,2 kmcr  is the 

largest value for which  
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 The result is sharp for the function )(zf  given by (55).  
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