
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Regenerating Code Based on Public Auditing
Scheme with Security Preserving for Cloud Storage

Dr. K. Sundeep Kumar1, Anupama P. V2

Head of the Department, Computer Science and Engineering, SEACET, Bangalore

M. Tech, Computer Science and Engineering, SEACET, Bangalore.

Abstract: To secure outsourced information in distributed storage against defilements, adding adaptation to non-critical failure to
distributed storage together with information trustworthiness checking and disappointment reparation gets to be basic. As of late,
recovering codes have picked up notoriety because of their lower repair transmission capacity while giving adaptation to non-critical
failure. Existing remote checking techniques for recovering coded information just give private reviewing, requiring information
proprietors to dependably stay online and handle inspecting, and in addition repairing, which is some of the time unrealistic. In this
paper, we propose an open inspecting plan for the recovering code-based distributed storage. To tackle the recovery issue of fizzled
authenticators without information proprietors, we present an intermediary, which is favored to recover the authenticators, into the
conventional open evaluating framework model. In addition, we plan a novel open irrefutable authenticator, which is produced by a few
keys and can be recovered utilizing incomplete keys. In this way, our plan can totally discharge information proprietors from online
weight. Moreover, we randomize the encode coefficients with a pseudorandom capacity to safeguard information protection. Broad
security examination demonstrates that our plan is provable secure under arbitrary prophet model and test assessment shows that our
plan is exceptionally productive and can be attainably incorporated into the recovering code-based distributed storage.

Keywords: data integrity, bandwidth, public auditing scheme, regenerating-code-based, regeneration problem and authenticator.

1. Introduction

Distributed storage is presently picking up prevalence since
it offers an adaptable on-interest information outsourcing
administration with engaging advantages: help of the weight
for capacity administration, all inclusive information access
with area autonomy, and evasion of capital consumption on
equipment, programming, and individual systems for
upkeeps, and so forth.,. In any case, this new worldview of
information facilitating benefit additionally brings new
security dangers toward clients information, along these
lines making people or enterprisers still feel reluctant.

It is noticed that information proprietors lose extreme
control over the destiny of their outsourced information;
hence, the rightness, accessibility and trustworthiness of the
information are being put at danger. From one viewpoint,
the cloud administration is typically confronted with a wide
scope of inner/outer enemies, who might malignantly erase
or degenerate clients' information; then again, the cloud
administration suppliers may act unscrupulously,
endeavoring to conceal information misfortune or
defilement and asserting that the documents are still
accurately put away in the cloud for notoriety or financial
reasons. In this manner it bodes well for clients to actualize
an effective convention to perform periodical confirmations
of their outsourced information to guarantee that the cloud to
be sure keeps up their information accurately.

Numerous instruments managing the respectability of
outsourced information without a nearby duplicate have
been proposed under various framework and security models
up to now. The most noteworthy work among these studies
are the PDP (provable information ownership) model and
POR (evidence of retrievability) model, which were initially
proposed for the single-server situation by Ateniese et al.
what's more, Juels and Kaliski, individually. Considering

that documents are typically striped and needlessly put away
crosswise over multi-servers or multi-mists, investigate
honesty confirmation plans appropriate for such multi-
servers or multi-mists setting with various repetition plans,
for example, replication, eradication codes, and, all the more
as of late, recovering codes.

In this paper, we concentrate on the honesty check issue in
recovering code-based distributed storage, particularly with
the utilitarian repair procedure. Comparative studies have
been performed by Chen et al. what's more, Chen and Lee
independently and freely. amplified the single-server CPOR
plan (private form in) to the recovering code-situation;
planned and executed an information honesty security (DIP)
plan for FMSR-based distributed storage and the plan is
adjusted to the flimsy cloud setting.1 However, them two are
intended for private review, just the information proprietor is
permitted to confirm the uprightness and repair the defective
servers. Considering the extensive size of the outsourced
information and the client's obliged asset capability, the
tasks of auditing and reparation in the cloud can be
formidable and expensive for the users. The overhead of
using cloud storage should be minimized as much as
possible such that a user does not need to perform too many
operations to their outsourced data (in additional to
retrieving it) . In particular, users may not want to go
through the complexity in verifying and reparation. The
auditing schemes in and imply the problem that users need
to always stay online, which may impede its adoption in
practice, especially for long-term archival storage.

To completely guarantee the information respectability and
recovery the clients' calculation assets and in addition online
weight, we propose an open reviewing plan for the
recovering code-based distributed storage, in which the
honesty checking and recovery (of fizzled information
squares and authenticators) are executed by an outsider

Paper ID: NOV163194 2451

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

reviewer and a semi-trusted intermediary independently for
the benefit of the information proprietor. Rather than
specifically adjusting the current open examining plan to the
multi-server setting, we outline a novel authenticator, which
is more fitting for recovering codes.

A few difficulties and dangers suddenly emerge in our new
framework model with an intermediary, and security
examination demonstrates that our plan functions admirably
with these issues. In particular, our commitment can be
condensed by the accompanying perspectives:
 We plan a novel homomorphism authenticator in view of

BLS mark, which can be produced by a few mystery keys
and confirmed freely. Using the straight subspace of the
recovering codes, the authenticators can be registered
effectively. In addition, it can be adjusted for information
proprietors outfitted with low end calculation gadgets (e.g.
Tablet PC and so forth.) in which they just need to sign
the local pieces.

 To the best of our insight, our plan is the first to permit
security protecting open inspecting for recovering code-
based distributed storage. The coefficients are conceal by
a PRF (Pseudorandom Function) amid the Setup stage to
keep away from spillage of the first information. This
technique is lightweight and does not acquaint any
computational overhead with the cloud servers or TPA. •
Our scheme completely releases data owners from online
burden for the regeneration of blocks and authenticators at
faulty servers and it provides the privilege to a proxy for
the reparation.

 Optimization measures are taken to improve the flexibility
and efficiency of our auditing scheme; thus, the storage
overhead of servers, the computational overhead of the
data owner and communication overhead during the audit
phase can be effectively reduced.

 Our scheme is provable secure under random oracle.

2. Preliminaries and Problem Statement

a) Notations and Preliminaries
1) Regenerating Codes: Regenerating codes are first
introduced by Dimakis et al. For distributed storage to
reduce the repair bandwidth. Viewing cloud storage to be a
collection of n storage servers, data file F is encoded and
stored redundantly across these servers. Then F can be
retrieved by connecting to any k-out-of-n servers, which is
termed the MDS2-property. When data corruption at a
server is detected, the client will contact _ healthy servers
and download β_ bits from each server, thus regenerating
the corrupted blocks without recovering the entire original
file. Dimakis et al. [18] showed that the repair bandwidth γ _
= _β_ can be significantly reduced with _ ≥ k. Furthermore,
they analyzed the fundamental tradeoff between the storage
cost α_ and the repair bandwidth γ_, then presented two
extreme and practically relevant points on the optimal
tradeoff curve: the minimum bandwidth regenerating (MBR)
point, which represents the operating point with the least
possible repair bandwidth, and the minimum storage
regenerating (MSR) point, which corresponds to the least
possible storage cost on the servers. Denoted by the
parameter tuple (n, k, _, α_, γ_), we obtain:

Moreover, according to whether the corrupted blocks can be
exactly regenerated, there are two versions of repair
strategy: exact repair and functional repair. Exact repair
strategy requires the repaired server to store an exact replica
of the corrupted blocks, while functional repair indicates that
the newly generated blocks are different from the corrupted
ones with high probability. As one basis of our work, the
functional repair regenerating codes are non-systematic and
do not perform as well for read operation as systematic
codes, but they really make sense for the scenario in which
data repair occurs much more often than read, such as
regulatory storage, data escrow and long-term archival
storage.

1)Linear Subspace from Regenerating Code: As mentioned
above, each coded block represents the linear combination
of m native blocks in the functional repair regenerating code
scenario. Thus, we can generate a linear subspace with
dimension m for file F in the following way: Before
encoding, F is split into m blocks, and the original m s-
dimensional vectors (or blocks indistinguishably) {wi ∈
GF(p)s}mi =1 are properly augmented as:

For each symbol, wi j ∈ GF(p). Eq.(3) shows that each
original block wi is appended with the vector of length m
containing a single „1‟ in the i th position and is otherwise
zero. Then, the augmented vectors are encoded into nα
coded blocks. Specifically, they are linearly combined and
generate coded blocks with randomly chosen coefficients εi
∈ GF (p).

Paper ID: NOV163194 2452

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Obviously, the latter additional m elements in the vector v
keep track of the ε values of the corresponding blocks, i.e.,

Where (vi1, vi2, . . . , vis) are the data, and the remaining
elements indicate the coding coefficients. Notice that the
blocks regenerated in the repair phase also meet the form of
Eq.(5), thus we can construct a linear subspace V of m-
dimension by spanning the base vectors w1, w2, . . . , wm;
all valid coded blocks appended with coding coefficients
would belong to subspace V .

1) Bilinear Pairing Map: Let G and GT be multiplicative
cyclic groups of the same large prime order p. A bilinear
pairing map e : G × G → GT is a map with the following
properties:
 Bilinear: e(ua, vb) = e(u, v)ab for all u, v ∈ G and a, b
∈ Z ∗ p, this property can be stretch to the
multiplicative property that e(u1 · u2, v) = e(u1, v) ·
e(u2, v) for any u1, u2 ∈ G;

 Non-degenerate: e(g, g) generates the group GT when
g is generator of group G;

 Computability: There exists an efficient algorithm to
compute e(u, v) for all u, v ∈ G. Such a bilinear map e
can be constructed by the modified Weil [21] or Tate
pairings on elliptic curves.

3. System Model

We consider the auditing system model for Regenerating-
Code-based cloud storage as Fig.2, which involves four
entities: the data owner, who owns large amounts of data
files to be stored in the cloud; the cloud, which are managed
by the cloud service provider, provide storage service and
have significant computational resources; the third party
auditor (TPA), who has expertise and capabilities to conduct
public audits on the coded data in the cloud, the TPA is
trusted and its audit result is unbiased for both data owners

and cloud servers; and a proxy agent, who is semi-trusted
and acts on behalf of the data owner to regenerate
authenticators and data blocks on the failed servers during
the repair procedure. Notice that the data owner is restricted
in computational and storage resources compared to other
entities and may becomes off-line even after the data upload
procedure. The proxy, who would always be online, is
supposed to be much more powerful than the data owner but
less than the cloud servers in terms of computation and
memory capacity. To save resources as well as the online
burden potentially brought by the periodic auditing and
accidental repairing, the data owners resort to the TPA for
integrity verification and delegate the reparation to the
proxy.

Compared with the traditional public auditing system model,
our system model involves an additional proxy agent. In
order to reveal the rationality of our design and make our
following description in Section III to be more clear and
concrete, we consider such a reference scenario: A company
employs a commercial regenerating-code-based public cloud
and provides long-term archival storage service for its staffs,
the staffs are equipped with low end computation devices
(e.g., Laptop PC, Tablet PC, etc.) and will be frequently off-
line. For public data auditing, the company relies on a
trusted third party organization to check the data integrity;
Similarly, to release the staffs from heavy online burden for
data and authenticator regeneration, the company supply a
powerful workstation (or cluster) as the proxy and provide
proxy reparation service for the staffs‟ data.

4. Threat Model

Apparently, threat in our scheme comes from the
compromised servers, curious TPA and semi-trusted proxy.
In terms of compromised servers, we adopt a mobile
adversary under the multi-servers setting, similar with, who
can compromise at most n−k out of the n servers in any
epoch, subject to the (n, k)-MDS fault tolerance requirement.
To avoid creeping-corruption which may lead to the
unrecoverable of the stored data, the repair procedure will be
triggered at the end of each epoch once some corruption is
detected. There are some differences in our model compared
with the one in: First, the adversary can corrupt not only the
data blocks but also the coding coefficients stored in the
compromised servers; and second, the compromised server
may act honestly for auditing but maliciously for reparation.
We assume that some blocks stored in server Si are
corrupted at some time; the adversary may launch the
following attacks in order to prevent the auditor from
detecting the corruption:
 Replace Attack: The server Si may choose another valid

and intact pair of data block and authenticator to replace
the corrupted pair, or even simply store the blocks and
authenticators at another healthy server Sj , thus
successfully passing the integrity check.

 Replay Attack: The server may generate the proof from an
old coded block and corresponding authenticator to pass
the verification, thus leading to a reduction of data
redundancy to the point that the original data becomes
unrecoverable.3

 Forge Attack: The server may forge an authenticator for
modified data block and deceive the auditor.

Paper ID: NOV163194 2453

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

 Pollution Attack: The server may use correct data to
avoid detection in the audit procedure but provide
corrupted data for repairing; thus the corrupted data may
pollute all the data blocks after several epochs

With respect to the TPA, we assume it to be honest but
curious. It performs honestly during the whole auditing
procedure but is curious about the data stored in the cloud...
The proxy agent in our system model is assumed to be semi-
trusted. It will not collude with the servers but might attempt
to forge authenticators for some specified invalid blocks to
pass the following verification.

5. Design Goals

To correctly and efficiently verify the integrity of data and
keep the stored file available for cloud storage, our proposed
auditing scheme should achieve the following properties:
 Public Audit ability: To allow TPA to verify the

intactness of the data in the cloud on demand without
introducing additional online burden to the data owner.

 Storage Soundness: To ensure that the cloud server can
never pass the auditing procedure except when it indeed
manages the owner‟s data intact.

 Privacy Preserving: To ensure that neither the auditor nor
the proxy can derive users‟ data content from the auditing
and reparation process.

 Authenticator Regeneration: The authenticator of the
repaired blocks can be correctly regenerated in the
absence of the data owner.

 Error Location: To ensure that the wrong server can be
quickly indicated when data corruption is detected.

Definitions of Our Auditing Scheme:
Our auditing scheme consists of three procedures: Setup,
Audit and Repair. Each procedure contains certain
polynomial-time algorithms as follows:

Setup: The data owner maintains this procedure to initialize
the auditing scheme.
KeyGen(1κ) → (pk, sk): This polynomial-time algorithm is
run by the data owner to initialize its public and secret
parameters by taking a security parameter κ as input.
Degelation(sk) → (x): This algorithm represents the
interaction between the data owner and proxy. The data
owner delivers partial secret key x to the proxy through a
secure approach. SigAndBlockGen(sk, F) → (,, t): This
polynomial time algorithm is run by the data owner and
takes the secret parameter sk and the original file F as input,
and then outputs a coded block set , an authenticator set and
a file tag t.
Audit: The cloud servers and TPA interact with one another
to take a random sample on the blocks and check the data
intactness in this procedure.
Challenge(Fin f o) → (C): This algorithm is performed by
the TPA with the information of the file Fin f o as input and
a challenge C as output.
Proof Gen(C, ,)→(P): This algorithm is run by each cloud
server with input challenge C, coded block set and
authenticator set , then it outputs a proof P.
Veri f y(P, pk, C)→ (0, 1): This algorithm is run by TPA
immediately after a proof is received. Taking the proof P,

public parameter pk and the corresponding challenge C as
input, it outputs 1 if the verification passed and 0 otherwise.
Repair: In the absence of the data owner, the proxy interacts
with the cloud servers during this procedure to repair the
wrong server detected by the auditing process.

Claim for Rep (Fin f o) → (Cr): This algorithm is similar
with the Challenge () algorithm in the Audit phase, but
outputs a claim for repair Cr.

GenFor Rep (Cr…,) → (BA): The cloud servers run this
algorithm upon receiving the Cr and finally output the block
and authenticators set BA with another two inputs ,.
BlockAndSigReGen(Cr , BA) → (_,_,⊥): The proxy
implements this algorithm with the claim Cr and responses
BA from each server as input, and outputs a new coded
block set _ and authenticator set _ if successful, outputting
⊥ if otherwise.

6. The Proposed Scheme

In this section we start from an overview of our auditing
scheme, and then describe the main scheme and discuss how
to generalize our privacy-preserving public auditing scheme.
Furthermore, we illustrate some optimized methods to
improve its performance.

a) Overview
Although introduced private remote data checking schemes
for regenerating-code-based cloud storage, there are still
some other challenges for us to design a public auditable
version. First, although a direct extension of the techniques
in and can realize public verifiability in the multi-servers
setting by viewing each block as a set of segments and
performing spot checking on them, such a straightforward
method makes the data owner generate tags for all segments
independently, thus resulting in high computational
overhead. Considering that data owners commonly maintain
limited computation and memory capacity, it is quite
significant for us to reduce those overheads. Second, unlike
cloud storage based on traditional erasure code or
replication, a fixed file layout does not exist in the
regenerating-code-based cloud storage. During the repair
phase, it computes out new blocks, which are totally
different from the faulty ones, with high probability.

Paper ID: NOV163194 2454

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Thus, a problem arises when trying to determine how to
regenerate authenticators for the repaired blocks. A direct
solution, which is adopted in, is to make data owners handle
the regeneration. However, this solution is not practical
because the data owners will not always remain online
through the life-cycle of their data in the cloud, more
typically, it becomes off-line even after data uploading.
Another challenge is brought in by the proxy in our system
model.

Construction of Our Auditing Scheme
Considering the regenerating-code-based cloud storage with

parameters (n, k, _, α, β), we assume β = 1 for simplicity.
Let G and GT be multiplicative cyclic groups of the same
large prime order p, and e: G × G → GT be a bilinear
pairing map as introduced in the preliminaries. Let g be a
generator of G and H(·) : {0, 1}∗ → G be a secure hash
function that maps strings uniformly into group G. Table I
list the primary notations and terminologies used in our
scheme description.

Setup: The audit scheme related parameters are initialized in
this procedure.
KeyGen(1κ) → (pk, sk): The data owner generates a
random signing key pair (spk, ssk), two random elements x,
y R ←− Zp and computes pkx ← gx , pky ← gy. Then the
secret parameter is sk = (x, y, ssk) and the public parameter
is pk = (pkx , pky, spk). Delegation(sk)→(x): The data owner
sends encrypted x to the proxy using the proxy‟s public key,
then the proxy decrypts and stores it locally upon receiving.
SigAndBlockGen(sk, F) → (,, t): The data owner uniformly
chooses a random identifier I D R ←− {0, 1}∗ , a random
symbol u R ←− G, one set _ = {w1,w2, . . . wm}

Security Analysis

In this section, we first elaborate on the correctness of
verification in our auditing scheme and then formally
evaluate the security by analyzing its fulfillment of
soundness, regeneration-unforgivable and secure guarantee
against replay attack.
A. Correctness: There are two verification processes in our

scheme, one for spot checking during the Audit phase
and another for block integrity checking during the
Repair phase.

Theorem 1: Given a cloud server i storing data blocks i and
accompanied authenticators i , TPA is able to correctly
verify its possession of those data blocks during audit phase,
and the proxy can correctly check the integrity of
downloaded blocks during repair phase.

Proof: Proving the correctness of our auditing scheme is
equivalent of proving that Eq.(15) and Eq.(17) is correct.
The correctness of Eq.(15) is shown in Appendix A and
Eq.(17) in Appendix B.

B. Soundness
Following from paper [12], we say that our auditing protocol
is sound if any cheating server that convinces the
verification algorithm that it is storing the coded blocks and
corresponding coefficients is actually storing them. Before
proving the soundness, we will first show that the
authenticator as Eq.(10) is unforgeable against malicious
cloud servers (referred to as adversary in the following
definition) under the random oracle model. Similar to the
standard notion of security for a signature scheme [24], we
give the formal definition of security model.

7. Evaluation

A. Comparison
Table II lists the features of our proposed mechanism and
makes a comparison with other remote data checking
schemes, for regenerating-coding-based cloud storage. The
security parameter κ is eliminated in the costs estimation for
simplicity. While the previously presented are designed for

Paper ID: NOV163194 2455

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

private verification, ours allows anyone to challenge the
servers for data possession while preserving the privacy of
the original data. Moreover, our scheme can completely
release the owners from online burden compared with
schemes in where data owners should stay online for faulty
server reparation. To localize the faulty server during the

audit phase, suggested a traversal method and thus
demanded many times of auditing operation with complexity
O(Ck n (n − k)α) before the auditor can pick up the wrong
server, while our scheme is able to localize the faulty server
by a one-time auditing procedure.

B. Performance Analysis
We focus on evaluating the performance of our privacy-
preserving public audit scheme during the Setup, Audit and
Repair procedure. In our experiments, all the codes are
written in C++ language on an OpenSUSE 12.2 Linux
platform with kernel version 3.4.6-2-desktop and compiler
version g++ 4.7.1. All entities in our prototype (as shown in
Fig.2) are represented by PCs with Intel Core i5-2450
2.5GHz, 8G DDR3 RAM and a 7200 RPM Hitachi 500G
SATA drive. The implementation of our algorithms uses
open source PBC (Pairing-Based Cryptography) Library
version 0.5.14, GMP version 5.13 and Openssl version
1.0.1e. The elliptic curve utilized here is Barreto-Naehrig
curve, with base field size of 160 bits and embedding degree
12. The security level is chosen to be 80 bits and thus |p| =
160. All the experimental results represent the mean of 10
trials. In addition, the choice of parameters (n, k, _, α, β) for
regenerating codes is in reference.

2) Audit Computational Complexity
Considering that the cloud servers are usually powerful in
computing capacity, we focus on analyzing the
computational overhead on the auditor side and omit those
on the cloud side. Theoretically, verification for an
aggregated proof requires less pairing operations, which is
the most expensive operation, compared to modular
exponentiations and multiplication, than for separate α
proof.

3) Repair Computational Complexity:
The regeneration of the faulty blocks and authenticators is
delegated to a proxy in our auditing scheme; we now
experimentally evaluate its performance here. Fixing the
parameters as n = 10, k = 3, _ = 3, α = 3 and letting s vary to
be 60, 80 and 100, we measure the running time of three
sub-processes: Verification for Repair, Regeneration for
Blocks and Regeneration for Authenticators, thus obtaining
the results

Paper ID: NOV163194 2456

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

in Fig.8. Obviously, it takes the proxy much more time to
verify the received blocks for repair, less to regenerate the
authenticators, and negligible to regenerate the faulty blocks.
This situation occurs mainly because there are a mass of
expensive pairing operations and less expensive modular
exponentiations during the verification, thus leading to the
most time consuming sub-process. In contrast, there are only
asymptotic αs(_+α_+1) modular exponentiations and αs
inversions in a finite group across the authenticator
regeneration, and only αs_ multiplications during the block
regeneration. However, the efficiency of the verification can
be significantly improved using a batch method, where we
can randomly choose s weights for each received blocks,
aggregate the segments and authenticators, and then verify
them all in one, thus we can avoid applying so many pairing
operations.

8. Related Work

The problem of remote data checking for integrity for
integrity was first introduced. Then Ateniese et al. [2] and
Juels and Kaliski [3] gave rise to the similar notions
provable data possession (PDP) and proof of retrievability
(POR), respectively. Ateniese et al. [2] proposed a formal
definition of the PDP model for ensuring possession of files
on untrusted storage, introduced the concept of RSA-based
homomorphic tags and suggested randomly sampling a few
blocks of the file. In their subsequent work, they proposed a
dynamic version of the prior PDP scheme based on MAC,
which allows very basic block operations with limited
functionality but block insertions. Simultaneously, Erway et
al. gave a formal framework for dynamic PDP and provided
the first fully dynamic solution to support provable updates
to stored data using rank-based authenticated skit lists and
RSA trees. To improve the efficiency of dynamic PDP,
Wang et al. proposed a new method which uses merkle hash
tree to support fully dynamic data.

9. Conclusion

In this paper, we propose a public auditing scheme for the
regenerating-code-based cloud storage system, where the
data owners are privileged to delegate TPA for their data
validity checking. To protect the original data privacy

against the TPA, we randomize the coefficients in the
beginning rather than applying the blind technique during
the auditing process. Considering that the data owner cannot
always stay online in practise, in order to keep the storage
available and verifiable after a malicious corruption, we
introduce a semi-trusted proxy into the system model and
provide a privilege for the proxy to handle the reparation of
the coded blocks and authenticators. To better appropriate
for the regenerating-code-scenario, we design our
authenticator based on the BLS signature. This authenticator
can be efficiently generated by the data owner
simultaneously with the encoding procedure. Extensive
analysis shows that our scheme is provable secure, and the
performance evaluation shows that our scheme is highly
efficient and can be feasibly integrated into a regenerating-
code-based cloud storage system.

References

[1] M. Armbrust et al., “Above the clouds: A Berkeley
view of cloud computing,” Dept. Elect. Eng. Comput.
Sci., Univ. California, Berkeley, CA, USA, Tech. Rep.
UCB/EECS-2009-28, 2009.

[2] G. Ateniese et al., “Provable data possession at
untrusted stores,” in Proc. 14th ACM Conf. Comput.
Commun. Secur. (CCS), New York, NY, USA, 2007,
pp. 598–609.

[3] A. Juels and B. S. Kaliski, Jr., “PORs: Proofs of
retrievability for large files,” in Proc. 14th ACM Conf.
Comput. Commun. Secur., 2007, pp. 584–597.

[4] R. Curtmola, O. Khan, R. Burns, and G. Ateniese,
“MR-PDP: Multiple-replica provable data possession,”
in Proc. 28th Int. Conf. Distrib. Comput. Syst. (ICDCS),
Jun. 2008, pp. 411–420.

[5] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A high-
availability and integrity layer for cloud storage,” in
Proc. 16th ACM Conf. Comput. Commun. Secur., 2009,
pp. 187–198.

[6] J. He, Y. Zhang, G. Huang, Y. Shi, and J. Cao,
“Distributed data possession checking for securing
multiple replicas in geographicallydispersed clouds,” J.
Comput. Syst. Sci., vol. 78, no. 5, pp. 1345–1358, 2012.

[7] B. Chen, R. Curtmola, G. Ateniese, and R. Burns,
“Remote data checking for network coding-based
distributed storage systems,” in Proc. ACM Workshop
Cloud Comput. Secur. Workshop, 2010, pp. 31–42.

[8] H. C. H. Chen and P. P. C. Lee, “Enabling data integrity
protection in regenerating-coding-based cloud storage:
Theory and implementation,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 2, pp. 407–416, Feb. 2014.

[9] K. Yang and X. Jia, “An efficient and secure dynamic
auditing protocol for data storage in cloud computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 9, pp.
1717–1726, Sep. 2013.

[10] Y. Zhu, H. Hu, G.-J. Ahn, and M. Yu, “Cooperative
provable data possession for integrity verification in
multicloud storage,” IEEE Trans. Parallel Distrib.
Syst., vol. 23, no. 12, pp. 2231–2244, Dec. 2012.

[11] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh,
“A survey on network codes for distributed storage,”
Proc. IEEE, vol. 99, no. 3, pp. 476–489, Mar. 2011.

Paper ID: NOV163194 2457

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[12] H. Shacham and B. Waters, “Compact proofs of
retrievability,” in Advances in Cryptology. Berlin,
Germany: Springer-Verlag, 2008, pp. 90–107.

[13] Y. Hu, H. C. H. Chen, P. P. C. Lee, and Y. Tang,
“NCCloud: Applying network coding for the storage
repair in a cloud-of-clouds,” in Proc. USENIX FAST,
2012, p. 21.

[14] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-
preserving public auditing for data storage security in
cloud computing,” in Proc. IEEE INFOCOM, Mar.
2010, pp. 1–9.

[15] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W.
Lou, “Privacy-preserving public auditing for secure
cloud storage,” IEEE Trans. Comput., vol. 62, no. 2, pp.
362–375, Feb. 2013.

Paper ID: NOV163194 2458

