
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 4, April 2016 
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Regenerating Code Based on Public Auditing 
Scheme with Security Preserving for Cloud Storage 

Dr. K. Sundeep Kumar1, Anupama P. V2

Head of the Department, Computer Science and Engineering, SEACET, Bangalore 

M. Tech, Computer Science and Engineering, SEACET, Bangalore. 

  
Abstract: To secure outsourced information in distributed storage against defilements, adding adaptation to non-critical failure to
distributed storage together with information trustworthiness checking and disappointment reparation gets to be basic. As of late, 
recovering codes have picked up notoriety because of their lower repair transmission capacity while giving adaptation to non-critical 
failure. Existing remote checking techniques for recovering coded information just give private reviewing, requiring information 
proprietors to dependably stay online and handle inspecting, and in addition repairing, which is some of the time unrealistic. In this 
paper, we propose an open inspecting plan for the recovering code-based distributed storage. To tackle the recovery issue of fizzled 
authenticators without information proprietors, we present an intermediary, which is favored to recover the authenticators, into the 
conventional open evaluating framework model. In addition, we plan a novel open irrefutable authenticator, which is produced by a few 
keys and can be recovered utilizing incomplete keys. In this way, our plan can totally discharge information proprietors from online 
weight. Moreover, we randomize the encode coefficients with a pseudorandom capacity to safeguard information protection. Broad 
security examination demonstrates that our plan is provable secure under arbitrary prophet model and test assessment shows that our 
plan is exceptionally productive and can be attainably incorporated into the recovering code-based distributed storage.

Keywords: data integrity, bandwidth, public auditing scheme, regenerating-code-based, regeneration problem and authenticator.

1. Introduction 

Distributed storage is presently picking up prevalence since 
it offers an adaptable on-interest information outsourcing 
administration with engaging advantages: help of the weight 
for capacity administration, all inclusive information access 
with area autonomy, and evasion of capital consumption on
equipment, programming, and individual systems for 
upkeeps, and so forth.,. In any case, this new worldview of
information facilitating benefit additionally brings new 
security dangers toward clients information, along these 
lines making people or enterprisers still feel reluctant.  

It is noticed that information proprietors lose extreme 
control over the destiny of their outsourced information; 
hence, the rightness, accessibility and trustworthiness of the 
information are being put at danger. From one viewpoint, 
the cloud administration is typically confronted with a wide 
scope of inner/outer enemies, who might malignantly erase 
or degenerate clients' information; then again, the cloud 
administration suppliers may act unscrupulously, 
endeavoring to conceal information misfortune or
defilement and asserting that the documents are still 
accurately put away in the cloud for notoriety or financial 
reasons. In this manner it bodes well for clients to actualize 
an effective convention to perform periodical confirmations 
of their outsourced information to guarantee that the cloud to
be sure keeps up their information accurately.  

Numerous instruments managing the respectability of
outsourced information without a nearby duplicate have 
been proposed under various framework and security models 
up to now. The most noteworthy work among these studies 
are the PDP (provable information ownership) model and 
POR (evidence of retrievability) model, which were initially 
proposed for the single-server situation by Ateniese et al. 
what's more, Juels and Kaliski, individually. Considering 

that documents are typically striped and needlessly put away 
crosswise over multi-servers or multi-mists, investigate 
honesty confirmation plans appropriate for such multi-
servers or multi-mists setting with various repetition plans, 
for example, replication, eradication codes, and, all the more 
as of late, recovering codes.  

In this paper, we concentrate on the honesty check issue in
recovering code-based distributed storage, particularly with 
the utilitarian repair procedure. Comparative studies have 
been performed by Chen et al. what's more, Chen and Lee 
independently and freely. amplified the single-server CPOR 
plan (private form in) to the recovering code-situation; 
planned and executed an information honesty security (DIP) 
plan for FMSR-based distributed storage and the plan is
adjusted to the flimsy cloud setting.1 However, them two are 
intended for private review, just the information proprietor is
permitted to confirm the uprightness and repair the defective 
servers. Considering the extensive size of the outsourced 
information and the client's obliged asset capability, the 
tasks of auditing and reparation in the cloud can be
formidable and expensive for the users. The overhead of
using cloud storage should be minimized as much as
possible such that a user does not need to perform too many 
operations to their outsourced data (in additional to
retrieving it) . In particular, users may not want to go
through the complexity in verifying and reparation. The 
auditing schemes in and imply the problem that users need 
to always stay online, which may impede its adoption in
practice, especially for long-term archival storage.  

To completely guarantee the information respectability and 
recovery the clients' calculation assets and in addition online 
weight, we propose an open reviewing plan for the 
recovering code-based distributed storage, in which the 
honesty checking and recovery (of fizzled information 
squares and authenticators) are executed by an outsider 
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reviewer and a semi-trusted intermediary independently for 
the benefit of the information proprietor. Rather than 
specifically adjusting the current open examining plan to the 
multi-server setting, we outline a novel authenticator, which 
is more fitting for recovering codes.  

A few difficulties and dangers suddenly emerge in our new 
framework model with an intermediary, and security 
examination demonstrates that our plan functions admirably 
with these issues. In particular, our commitment can be
condensed by the accompanying perspectives:  
 We plan a novel homomorphism authenticator in view of

BLS mark, which can be produced by a few mystery keys 
and confirmed freely. Using the straight subspace of the 
recovering codes, the authenticators can be registered 
effectively. In addition, it can be adjusted for information 
proprietors outfitted with low end calculation gadgets (e.g. 
Tablet PC and so forth.) in which they just need to sign 
the local pieces.  

 To the best of our insight, our plan is the first to permit 
security protecting open inspecting for recovering code-
based distributed storage. The coefficients are conceal by
a PRF (Pseudorandom Function) amid the Setup stage to
keep away from spillage of the first information. This 
technique is lightweight and does not acquaint any 
computational overhead with the cloud servers or TPA. •
Our scheme completely releases data owners from online 
burden for the regeneration of blocks and authenticators at
faulty servers and it provides the privilege to a proxy for 
the reparation. 

 Optimization measures are taken to improve the flexibility 
and efficiency of our auditing scheme; thus, the storage 
overhead of servers, the computational overhead of the 
data owner and communication overhead during the audit 
phase can be effectively reduced. 

 Our scheme is provable secure under random oracle. 

2. Preliminaries and Problem Statement 

a) Notations and Preliminaries 
1) Regenerating Codes: Regenerating codes are first 
introduced by Dimakis et al. For distributed storage to
reduce the repair bandwidth. Viewing cloud storage to be a 
collection of n storage servers, data file F is encoded and 
stored redundantly across these servers. Then F can be
retrieved by connecting to any k-out-of-n servers, which is
termed the MDS2-property. When data corruption at a 
server is detected, the client will contact _ healthy servers 
and download β_ bits from each server, thus regenerating 
the corrupted blocks without recovering the entire original 
file. Dimakis et al. [18] showed that the repair bandwidth γ _ 
= _β_ can be significantly reduced with _ ≥ k. Furthermore, 
they analyzed the fundamental tradeoff between the storage 
cost α_ and the repair bandwidth γ_, then presented two 
extreme and practically relevant points on the optimal 
tradeoff curve: the minimum bandwidth regenerating (MBR) 
point, which represents the operating point with the least 
possible repair bandwidth, and the minimum storage 
regenerating (MSR) point, which corresponds to the least 
possible storage cost on the servers. Denoted by the 
parameter tuple (n, k, _, α_, γ_), we obtain:  

Moreover, according to whether the corrupted blocks can be
exactly regenerated, there are two versions of repair 
strategy: exact repair and functional repair. Exact repair 
strategy requires the repaired server to store an exact replica 
of the corrupted blocks, while functional repair indicates that 
the newly generated blocks are different from the corrupted 
ones with high probability. As one basis of our work, the 
functional repair regenerating codes are non-systematic and 
do not perform as well for read operation as systematic 
codes, but they really make sense for the scenario in which 
data repair occurs much more often than read, such as
regulatory storage, data escrow and long-term archival 
storage.  

1)Linear Subspace from Regenerating Code: As mentioned 
above, each coded block represents the linear combination 
of m native blocks in the functional repair regenerating code 
scenario. Thus, we can generate a linear subspace with 
dimension m for file F in the following way: Before 
encoding, F is split into m blocks, and the original m s-
dimensional vectors (or blocks indistinguishably) {wi ∈
GF(p)s}mi =1 are properly augmented as:  

For each symbol, wi j ∈ GF(p). Eq.(3) shows that each 
original block wi is appended with the vector of length m 
containing a single „1‟ in the i th position and is otherwise 
zero. Then, the augmented vectors are encoded into nα
coded blocks. Specifically, they are linearly combined and 
generate coded blocks with randomly chosen coefficients εi 
∈ GF (p).  
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Obviously, the latter additional m elements in the vector v 
keep track of the ε values of the corresponding blocks, i.e., 

Where (vi1, vi2, . . . , vis ) are the data, and the remaining 
elements indicate the coding coefficients. Notice that the 
blocks regenerated in the repair phase also meet the form of
Eq.(5), thus we can construct a linear subspace V of m-
dimension by spanning the base vectors w1, w2, . . . , wm; 
all valid coded blocks appended with coding coefficients 
would belong to subspace V .  

1) Bilinear Pairing Map: Let G and GT be multiplicative 
cyclic groups of the same large prime order p. A bilinear 
pairing map e : G × G → GT is a map with the following 
properties:  
 Bilinear: e(ua, vb) = e(u, v)ab for all u, v ∈ G and a, b 
∈ Z ∗ p, this property can be stretch to the 
multiplicative property that e(u1 · u2, v) = e(u1, v) · 
e(u2, v) for any u1, u2 ∈ G;  

 Non-degenerate: e(g, g) generates the group GT when 
g is generator of group G;  

 Computability: There exists an efficient algorithm to
compute e(u, v) for all u, v ∈ G. Such a bilinear map e 
can be constructed by the modified Weil [21] or Tate 
pairings on elliptic curves.  

3. System Model 

We consider the auditing system model for Regenerating- 
Code-based cloud storage as Fig.2, which involves four 
entities: the data owner, who owns large amounts of data 
files to be stored in the cloud; the cloud, which are managed 
by the cloud service provider, provide storage service and 
have significant computational resources; the third party 
auditor (TPA), who has expertise and capabilities to conduct 
public audits on the coded data in the cloud, the TPA is
trusted and its audit result is unbiased for both data owners 

and cloud servers; and a proxy agent, who is semi-trusted 
and acts on behalf of the data owner to regenerate 
authenticators and data blocks on the failed servers during 
the repair procedure. Notice that the data owner is restricted 
in computational and storage resources compared to other 
entities and may becomes off-line even after the data upload 
procedure. The proxy, who would always be online, is
supposed to be much more powerful than the data owner but
less than the cloud servers in terms of computation and 
memory capacity. To save resources as well as the online 
burden potentially brought by the periodic auditing and 
accidental repairing, the data owners resort to the TPA for 
integrity verification and delegate the reparation to the 
proxy.  

Compared with the traditional public auditing system model, 
our system model involves an additional proxy agent. In
order to reveal the rationality of our design and make our 
following description in Section III to be more clear and 
concrete, we consider such a reference scenario: A company 
employs a commercial regenerating-code-based public cloud 
and provides long-term archival storage service for its staffs, 
the staffs are equipped with low end computation devices 
(e.g., Laptop PC, Tablet PC, etc.) and will be frequently off-
line. For public data auditing, the company relies on a 
trusted third party organization to check the data integrity; 
Similarly, to release the staffs from heavy online burden for 
data and authenticator regeneration, the company supply a 
powerful workstation (or cluster) as the proxy and provide 
proxy reparation service for the staffs‟ data.  

4. Threat Model 

Apparently, threat in our scheme comes from the 
compromised servers, curious TPA and semi-trusted proxy. 
In terms of compromised servers, we adopt a mobile 
adversary under the multi-servers setting, similar with, who 
can compromise at most n−k out of the n servers in any 
epoch, subject to the (n, k)-MDS fault tolerance requirement. 
To avoid creeping-corruption which may lead to the 
unrecoverable of the stored data, the repair procedure will be
triggered at the end of each epoch once some corruption is
detected. There are some differences in our model compared 
with the one in: First, the adversary can corrupt not only the 
data blocks but also the coding coefficients stored in the 
compromised servers; and second, the compromised server 
may act honestly for auditing but maliciously for reparation. 
We assume that some blocks stored in server Si are 
corrupted at some time; the adversary may launch the 
following attacks in order to prevent the auditor from 
detecting the corruption:  
 Replace Attack: The server Si may choose another valid 

and intact pair of data block and authenticator to replace 
the corrupted pair, or even simply store the blocks and 
authenticators at another healthy server Sj , thus 
successfully passing the integrity check.  

 Replay Attack: The server may generate the proof from an
old coded block and corresponding authenticator to pass 
the verification, thus leading to a reduction of data 
redundancy to the point that the original data becomes 
unrecoverable.3 

 Forge Attack: The server may forge an authenticator for 
modified data block and deceive the auditor. 
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 Pollution Attack: The server may use correct data to
avoid detection in the audit procedure but provide 
corrupted data for repairing; thus the corrupted data may 
pollute all the data blocks after several epochs 

With respect to the TPA, we assume it to be honest but
curious. It performs honestly during the whole auditing 
procedure but is curious about the data stored in the cloud...
The proxy agent in our system model is assumed to be semi-
trusted. It will not collude with the servers but might attempt 
to forge authenticators for some specified invalid blocks to
pass the following verification.  

5. Design Goals 

To correctly and efficiently verify the integrity of data and 
keep the stored file available for cloud storage, our proposed 
auditing scheme should achieve the following properties:  
 Public Audit ability: To allow TPA to verify the 

intactness of the data in the cloud on demand without 
introducing additional online burden to the data owner.  

 Storage Soundness: To ensure that the cloud server can 
never pass the auditing procedure except when it indeed 
manages the owner‟s data intact.  

 Privacy Preserving: To ensure that neither the auditor nor 
the proxy can derive users‟ data content from the auditing 
and reparation process.  

 Authenticator Regeneration: The authenticator of the 
repaired blocks can be correctly regenerated in the 
absence of the data owner.  

 Error Location: To ensure that the wrong server can be
quickly indicated when data corruption is detected.  

Definitions of Our Auditing Scheme: 
Our auditing scheme consists of three procedures: Setup, 
Audit and Repair. Each procedure contains certain 
polynomial-time algorithms as follows:

Setup: The data owner maintains this procedure to initialize 
the auditing scheme.  
KeyGen(1κ ) → (pk, sk): This polynomial-time algorithm is
run by the data owner to initialize its public and secret 
parameters by taking a security parameter κ as input. 
Degelation(sk) → (x): This algorithm represents the 
interaction between the data owner and proxy. The data 
owner delivers partial secret key x to the proxy through a 
secure approach. SigAndBlockGen(sk, F) → ( ,, t): This 
polynomial time algorithm is run by the data owner and 
takes the secret parameter sk and the original file F as input, 
and then outputs a coded block set , an authenticator set and 
a file tag t.  
Audit: The cloud servers and TPA interact with one another 
to take a random sample on the blocks and check the data 
intactness in this procedure.  
Challenge(Fin f o) → (C): This algorithm is performed by
the TPA with the information of the file Fin f o as input and 
a challenge C as output.  
Proof Gen(C, ,)→(P): This algorithm is run by each cloud 
server with input challenge C, coded block set and 
authenticator set , then it outputs a proof P.  
Veri f y(P, pk, C)→ (0, 1): This algorithm is run by TPA 
immediately after a proof is received. Taking the proof P, 

public parameter pk and the corresponding challenge C as
input, it outputs 1 if the verification passed and 0 otherwise. 
Repair: In the absence of the data owner, the proxy interacts 
with the cloud servers during this procedure to repair the 
wrong server detected by the auditing process.  

Claim for Rep (Fin f o) → (Cr): This algorithm is similar 
with the Challenge () algorithm in the Audit phase, but 
outputs a claim for repair Cr.  

GenFor Rep (Cr…,) → (BA): The cloud servers run this 
algorithm upon receiving the Cr and finally output the block 
and authenticators set BA with another two inputs ,. 
BlockAndSigReGen(Cr , BA) → ( _,_,⊥ ): The proxy 
implements this algorithm with the claim Cr and responses 
BA from each server as input, and outputs a new coded 
block set _ and authenticator set _ if successful, outputting 
⊥ if otherwise.  

6. The Proposed Scheme 

In this section we start from an overview of our auditing 
scheme, and then describe the main scheme and discuss how 
to generalize our privacy-preserving public auditing scheme. 
Furthermore, we illustrate some optimized methods to
improve its performance.  

a) Overview
Although introduced private remote data checking schemes 
for regenerating-code-based cloud storage, there are still 
some other challenges for us to design a public auditable 
version. First, although a direct extension of the techniques 
in and can realize public verifiability in the multi-servers 
setting by viewing each block as a set of segments and 
performing spot checking on them, such a straightforward 
method makes the data owner generate tags for all segments 
independently, thus resulting in high computational 
overhead. Considering that data owners commonly maintain 
limited computation and memory capacity, it is quite 
significant for us to reduce those overheads. Second, unlike 
cloud storage based on traditional erasure code or
replication, a fixed file layout does not exist in the 
regenerating-code-based cloud storage. During the repair 
phase, it computes out new blocks, which are totally 
different from the faulty ones, with high probability.  
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Thus, a problem arises when trying to determine how to
regenerate authenticators for the repaired blocks. A direct 
solution, which is adopted in, is to make data owners handle 
the regeneration. However, this solution is not practical 
because the data owners will not always remain online 
through the life-cycle of their data in the cloud, more 
typically, it becomes off-line even after data uploading. 
Another challenge is brought in by the proxy in our system 
model.  

Construction of Our Auditing Scheme 
Considering the regenerating-code-based cloud storage with 

parameters (n, k, _, α, β), we assume β = 1 for simplicity. 
Let G and GT be multiplicative cyclic groups of the same 
large prime order p, and e: G × G → GT be a bilinear 
pairing map as introduced in the preliminaries. Let g be a 
generator of G and H(·) : {0, 1}∗ → G be a secure hash 
function that maps strings uniformly into group G. Table I 
list the primary notations and terminologies used in our
scheme description.  

Setup: The audit scheme related parameters are initialized in
this procedure.  
KeyGen(1κ ) → (pk, sk): The data owner generates a 
random signing key pair (spk, ssk), two random elements x, 
y R ←− Zp and computes pkx ← gx , pky ← gy. Then the 
secret parameter is sk = (x, y, ssk) and the public parameter 
is pk = (pkx , pky, spk). Delegation(sk)→(x): The data owner 
sends encrypted x to the proxy using the proxy‟s public key, 
then the proxy decrypts and stores it locally upon receiving.  
SigAndBlockGen(sk, F) → ( ,, t): The data owner uniformly 
chooses a random identifier I D R ←− {0, 1}∗ , a random 
symbol u R ←− G, one set _ = {w1,w2, . . . wm}  

Security Analysis 

In this section, we first elaborate on the correctness of
verification in our auditing scheme and then formally 
evaluate the security by analyzing its fulfillment of
soundness, regeneration-unforgivable and secure guarantee 
against replay attack.  
A. Correctness: There are two verification processes in our 

scheme, one for spot checking during the Audit phase 
and another for block integrity checking during the 
Repair phase. 

Theorem 1: Given a cloud server i storing data blocks i and
accompanied authenticators i , TPA is able to correctly 
verify its possession of those data blocks during audit phase, 
and the proxy can correctly check the integrity of
downloaded blocks during repair phase. 

Proof: Proving the correctness of our auditing scheme is
equivalent of proving that Eq.(15) and Eq.(17) is correct. 
The correctness of Eq.(15) is shown in Appendix A and 
Eq.(17) in Appendix B.  

B. Soundness  
Following from paper [12], we say that our auditing protocol 
is sound if any cheating server that convinces the 
verification algorithm that it is storing the coded blocks and 
corresponding coefficients is actually storing them. Before 
proving the soundness, we will first show that the 
authenticator as Eq.(10) is unforgeable against malicious 
cloud servers (referred to as adversary in the following 
definition) under the random oracle model. Similar to the 
standard notion of security for a signature scheme [24], we
give the formal definition of security model. 

7. Evaluation 

A. Comparison 
Table II lists the features of our proposed mechanism and 
makes a comparison with other remote data checking 
schemes, for regenerating-coding-based cloud storage. The 
security parameter κ is eliminated in the costs estimation for 
simplicity. While the previously presented are designed for 
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private verification, ours allows anyone to challenge the 
servers for data possession while preserving the privacy of
the original data. Moreover, our scheme can completely 
release the owners from online burden compared with 
schemes in where data owners should stay online for faulty 
server reparation. To localize the faulty server during the 

audit phase, suggested a traversal method and thus 
demanded many times of auditing operation with complexity 
O(Ck n (n − k)α) before the auditor can pick up the wrong 
server, while our scheme is able to localize the faulty server 
by a one-time auditing procedure. 

B. Performance Analysis 
We focus on evaluating the performance of our privacy-
preserving public audit scheme during the Setup, Audit and 
Repair procedure. In our experiments, all the codes are 
written in C++ language on an OpenSUSE 12.2 Linux 
platform with kernel version 3.4.6-2-desktop and compiler 
version g++ 4.7.1. All entities in our prototype (as shown in
Fig.2) are represented by PCs with Intel Core i5-2450
2.5GHz, 8G DDR3 RAM and a 7200 RPM Hitachi 500G 
SATA drive. The implementation of our algorithms uses 
open source PBC (Pairing-Based Cryptography) Library 
version 0.5.14, GMP version 5.13 and Openssl version 
1.0.1e. The elliptic curve utilized here is Barreto-Naehrig 
curve, with base field size of 160 bits and embedding degree 
12. The security level is chosen to be 80 bits and thus |p| = 
160. All the experimental results represent the mean of 10
trials. In addition, the choice of parameters (n, k, _, α, β) for 
regenerating codes is in reference.  

2) Audit Computational Complexity 
Considering that the cloud servers are usually powerful in
computing capacity, we focus on analyzing the 
computational overhead on the auditor side and omit those 
on the cloud side. Theoretically, verification for an
aggregated proof requires less pairing operations, which is
the most expensive operation, compared to modular 
exponentiations and multiplication, than for separate α
proof.  

3) Repair Computational Complexity:  
The regeneration of the faulty blocks and authenticators is
delegated to a proxy in our auditing scheme; we now 
experimentally evaluate its performance here. Fixing the 
parameters as n = 10, k = 3, _ = 3, α = 3 and letting s vary to
be 60, 80 and 100, we measure the running time of three 
sub-processes: Verification for Repair, Regeneration for 
Blocks and Regeneration for Authenticators, thus obtaining 
the results  
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in Fig.8. Obviously, it takes the proxy much more time to
verify the received blocks for repair, less to regenerate the 
authenticators, and negligible to regenerate the faulty blocks. 
This situation occurs mainly because there are a mass of
expensive pairing operations and less expensive modular 
exponentiations during the verification, thus leading to the 
most time consuming sub-process. In contrast, there are only 
asymptotic αs(_+α_+1) modular exponentiations and αs 
inversions in a finite group across the authenticator 
regeneration, and only αs_ multiplications during the block 
regeneration. However, the efficiency of the verification can 
be significantly improved using a batch method, where we
can randomly choose s weights for each received blocks, 
aggregate the segments and authenticators, and then verify 
them all in one, thus we can avoid applying so many pairing 
operations. 

8. Related Work 

The problem of remote data checking for integrity for 
integrity was first introduced. Then Ateniese et al. [2] and 
Juels and Kaliski [3] gave rise to the similar notions 
provable data possession (PDP) and proof of retrievability 
(POR), respectively. Ateniese et al. [2] proposed a formal 
definition of the PDP model for ensuring possession of files 
on untrusted storage, introduced the concept of RSA-based 
homomorphic tags and suggested randomly sampling a few 
blocks of the file. In their subsequent work, they proposed a 
dynamic version of the prior PDP scheme based on MAC, 
which allows very basic block operations with limited 
functionality but block insertions. Simultaneously, Erway et
al. gave a formal framework for dynamic PDP and provided 
the first fully dynamic solution to support provable updates 
to stored data using rank-based authenticated skit lists and 
RSA trees. To improve the efficiency of dynamic PDP, 
Wang et al. proposed a new method which uses merkle hash 
tree to support fully dynamic data.  

9. Conclusion 

In this paper, we propose a public auditing scheme for the 
regenerating-code-based cloud storage system, where the 
data owners are privileged to delegate TPA for their data 
validity checking. To protect the original data privacy 

against the TPA, we randomize the coefficients in the 
beginning rather than applying the blind technique during 
the auditing process. Considering that the data owner cannot 
always stay online in practise, in order to keep the storage 
available and verifiable after a malicious corruption, we
introduce a semi-trusted proxy into the system model and 
provide a privilege for the proxy to handle the reparation of
the coded blocks and authenticators. To better appropriate 
for the regenerating-code-scenario, we design our 
authenticator based on the BLS signature. This authenticator 
can be efficiently generated by the data owner 
simultaneously with the encoding procedure. Extensive 
analysis shows that our scheme is provable secure, and the 
performance evaluation shows that our scheme is highly 
efficient and can be feasibly integrated into a regenerating-
code-based cloud storage system.  
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