
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Command Transfer Protocol (CTP) For Distributed
or Parallel Computation

John1, Rajiv Sharma2

1M. Tech Scholar, Baba Mastnath University, Asthal Bohar, Rohtak, Haryana-124001, India

2Assistant Professor, CSE Deptt , Baba Mastnath University, Asthal Bohar, Rohtak, Haryana-124001, India

Abstract: Distribution of user-defined toolboxes and rapid prototyping of many coarse-grained parallel applications can now be done
with a single easy-to-use command. The implementation is made available as a suite of three toolboxes, collectively described as mGrid,
with client, master and worker implementations. Commands Transfer Protocol (CTP) is a new protocol and API for computational
clusters. It meant as a replacement for both TCP and for MPI, PVM, and other high performance computing (HPC) APIs. CTP is a
transport level API and thus replaces TCP. We are using CTP for distributed or parallel computation for file transfer

Keywords: CPT (Command Transfer Protocol), Distributed Computation, Parallel computation

1. Introduction

Cluster is a union of workstations, which is formed for some
definite purposes. Computational cluster is a cluster, which is
built for heavy computations. It is a specific system that
asserts special requirements for network functionality. Main
properties of the networking mechanism for a good quality
cluster are:
 Fast data interchange.
 Reliable data transfer.
 Broadcasting support.

As usual, all workstations inside some net take part in the
computational experiment, so broadcasting makes controlling
much easier.
 Huge data blocks interchange support. Sometimes, for

example, initial conditions of experiment can be
represented by such a block.

 Peer-to-peer networking. Any workstation can be the data
source and the data destination, so they all are clients and
servers simultaneously.

Majority of parallel computing using standard networking
protocol TCP/IP [1], there are a lot of disadvantages of using
this protocol:
 Low speed of data interchange. The "reliability" and

"universality" of TCP has a lot of overhead charges. This
protocol is a general-purpose one, so it is suitable for
working in such unstable matter as Internet, but in a
constant (or quite constant) system, which was developed
for computations, it is possible to get more benefits.

 TCP does not support broadcasting. UDP does, but it is not
reliable and the size of UDP datagram is limited by 65467
bytes [1].

 Ideology of logical channel creation before data
interchange is redundant for cluster computations. Firstly
because cluster, as usual, is a well tuned, good working
net. Secondly because, some strategies of cluster
computing lead to disordered interchange between
workstations.

 TCP is a stream-based protocol, but, for determined tasks,

bounded blocks interchange is preferable, because it allows
to say definitely, when all data, necessary for further
operations, have arrived.

CTP is a protocol that is to satisfy needs of arbitrary tasks,
which, need support of rapid messages interchange and
which can start heavy computations as a reaction for message
receipt. Despite the fact that the letter "P" from its name
means "protocol", it is not just a specification.

2. Command Transfer Protocol (CTP)

CTP is a transport level API and runs on top of UDP/IP.
Transfer is reliable and supports broadcasting. CTP is twice
faster than TCP while working with normal commands and
not very large commands that can be brought by several
packets. Packets larger than UDP's limit of 65400 bytes will
be segmented by the sender with each segment sent one at a
time. The receiver will reassemble the segments and only
notify the application when the entire "large command" has
been received. Each node is both a client and server and can
send and receive commands. The basic abstraction used in
CTP is "command". Command is an order from somebody to
someone to do something (in most cases, workstations in
clusters are communicating exactly in this way) or the
response for such an order. From the last sentence, it is
possible to conclude that a command is characterized by the
following parameters:
 "Somebody" – sender
 "Someone" – recipient
 "Something" - command's description.

So, first of all, it is needed to define the sender and the
recipient somehow. For this purpose, IP addresses will be
used. The reason is that IP is used extremely widely and it
fully satisfies the requirements (gives unique identifiers to all
workstations). Commands will be identified by integer
numbers.

In terms of the discussed protocol words, "command" and
"message" are, actually, synonyms. "Command" is

Paper ID: NOV163136 2442

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

"message", but not always vice versa.

CTP needs to satisfy the cluster networking requirements,
listed above. The way in which this will be achieved follows
(in the same order as in the introduction):
1) For incrementing the speed of interchange, UDP will be

used as the basis of the protocol. Moreover, the usage of
UDP, without going down to raw networking, will save
the user in future from additional problems with the
protocol support toolkit's installation.

2) Reliability of data interchange is to be implemented.
Each sent packet will be stored until the recipient has not
confirmed the receipt of the data. To maintain this
mechanism, packets are to be provided with identifiers.
Identification will be performed by assigning integer
numbers on the sender-side. These IDs cannot be unique
in general, but are to be unique for each sender.

3) Broadcasting support is one more argument to use UDP
as the basic protocol.

4) Huge data interchange support is to be implemented. If a
message that is greater than some limit (65400 bytes, by
default) is going to be sent, then it is to be divided into
smaller parts. These parts will be enumerated and sent to
the recipient separately, one by one. On the recipient's
side, they will be united to arrange the initial command.
An important note is that the recipient application will
get information about the command's arrival only after
all its parts have been received. Such commands will be
named as "large commands", but on practice, the
majority of commands are "normal" (need a single
packet for its transfer).

5) For peer-to-peer interchange, CTP's implementations are
to include both client and server functionality, as a solid
unity.

The fact that CTP covers a number of layers, from transport
layer to application layer, proves that the area of its
responsibility starts from relatively low level and goes to a
high one. So it shares a huge responsibility in network stack.
Its share some responsibility of application layer in network
stack. CTP/IP's relationship with the OSI-model [2] and
UDP/IP ideology is shown on fig. 1.

Figure 1: Relationship between OSI-model, UDP/IP-model
and CTP/IP-model

3. CTP Implementation

All important transfer parameters, as IP addresses and ports

of sender and recipient, are stored in the UDP header. Each
packet can be fully identified by its sender, its receiver, and
ID. Sender provides uniqueness of ID for each recipient in
the following way: initial value of ID for next packet that will
be sent is taken as pseudorandom number. After sending each
packet, it is to be incremented. The very first packet sent to
the recipient, is to be marked with special option to allow
recipient to learn the value of the starting ID.

There are four storages for data, cumulated during lifetime,
which provide functionality.
 Session information storage. It stores description of each

workstation the current one communicates with. Among
description, next packet ID, interchange timeout, and
description of packets received from this recipient, are
meant here.

Interchange timeout is used to determine when the sent
packets need to be resend if they have not been confirmed.
This timeout is adoptive (because a cluster can be rather
heterogeneous and can involve workstations via both intranet
and Internet). Initially, default timeout is taken (100
milliseconds, by default). After the first interchange, its value
is taken as time, needed for it, multiplied by coefficient (3, by
default).

If confirmation of packet's arrival will not be received during
timeout, then the packet is to be resent. The period between
resending will grow exponentially. If packet is not be
confirmed after 8 re-sending (255 timeouts will pass), then an
error message "Command is not confirmed too long" will be
generated. If timeout is set to zero, then this feature is
switched off.

Messages can be resent. So, it is necessary to protect the user
from receiving one message several times. That is why;
descriptions of received packets are stored for each
addressee. It is implemented as an ordered list. First element
contains the maximal ID of the packet, received in sequence.
After this element, there can be more IDs, corresponding to
packets, which have been received, but which are greater
than the first element. After insertion of each new ID in this
list, the sequence, which begins from the first element, is to
be truncated. For example, let's assume that this storage
contains {7, 9, 10, 11, 13, 14}. This means that all packets
with ID less or equal to 7 and equal to 9, 10, 11, 13 and 14
already have been received. After receiving the packet with
ID 8, the list will take the form {11, 13, 14}. If all packets
arrive in sequence, then the list always contains a single
element.

Values of IDs are to be in the endless loop (after 232-1 goes
0). Determining of starting ID, which was generated by the
sender, is very important in this stage.

A new entry is added to session information storage when the
first message is going to be sent or was received from
workstation, or is unknown yet. There is to be a special entry
for broadcasted messages.
 Sent commands storage. To send the command, packets

are to be arranged. Some memory is to be allocated and

Paper ID: NOV163136 2443

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

filled with packet headers and data. The fact is that it will
not be freed and unallocated just after sending, but stored
to the sent commands storage. A record can be removed
from sent commands storage only after all its packets
arrival has been confirmed. This ideology can be
implemented not for "each command", but for "each
packet" (like in CTP 1.0), but first variant is preferable. In
this case, so named "smart buffers" can keep from
redundant memory allocations, by reserving and guarding
memory needed for headers, while doing packets data
arrangement.

 Large commands storage is used to arrange the whole
large message, when receiving it part by part. It stores the
total amount, the vector of parts receiving status, and a
buffer for compiling. Each part of the message, except,
probably, the last one, is of maximal data size, so parts can
easily find their places in the buffer, knowing their
numbers. When all parts have been received, the message
is considered to be arranged and the server informs the
application about data arrival.

 Deliveries storage. The whole received message or error
description is, so named, "delivery". After generating, they
will be added into deliveries list. Then special deliverer
threads will take them from the list and pass them to the
application.

4. Parallel & Distributed Computing

 Parallelism is generally concerned with accomplishing a
particular computation as fast as possible, exploiting
multiple processors. Parallel computing is a type
of computation in which many calculations are carried out
simultaneously, operating on the principle that large
problems can often be divided into smaller ones, which are
then solved at the same time. The scale of the processors
may range from multiple arithmetical units inside a single
processor, to multiple processors sharing memory, to
distributing the computation on many computers. On the
side of models of computation, parallelism is generally
about using multiple simultaneous threads of computation
internally, in order to compute a final result.

 Parallelism is also sometimes used for real-time reactive
systems, which contain many processors that share a single
master clock; such systems are fully deterministic.

 Concurrency is the study of computations with multiple
threads of computation. Concurrency tends to come from
the architecture of the software rather than from the
architecture of the hardware. Software may be written to
use concurrency in order to exploit hardware parallelism,
but often the need is inherent in the software's behavior, to
react to different asynchronous events (e.g. a computation
thread that works independently of a user interface thread
or a program that reacts to hardware interrupts by
switching to an interrupt handler thread).

 Distributed computing studies separate processors
connected by communication links. Whereas parallel
processing models often (but not always) assume shared
memory, distributed systems rely fundamentally on
message passing. Distributed computing is a field
of computer science that studies distributed systems.
Distributed computing also refers to the use of distributed

systems to solve computational problems. Distributed
systems are inherently concurrent. Like concurrency,
distribution is often part of the goal, not solely part of the
solution if resources are in geographically distinct
locations, the system is inherently distributed. Systems in
which partial failures (of processor nodes or of
communication links) are possible fall under this domain.

5. Conclusion

In this paper, we have proposed a self adaptive
communication protocol for high performance peer to peer
distributed computing. For rapid interchange between dozens
of nodes are to be more pleasant for CTP ,because its
activities will stay the same, but TCP will loose a lot on
channels creating and recreating .For CTP, it does not matter
who the recipient is. CTP's implementation doesn't use a
critical amount of resources. Its overhead expenses are small
enough to be ignored. This protocol has been implemented
on a small network for the solution of nonlinear optimization
problems, i.e. network flow problems. We plan to study a
specification language for controller decision rules
description. We shall also concentrate on the design of a
decentralized environment for high performance peer to peer
distributed computing. This type of Environment will permit
one to use all the specificities offered by the peer to peer
concept for high performance computing purpose. Self
organization of peers for efficiency purpose or for insuring
everlastingness of applications in hazardous situations or in
the presence of faults will also be studied. The different
applications considered will permit us to validate our
protocol and decentralized environment in different high
performance computing contexts.

References

[1] Gnutella Protocol Development. Hhttp://rfc-
gnutella.sourceforge.netH.

[2] The FreeNet Network Projet.
Hhttp://freenet.sourceforge.netH.

[3] D. El Baz, T. T. Nguyen et al, ―CIP - Calcul intensif pair
à pair‖, Poster, Colloque Ter@tec2009, SUPELEC, 30
Juin-1 Juillet 2009.

[4] N. Hutchison and L. L. Peterson, ―The x-kernel: An
architecture for implementing network protocols,‖ in
IEEE Transactions on Parallel and Distributed Systems,
vol. 17, no. 1, pp. 64-76, 1991.

[5] H. Miranda, A. Pinto, and L. Rodrigues, ―Appia: A
flexible protocol kernel supporting multiple coordinated
channels,‖ in Proc. 21st International conference on
Distributed Computing Systems (ICDCS- 21), (Phoenix,
Arizona, USA), pp. 707–710, 2001.

[6] N. T. Bhatti, M. A. Hiltunen, R. D. Schlichting, and W.
Chiu, ―Coyote: a system for constructing fine-grain
configurable communication services,‖ in ACM
Transactions on Computer Systems, 16(4): pp. 321–
366, 1998.

[7] D. C. Schmidt, D. F. Box, and T. Suda, ―ADAPTIVE—
A Dynamically Assembled Protocol Transformation,
Integration and eValuation Environment,‖ Journal of
Concurrency: Practice and Experience, 5(4): pp. 269–

Paper ID: NOV163136 2444

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

286, 1993.
[8] E. Exposito, P. Senac, M. Diaz, ―FPTP: the XQoS aware

and fully programmable transport protocol,‖ in
Networks, 2003. ICON2003. The 11th IEEE
International Conference on, pp. 249-254.

[9] Matti A. Hiltunen, ―The Cactus Approach to Building
Configurable Middleware Services‖, in DSMGC2000,
Nuremberg, Germany, 2000.

[10] G.T Wong, M.A Hiltunen, R.D Schlichting, ―A
configurable and extensible transport protocol,‖ in
Proceedings of IEEE INFOCOM ’01, Anchorage,
Alaska (2001), pp. 319–328.

[11] S. Floyd, T. Henderson, ―The New-Reno Modification
to TCP’s Fast Recovery Algorithm,‖ RFC 2582, Apr
1999.

[12] D. Leith and R. Shorten, ―H-TCP protocol for high-
speed long distance networks,‖ in PFLDnet, Feb. 2004.

[13] D. El Baz, P. Spiteri, J. C. Miellou, D. Gazen,
―Asynchronous iterative algorithms with flexible
communication for nonlinear network flow problems,‖ in
Journal of Parallel and Distributed Computing, Vol. 38,
pp. 1-15, 1996.

[14] P. Owezarski, P. Berthou, Y. Labit, D. Gauchard,
―LaasNetExp: a generic polymorphic platform for
network emulation and experiments,‖ in
TridentCom’2008, Innsbruck, Austria, March 18-20,
2008.

[15] D. El Baz, G. Jourjon, ―Some solutions for Peer to Peer
Global Computing,‖ in 13th Euromicro conference on
Parallel, Distributed and Network-Base Processing,
2005, pp. 49-58

Author Profile

John pursuing M.Tech from BMU Rohtak (2014-
2016) and received B.Tech degree in Computer
Science and Technology from Maharshi Dayanand
University in 2013. His main research interest
includes: Social media, Artificial intelligence.

Paper ID: NOV163136 2445

