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Abstract: This paper presents density estimation of univariate claim severity distributions using kernel density estimation. We applied 

transformations to data prior to implement kernel density estimation so as to ensure the data is symmetry for the purpose of applying 

Gaussian methods. The paper presents non-parametric method of obtaining density for univariate claim severity distributions with 

goodness fits analysis for Danish insurance data on fire loss claims.  
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1. Introduction 
 

Kernel density estimation (KDE) is a non-parametric way to 
estimate the probability density function of a random 
variable. Further it is a fundamental data smoothing 
techniques to obtain the distributional form using finite 
sample observations. In non-life insurance, the cost of 
individual claims follows right skewed distributions due to 
lots of small claims while only a few large claims. When the 
data under study is skewed, it is advisable not to use the 
kernel density directly to get the approximating probability 
density function for claim costs. Hence, the transformed 
kernel density estimator is most appropriate for asymmetric 
claim data. 
 
Bivariate data have total claims will be in two different 
mutually exclusive claim cost depends on policy and its 
coverage. Bolance[3] have studied estimation of correlations 
between claim cost types under bivariate skew normal and 
bivariate normal distributions. Liu[9] fitted the bivariate 
lognormal and log-skew-normal distributions for positive 
and right-skewed claim severity data using bivariate kernel 
density estimation. 
 
Denault[6], Dhaene[7], Panjer[11] and Wang[18] studied the 
necessity of density estimation in insurance for the purpose 
of pricing and capital allocation. Klugman[8] have provided 
excellent substance on the estimation of univariate and 
bivariate claims distribution models in insurance. 
McNeil[10] provided possible risk measures for loss 
distributions. In this paper, we studied probability density 
estimation of positive claim costs of 2167 fire losses for the 
period 1980 to 1990 from a Danish Insurance company 
Copenhagen Reinsurance.  
 
In section 2, we present the kernel density estimator and the 
transformed kernel density estimator. In section 3, we 
present measure of goodness of fit for density estimation. 
Then, in section 4, we perform the transformed kernel 
density estimation for the above mentioned data. Lastly, we 
present the results and conclusions. 
 
 
 
 

2. Kernel Density Estimation 
 

2.1 Classical kernel density estimation 

 
Let nxxx ,...,, 21 be n independent and identically 
distributed random variables from the density estimator is 
given by 
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where k  is the kernel and h  is the bandwidth (Wand[16]). 
The bandwidth is h  used to smoothing estimated density 
curve. In this paper, we use the Gaussian kernel which is 
symmetric with mean and it is given below: 
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The practical implementation of the kernel density estimator 
requires the selection of the bandwidth h . The unique and 
best method to choose bandwidth parameters is still an 
ongoing research. In this paper, we used the rule of thumb 
bandwidth proposed by Silverman[14] and Unbiased and 
biased cross-validation methods proposed by Sheather and 
Jones[13] is also used for selection bandwidth h  but the 
data under considered is asymmetric therefore obtain the 
optimal value of bandwidth h  is not possible under 
asymmetric setup. Hence we consider the transformation of 
claim severity data for symmetric purpose. 
 
2.2 Data Transformation 

 
The claims severity data is mostly follows heavy tail 
distributions. Many authors have contributed for the heavy 
tail distributions for the application kernel estimation [see 
Bolance[1]-[5] and Wand[17]) Further they have proposed 
number of transformed kernel estimation(TKE) methods. In 
this paper, we used the shifted power transformation family 
proposed in Wand[16] 
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Where ),( 21  ,  nixi ...,,1,min1   and 

12  for right skewed data. 
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Therefore, the new transformed data have been generated 
from a symmetric random variable. Hence the application of 
the classical kernel estimation method to the transformed 
data will produce the reliable result on density estimation. 
 
For the classical kernel density estimator for transformed 
data is 
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Where K  is the kernel function and b is the bandwidth. 
The original density estimator can be obtained by using the 
transformed density estimator: 
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Here the transformation parameters, ),( 21   and the 
bandwidth, b is necessary for the implementation of 
transformation approach. 
 
2.3 Criteria for selection of the bandwidth and the 

transformation parameters  

 
The selection of values for transformation parameters, 

),( 21  is subject to zero skewness for the transformed 
data. Further it also minimizing the mean integrated square 
error (MISE) of estimator of transformed density 
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The transformation parameters that minimize asymptotically 

YMISE will also minimize XMISE  of  ,ˆ xf X  in (4). 
The selection of estimator for the bandwidth b can be 
obtained by using Silverman[14].  
 
3. Measuring the Goodness of Fit 
  

 Let )(ˆ xf X  be an estimate of the density and let 

nxxx ...,, 21  be n  i.i.d random variable. Then the log-
likelihood function is  
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If the transformation method were used to give estimated 
density )ˆ;ˆ,(ˆ bxf X   then the estimated log-likelihood 
function is 
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The integrated square error (ISE) is used to measure for 
evaluating the quality of kernel density estimators 
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where )(ˆ xf X be a kernel estimation of )(xf X . 

It is proved that minimizing XISE  is equivalent to 
minimizing the cross-validation function: 
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 We can generalize the definition of log-likelihood given 
previously by providing a statistic that gives more weight to 
the right tail of the distribution. A weighted log-likelihood 
can be estimated if weights niwi ,...,1,   are included 
preceeding each summation term as: 
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If niwi ,...,1,  , then we would have the usual log-
likelihood expression. We can also use some distance from 
zero as a weight, so that observations that are located close 
to zero have much less importance than those located in the 
right tail. 
 
 Bolance[3] have tried two different expressions for weights. 
The first one gives more weight to those observations that 
are distant from zero. Since our data are always positive. 
The second form is weighted with a squared distance. The 
form of the weights is 
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When a transformation is used, the corresponding 
expression is: 
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Similarly, we can approximate a weighted XISE ( XWISE ), 

weighting by x or by 2x . 
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that can be approximated with: 
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Here we used to different methods were used for obtain the 
parameters. Method 1 reduces mean sequare error and 
Method 2 deals with zero skewness (i.e.,) symmetric of data. 
 
4. Data Analysis 
 

In this paper, we used the Copenhagen Reinsurance fire 
losses data expressed in millions of Danish Krone of 2167 
observations for the period of 1980 to 1990. It is also 
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available in the R software in the name of Danish dataset in 
QRM package.  
 

Table 1: Decriptive Statistics of the Claim data set (in 
millions of Danish Krone) 

 Mean SD Skewness Kurtosis Min Max 
Claim Size 3.385 8.508 18.737 482.198 1 263.250 

 
4.1 Fitting of Kernel densities 

 
In Figure 1, we show histogram and fit of the classical 
kernel density estimates of claim data. In Figure 2, we show 
histogram and classical kernel fit for log-transformed claim 
data  
 

 
Figure 1: Histograms and classical kernel fit 

 
Figure 2: Histograms and classical kernel fit to log-

transformed data 
 

Table 2: Estimates of transformation parameters 
),( 21   

 Method 1 Method2 
Fire losses Claims (-0.7761,-0.3905) (-0.7621,-0.35) 

  
In Figure 3, we show the kernel density estimates for the 
transformed variable using method 2 
 

 
Figure 3: Histogram and classical kernel fit to optimally 

transformed data 

In Figure 4, we plot the TKE of pdf of the fire losses claims 
 

 
Figure 4: TKE pdf estimate 

 
Table 3: Log-likelihood and weighted log-likelihoods 

 
L̂ln  L̂ln  

(weight 1) 
L̂ln  

(weight 2) 
Classical kernel -4759.31 -8811.86 -17717.35 

TKE log transformed -8838.62 -14306.07 -26754.85 
TKE Method1 -3364.00 -8946.35 -21708.02 
TKE Method2 -3364.00 -8946.35 -21708.02 

  
Table 4: Cross-validation 

 CV WCV1 WCV2 
Classical kernel -0.1790 -1.1355 -0.6002 

TKE log transformed -0.1078 -0.2316 -0.1473 
TKE Method1 -0.2564 -0.0735 -0.1602 
TKE Method2 -0.2560 -0.0735 -0.1521 

 
4.2 Results of Goodness of fit 

 
In table 4, the results of CV, WCV1 and WCV2 to compare 
the fit of classical kernel and TKE. Note that the values CV, 
WCV1 and WCV2 can be negative. The minimum values of 
CV, WCV1 and WCV2 will indicate the better fit. Hence to 
Danish fire losses claim data, TKE Methods with shifted 
power transformation fits better compare to the method of 
classical kernel density estimation. Finally, for claims 
severity data with right skewed, TKE with transformation 
especially with shifted power transformation give better fit 
compare to classical kernel density estimation. 
 

5. Conclusions 
 
In this paper, we fitted the univariate distributions to Danish 
data sets on fire losses claim costs. It is observed that the 
classical kernel density estimates are not providing better fit 
to the claim size data which is generally right skewed. But 
the power transformation of classical kernel density provides 
the better fit and smoothed version of empirical distribution 
for weighted likelihoods when more weights are assigned to 
the right tail of the distribution. Minimization of ISE, WISE 
and Cross-validation is better criteria for the goodness of the 
estimated densities. Finally we conclude that the shifted 
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power transformation works and suits well to fit claim 
severity distribution which is usually having heavy tails. 
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