On Non-Homogeneous Cubic Diophantine Equation
\[4x^2 + 4y^2 - 7xy = 19z^3\]

Dr. P. Jayakumar\(^1\), V. Pandian\(^2\), R. Venkatraman\(^3\)

\(^1\)Professor of Mathematics, Periyar Maniammai University, Vellam, Thanajvur -613 403, T.N, India
\(^2\)Assistant Professor of Mathematics, A.V.V.M. Sri Pushpam College, Poondi-613 503, Thanajvur, T.N, India
\(^3\)Assistant Professor of Mathematics, SRM University Vadapalani Campus, Chennai - 600026. T.N, India

Abstract: Four different methods of the non-zero non-negative solutions of non-homogeneous cubic Diophantine equation \[4x^2 + 4y^2 - 7xy = 19z^3\] are observed. Some interesting relations among the special numbers and the solutions are determined.

Keywords: The method of factorization, integer solutions, linear transformation, relations and special numbers

2010 Mathematics subject classification: 11D25

Notations used:
\[t_{m,n} = \text{Polygonal number of rank } n \text{ with sides } m.\]
\[P_{n}^{m} = \text{Pyramidal number of rank } n \text{ with size } m.\]
\[G_{n} = \text{Gnomonic number}\]

1. Introduction

The number theory is the king of Mathematics. In particular, the Diophantine equations have a blend of attracted interesting problems. For a broad review of variety of problems, one may try to see [3-12]. Integer solutions of cubic Diophantine Equation has appeared in Jayakumar. P.,Meena, J [16,18]. Inspired by these, in this work, we are observed another interesting four different methods of the non-zero non-negative solutions the non-homogeneous cubic Diophantine equation \[4x^2 + 4y^2 - 7xy = 19z^3\] Further, some elegant properties among the special numbers and the solutions are observed

2. Method of Description

Consider the cubic Diophantine equation
\[4x^2 + 4y^2 - 7xy = 19z^3\]
(1)

Take the linear transformations
\[x = u + v, \quad y = u - v, \quad u \neq v \neq 0\]
(2)

Using (2) in (1), it gives to
\[u^2 + 15v^2 = 19z^3\]
(3)

If take \[z = z (a, b) = a^2 + 15b^2\]
(4)

where \(a\) and \(b\) non-zero distinct integers, then we solve (1) through dissimilar method of solutions of (1) which are furnished below.

2.1 Method: I

We can write 19 as
\[19 = (2 + i\sqrt{15}) (10 - i\sqrt{15})\]
(5)

Using (4) and (5) in (3) and applying the factorization process, this gives us
\[(u + i\sqrt{15}v) (u - i\sqrt{15}v) = (2 + i\sqrt{15}) (2 - i\sqrt{15}) (a + i\sqrt{15}b)^3 (a - i\sqrt{15}b)^3\]
(6)

Equating the positive and negative factors, we get
\[(u + i\sqrt{15}v) = (2 + i\sqrt{15}) (a + i\sqrt{15}b)^3\]
(7)

\[(u - i\sqrt{15}v) = (2 - i\sqrt{15}) (a - i\sqrt{15}b)^3\]
(8)

In sight of (2), the solutions \(x, y\) are found to be
\[x = x (a, b) = 3a^3 - 135ab^2 - 39a^2b + 195b^3\]
(9)

\[y = y (a, b) = a^3 - 45ab^2 + 6a^2b - 30b^3\]
(10)

Hence (4), (8) and (9) gives us two parametric the non-zero different integral values of (1).

Observations

1. \(z (a, a)\) is a perfect square.
2. \(1/106 [y (a, a) - x (a, a)]\) is a cubic integer
3. \(x (1, a) - 390P_{a}^5 + 330P_{a}^3 = 0\) (Mod3)
4. \(x (a, 1) - 6P_{a}^5 + 42 P_{a} - G_{5a} = 0\) (Mod7)
5. \(y (a, 1) - 2P_{a}^5 + 52P_{a} - G_{5a} = 0\) (Mod7)
6. \(z (0, 2)\) is a nasty number
7. \(x (2,0)\) is a nasty number
8. \(x (0, 2)\) is a nasty number
9. \(y (a,0)\) is a cubic integer
10. \(y (0,1)\) is a perfect Square

2.2 Method: II

Let \[19 = \frac{(17 + i\sqrt{15})(17 - i\sqrt{15})}{16}\]
(11)
Using (4) and (10) in (3) and applying the factorization process, this gives us

\[(u + i\sqrt{5})v = \frac{1}{16}(17 + i\sqrt{5})\]
\[(17 - i\sqrt{5})(a + i\sqrt{5}b)^3(a - i\sqrt{5}b)^3\]

Equating the positive and negative factors, we get

\[u = u(a, b) = \frac{1}{4}[-13a^3 + 585ab^2 - 135a^2b + 675b^3]\]
\[v = v(a, b) = \frac{1}{4}[3a^3 - 135ab^2 - 39a^2b + 195b^3]\]

In sight of (2), the values of x, y are given by

\[x = x(a, b) = \frac{1}{4}[-10a^3 + 450ab^2 - 174a^2b + 870b^3]\]
\[y = y(a, b) = \frac{1}{4}[-16a^3 + 720ab^2 - 96a^2b + 480b^3]\]

Since our intention is to find integer solutions, taking a as 2a and b as 2b in (4), (24) and (25), the related parametric integer values of (1) are found as

\[x = x(a, b) = -20a^3 + 900ab^2 - 338a^2b + 1740b^3\]
\[y = y(a, b) = -32a^3 + 1440ab^2 - 192a^2b + 960b^3\]
\[z = z(a, b) = 4a^2 + 60b^2\]

Hence the above give us two parametric the non-zero different integral values of (1).

Observations

1. z (a, a) is a perfect square
2. x (1, 1) is an even integer
3. -1/2[x (1, 0)] is a cubic integer
4. x (a, 1) - 40P3 + 318P; - G50a = 1 (Mod2)
5. x (1, a) - 3480P3 + 840P; - G50a = 0 (mod 19)
6. -1/4[y (1, 0)] is a cubic integer
7. y (a, 1) + 1920P3 + 96a4 - G50a = 1 (mod 2)
8. y (1, a) - 1920P3 - 480P; - G50a = 0 (mod11)
9. x (a, a) - y(a, a) = 0 (mod 2)

Each of the following is a nasty number
10. \[\frac{1}{2} z(0, 1), \frac{3}{2} z(1, 0), \frac{5}{4} z(1, 0)\]

2.4 Method: IV

Instead of (16), write as

\[z = \frac{7(i\sqrt{15}) - (i\sqrt{15})}{64}\]

Using (4), (10) and (21) in (15) and applying the factorization process, this gives us

\[u = u(a, b) = \frac{1}{8}[-a^3 + 405a^2b - 450ab^2 + 2025b^3]\]
\[v = v(a, b) = \frac{1}{8}[9a^3 - 3a^2b - 405ab^2 + 15b^3]\]

In true of (2), the values of x, y are found as

\[x = x(a, b) = \frac{1}{8}[39a^3 - 387ab^2 - 375a^2b - 375b^3]\]
\[y = y(a, b) = \frac{1}{8}[48a^3 + 351ab^2 - 363a^2b + 363b^3]\]

Since our intention is to find integer solutions, taking a as 7a and b as 7b in (4), (24) and (25), the related parametric integer values of (1) are found as
x = a (a, b) = 64a^3 - 3264 a^2 b - 2880ab^2 + 16320b^3
y = y (a, b) = - 80a^3 - 3216 a^2 b + 3600ab^2 + 3600b^3
z = z (a, b) = 16a^2 + 240b^2

Hence the above give us two parametric the non-zero different integral values of (1).

Properties:
1. z (a, a) is a perfect square
2. x (1, 0) is a cubing integer
3. \(\frac{1}{3} x(1, 1) \) is a perfect square
4. x (a, 1) = 128 P^3 + 3328 P_a - G_{224} = 1(mod2)
5. x (a, 1) = 97290P^3 + 19200P + C_{192a} = 0(mod5)
6. y (a, 1) = 160 P^3 + 3136 t_a = G_{180a} = 0(mod2)
7. y (1,a)-32160 P \equiv 0(mod3)

Each of the following is a nasty number
8. \(\frac{-3}{8} z (1, 0), \frac{1}{8} z (0, 1), \frac{3}{8} x (1, 0), \frac{-3}{10} y(1,0) \)

3. Conclusion

In this work, we observed various process of determining infinitely a lot of non-zero different integer values to the cubic Diophantine equation \(4x^2 + 4 y^2 - 7xy = 13z^3 \). One may try to find non-negative integer solutions of the above equations together with their similar observations.

References

Author Profile

Dr. P. Jayakumar received the B. Sc, M.Sc degrees in Mathematics from Madras University in 1980 and 1983 and the M. Phil, Ph.D degrees in Mathematics from Bharathidasan University, Thiruchirappalli in 1988 and 2010. Who is now working as Professor of Mathematics, Periyar Maniammai University, Vallaam, Thanajyur-613 403, Tamil Nadu, India.

V. Pandian received the B.Sc, M.Sc,and M Phil degrees in Mathematics from Bharathidasan University, Thiruchirappalli in 2002, 2004 and 2006. Who is now working as Assistant Professor of Mathematics, A.V.V.M. Sri Pushpam College (Autonomous), Poondi -613 503, Thanajyur.
R. Venkatraman received the B.Sc, M.Sc and MPhil degrees in Mathematics from Bharathidasan University, Thiruchirappalli in 2002, 2004 and 2006. Who is now working as Assistant Professor of Mathematics, SRM University Vadapalani Campus, Chennai-600026, India.