
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Design of a More Efficient and Effective Flip Flop
use of K-Map Based Boolean Function

M. Valli1, Dr. R. Periyasamy2

1Assistant Professor, St. Joseph College of Arts & Science (Autonomous), Cuddalore. Tamilnadu, India

2Associate Professor, Nehru Memorial College (Autonomous), Trichy, Tamilnadu, India

Abstract: In this paper, we present a novel method to efficiently process SR flip flop spatial queries with conjunctive Boolean
constraints on textual content. Our method combines an R-tree with an inverted index by the inclusion of spatial references in posting
lists. The result is a disk resident, dual-index data structure that is used to proactively prune the search space. R-tree nodes are visited in
best-first order. A node entry is placed in the priority queue if there exists at least one object that satisfies the Boolean condition in the
sub tree pointed by the entry; otherwise, the Sub tree is not further explored. We show via extensive experimentation with real spatial
databases that our method has increased performance over alternate techniques while scaling to large number of objects.

Keywords: Boolean Circuit, K Map, Flip flop, Gate, Algebra.

1. Introduction

Boolean algebra forms a cornerstone of computer science
and digital system design. Many problems in digital logic
design and testing, artificial intelligence, and combinatory
can be expressed as a sequence of operations on Boolean
functions. Such applications would benefit from efficient
algorithms for representing and manipulating Boolean
functions symbolically. Unfortunately, many of the tasks one
would like to perform with Boolean functions, such as testing
whether there exists any assignment of input variables such
that a given Boolean expression evaluates to 1 , or two
Boolean expressions denote the same function (equivalence)
require solutions to NP-Complete or Complete problems .
Consequently, all known approaches to performing these
operations require, in the worst case, an amount of computer
time that grows exponentially with the size of the problem.
This makes it difficult to compare the relative efficiencies of
different approaches to representing and manipulating
Boolean functions. In the worst case, all known approaches
perform as poorly as the naive approach of representing
functions by their truth tables and defining all of the desired
operations in terms of their effect on truth table entries. In
practice, by utilizing more clever representations and
manipulation algorithms, we can often avoid these
exponential computations. Flip-Flops are digital circuits with
two stable, self-maintaining states that are used as storage/
memory elements such as Random Access Memory, Caches
Memory and Read Only Memory. They are also very useful
in the following electronic digital devices design; Sequence
Detector, Data Synchronizer, Frequency Divider, Registers,
Counters and Registers in Central Processing Unit for data
transfer. They are derived from Sequential Logic Circuits
which are the main electronics circuits that make the
development of computers possible. The ability of computer
systems to operate without the continuous human
intervention is solely achieved through sequential logic
circuits, the building blocks of Flip Flops. With the growing
popularity of portable devices, power reduction has become a
popular design goal for advanced design application, whether
mobile or not. Reducing power consumption in chips enables

better, cheaper products to be designed and power-related
chip failures to be minimized. As a result, how to minimize
power consumption has become an important design goal
that every chip designer must take care. Several lower power
design techniques have played an important role in the design
flow. Clock gating methodology is used for the register bank
to replace the multiplexers and it can avoid the operation of
reloading the same data value. The clock gating technique
could reduce the dynamic power consumption efficiently.
The multi-Vth concept is aimed at using multi-Vth cell with
satisfying performance to reduce leakage consumption, and
replace lower Vth (LVT) cells by high Vth (HVT) ones, if
there is room for slack. Multiple Supply Multiple Voltage
(MSMV) supplies of different voltages are used for core
logic, base on satisfy performance or functional requirement
to adjust operating voltage for each domain, even shut off
this domain.

Given a design that the locations of the cells have been
determined; the power consumed by clocking can be reduced
further by replacing several flip-flops with multi-bit flip-
flops. During clock tree synthesis, less number of flip-flops
means less number of clock sinks. Thus, the resulting clock
network would have smaller power consumption and uses
less routing resource. Multi-bit flip-flop is an effective
power-saving implementation methodology by merging
single-bit flip-flops in the design. Using multi-bit flip-flops
can reduce clock dynamic power and the total flip-flop area
effectively

Figure 1: Example of ASIC chip power distribution

Paper ID: NOV162979 1675

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 1 is an ASIC chip power distribution. We can see that
the flip-flops on clock tree accounted for a large proportion
of power consumption. Although the power distribution will
vary with different ASIC design, reducing power
consumption of the flip-flop on clock tree can eliminate total
power consumption efficiently.

1.1 Motivation for the study

It has been observed that computer performance is primarily
affected by the processor and memory. If either one reaches
its limits (which may initially be the memory), the
performance of the whole system degrades. As
semiconductor technology advances, the performance gap
between processor - the Central Processing Unit and main
memory - the Random Access Memory has become one of
the major issues in computer design. In the past 35 years, an
exponential rate of improvement has been witnessed in
semiconductor technology. This imbalance has become one
major bottleneck in further improving the computer
performance. One reason memory system performance has
consistently lagged processor performance is that memory
systems typically consist of one or more chips that are
designed and manufactured separately from the processor,
and the performance of the interconnected multi-chip
memory system is difficult to scale to achieve higher data
rate and lower access latency. Memory system data rates are
increasing with each new generation of memory devices at
the rate of 100% every three years, and memory row cycle
times. The collective trends are increasing the ratio of row
cycle times to the duration of data bursts on the data bus.
This is why it is imperative to critically evaluate the existing
conventional SR-FF and the need to bridge the speed gap
between memory and processor by enhancing the memory
speed through logical modification frameworks of the
conventional SR-FF which utilizes states. With the
development of information technology, data volumes
processed by many applications will routinely cross the scale
threshold, which would in turn increase the computational
requirements. Efficient parallel clustering algorithms and
implementation techniques are the key to meeting the
scalability and performance requirements entailed in such
scientific data analyses. So far, several researchers have
proposed some parallel clustering algorithms. They assume
that all objects can reside in main memory at the same time;
b) their parallel systems have provided restricted
programming models and used the restrictions to parallelize
the computation automatically. Both assumptions are
prohibitive for very large datasets with millions of objects.
Therefore, dataset oriented parallel clustering algorithms
should be developed. Map Reduce is a programming model
and an associated implementation for processing and
generating large datasets that is amenable to a broad variety
of real-world tasks. Users specify the computation in terms of
a map and a reduce function, and the underlying runtime
system automatically parallelizes the computation across
large-scale clusters of machines, handles machine failures,
and schedules inter-machine communication to make
efficient use of the network and disks. It Reduce runtimes
with fault tolerance and dynamic flexibility support .In this
paper, we adapt k-means algorithm in map Reduce
framework which is implemented by the clustering method

applicable to large scale data. We conduct comprehensive
experiments to evaluate the proposed algorithm. The results
demonstrate that our algorithm can effectively deal with large
scale datasets. The rest of the paper is organized as follows.
We presented our parallel k-means algorithm based on Map
Reduce framework. In this paper, we propose an efficient
method for solving systems of Boolean equations. Rather
than confining ourselves to the Boolean domain, our idea is
to convert the problem so that we operate in the integer
domain. The integer domain is a richer domain to work with,
as algorithms there are well-developed.

2. Related Works

Efficiently Evaluating Complex Boolean Expressions ,
Marcus Fontoura, 2010,The problem of efficiently
evaluating a large collection of complex Boolean expressions
– beyond simple conjunctions and Disjunctive/Conjunctive
Normal Forms (DNF/CNF)– occurs in many emerging online
advertising applications such as advertising exchanges and
automatic targeting. The simple solution of normalizing
complex Boolean expressions to DNF or CNF form, and then
using existing methods for evaluating such expressions is not
always effective because of the exponential blow-up in the
size of expressions due to normalization. We thus propose a
novel method for evaluating complex expressions, which
leverages existing techniques for evaluating leaf-level
conjunctions, and then uses a bottom-up evaluation technique
to only process the relevant parts of the complex expressions
that contain the matching conjunctions. We develop two such
bottom-up evaluation techniques, one based on Dewey IDs
and another based on mapping Boolean expressions to one-
dimensional intervals. Our experimental evaluation based on
data obtained from an online advertising exchange shows that
the proposed techniques are efficient and scalable, both with
respect to space usage as well as evaluation time.

A Shannon Based Low Power Adder Cell for Neural
Network Training K.Nehru, 2010,The proposed full adders
for low power and high performance neural network training
circuits has been implemented using Shannon decomposition
based technique for sum and carry operation. The hardware
includes multiplier circuit for product term and an adder
circuit to perform summation. The proposed full adder is
designed using tanner EDA tools and the resulting
parameters such as 25.6% improvement in power dissipation
and 20% improvement in transistor count from the simulated
output when compared with MC IT based adder cell.

Debajit Sensarma, On An Optimization Technique Using
Binary Decision Diagram, 2012, Two-level logic
minimization is a central problem in logic synthesis, and has
applications in reliability analysis and automated reasoning.
This paper represents a method of minimizing Boolean sum
of products function with binary decision diagram and with
disjoint sum of product minimization. Due to the symbolic
representation of cubes for large problem instances, the
method is orders of magnitude faster than previous
enumerative techniques. But the quality of the approach
largely depends on the variable ordering of the underlying
BDD. The application of Binary Decision Diagrams (BDDs)

Paper ID: NOV162979 1676

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

as an efficient approach for the minimization of Disjoint
Sums-of-Products (DSOPs). DSOPs are a starting point for
several applications. The use of BDDs has the advantage of
an implicit representation of terms. Due to this scheme the
algorithm is faster than techniques working on explicit
representations and the application to large circuits that could
not be handled so far becomes possible. Theoretical studies
on the influence of the BDDs to the search space are carried
out. In experiments the proposed technique is compared to
others. The results with respect to the size of the resulting
DSOP are as good or better as those of the other techniques.

Randal E. Bryant, Graph-Based Algorithms For Boolean
Function Manipulation, 2008, in this paper we present a
new data structure for representing Boolean functions and an
associated set of manipulation algorithms. Functions are
represented by directed, acyclic graphs in a manner similar to
the representations introduced but with further restrictions on
the ordering of decision variables in the graph. Although a
function requires, in the worst case, a graph of size
exponential in the number of arguments, many of the
functions encountered in typical applications have a more
reasonable representation. Our algorithms have time
complexity proportional to the sizes of the graphs being
operated on, and hence are quite efficient as long as the
graphs do not grow too large. We present experimental
results from applying these algorithms to problems in logic
design verification that demonstrate the practicality of our
approach.

D. Markovic, A General Method In Synthesis Of Pass-
Transistor Circuits, 2000, A general method in synthesis
and signal arrangement in different pass-transistor network
topologies is analyzed. Several pass-transistor logic families
have been introduced recently, but no systematic synthesis
method is available that takes into account the impact of
signal arrangement on circuit performance. In this paper we
develop a Karnaugh map based method that can be used to
efficiently synthesize pass transistor logic circuits, which
have balanced loads on true and complementary input
signals. The method is applied to the generation of basic two-
input and three-input logic gates in CPL, DPL and DVL. The
method is general and can be extended to synthesize any
pass-transistor network.

Weizhong Zhao, BlastReduce: High Performance Short
Read Mapping with MapReduce,2007,Next-generation
DNA sequencing machines generate sequence data at an
unprecedented rate, but traditional single-processor sequence
alignment algorithms are struggling to keep pace with them.
Blast Reduce is a new parallel read mapping algorithm
optimized for aligning sequence data from those machines to
reference genomes, for use in a variety of biological analyses,
including SNP discovery, genotyping, and personal
genomics. It is modeled after the widely used BLAST
sequence alignment algorithm, but uses the open-source
Hadoop implementation of Map Reduce to parallelize
execution to multiple compute nodes. To evaluate its
performance, Blast Reduce was used to map next generation
sequence data to a reference bacterial genome in a variety of
configurations.

Alan Mishchenko, Fast Heuristic Minimization of
Exclusive-Sums-of-Products, Exclusive-Sums-Of-Products
(ESOPs) play an important role in logic synthesis and design-
for-test. This paper presents an improved version of the
heuristic ESOP minimization procedure proposed . The
improvements concern three aspects of the procedure :(1)
computation of the starting ESOP cover; increase of the
search space for solutions by applying a larger set of cube
transformations; development of specialized data structures
for robust manipulation of ESOP covers. Comparison of the
new heuristic ESOP minimize EXORCISM-4 with other
minimizes (EXMIN2 , MINT , EXORCISM and
EXORCISM show that, in most cases, EXORCISM-4
produces results of comparable or better quality on average
ten times faster.

3. Problem Statement

For Boolean logic functions of variables more than six, it is
difficult to handle the minimization process using K-map
technique. To get optimum solution one must be sure that the
best selection has been made. The tabulation method
overcomes this difficulty. It is a specific step-by-step
procedure that is guaranteed to produce a simplified
standard-form expression for a Boolean logic function. It can
be applied to problems with many variables and has the
advantage of being suitable for machine computation.
However, it is quite tedious and is prone to mistakes because
of its routine, and it is a monotonous process. It is
cumbersome to manipulate Boolean expressions by hand, so
a tool to verify the results is helpful. We developed a
“minimization function checker” which verifies the
correctness of the minimization results of Boolean logic
functions.

4. Proposed Work

4.1 Flip flop based Boolean function

In this, we present a novel method to efficiently process SR
flip flop spatial queries with conjunctive Boolean constraints
on textual content. Our method combines an R-tree with an
inverted index by the inclusion of spatial references in
posting lists. The result is a disk resident, dual-index data
structure that is used to proactively prune the search space.
The nodes are visited in best-first order. A node entry is
placed in the priority queue if there exists at least one object
that satisfies the Boolean condition in the sub tree pointed by
the entry; a novel method for evaluating complex
expressions, which leverages existing techniques for
evaluating leaf-level conjunctions, and then uses a bottom-up
evaluation technique to only process the relevant parts of the
complex expressions that contain the matching conjunctions.
We develop two such bottom-up evaluation techniques, one
based on Dewey IDs and another based on mapping Boolean
expressions to one-dimensional intervals. Our experimental
evaluation based on data obtained from an online advertising
exchange shows that the proposed techniques are efficient
and scalable, both with respect to space usage as well as
evaluation time. In the integer domain better and more
efficient methodologies for solving equations are available.

Paper ID: NOV162979 1677

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

The conversion leads us to a system of polynomial equations
obeying certain characteristics. A method is proposed for
solving these equations. The most computationally
demanding step is the repeated multiplication of polynomials.
We develop a method for this problem that is significantly
faster than the standard approach. We also introduce another
variant of the method, the so-called hybrid approach that
leads to reduced memory requirements. Such applications
would benefit from efficient algorithms for representing and
manipulating Boolean functions symbolically. Unfortunately,
many of the tasks one would like to perform with Boolean
functions, such as testing whether there exists any assignment
of input variables such that a given Boolean expression
evaluates to 1.

Figure 1: Logic Circuit of Conventional SR-Flip flop

Figure 2: Logic Circuit of Conventional SR-Flip Flop

Figure 3: NOR gates SR-FF based on K-map

4.2 Module Description

4.2.1 Single bit Flip Flop
A single-bit flip-flop has two latches (Master latch and slave
latch). The latches need “Clk” and “Clk‟ ” signal to perform
operations, such as Figure2 shows. In order to have better
delay from Clk-> Q, we will regenerate “Clk” from “Clk‟ ”.
Hence we will have two inverters in the clock path.

Figure 2: Single bit flipflop

4.2.2 Merging of Flip Flop
Figure 3 shows an example of merging two 1-bit flip-flops
into one 2-bit flip-flop. Each 1-bit flip-flop contains two
inverters, master-latch and slave-latch. Due to the
manufacturing rules, inverters in flip-flops tend to be
oversized. As the process technology advances into smaller
geometry nodes like 65nm and beyond, the minimum size of
clock drivers can drive more than one flip-flop. Merging
single-bit flip-flops into one multi-bit flip-flop can avoid
duplicate inverters, and lower the total clock dynamic power
consumption. The total area contributing to flip-flops can be
reduced as well.

Figure 3: An example of merging two 1-bit flip-flops into
one 2-bit flip-flop.

4.2.3 Multi bit Flip Flop
Figure 4.a shows an example of dual-bit flip-flop cell. It has
two data input pins, two data output pins, one clock pin and
reset pin. Use dual-bit flip-flop can get the benefits of lower
power consumption then single-bit, and almost no other
additional costs to pay. Figure 4.b shows the true table of
dual-bit flip-flop cell. We could find that when CK is
positive edge, the value of Q1 will pass to D1, and the value
of Q2 will pass to D2. Or Q1 and Q2 will keep original value

Figure 4 (a): A dual-bit flip-flop cell.

4.2 4 Transformation of Placement Space
We have shown that the shape of a feasible placement region
associated with one pin pi connecting to a flip-flop fi would
be diamond in previous analysis. Since there may exist
several pins connecting to fi,the legal placement region of f i
are the overlapping area of several regions. As shown in Fig.
6(a), there are two pins p1 and p2 connecting to a flip-flop f1,
and the feasible placement regions for the two pins are
enclosed by dotted lines, which are denoted by Rp (p1) and
Rp(p2), respectively. Thus, the legal placement region R (f1)
for f1 is the overlapping part of these regions. In Fig. 6(b), R
(f1) and R (f2) represent the legal placement regions of f1 and
f2. Because R(f1) and R(f2) overlap, we can replace f1 and
f2 by a new flip-flop f3 without violating the timing
constraint, as shown in Fig. 6(c).

Paper ID: NOV162979 1678

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

However, it is not easy to identify and record feasible
placement regions if their shapes are diamond. Moreover,
four coordinates are required to record an overlapping region
[see Fig. 7(a)]. Thus, if we can rotate each segment 45°, the
shapes of all regions would become rectangular, which
makes identification of overlapping regions become very
simple. For example, the legal placement region, enclosed by
dotted lines in Fig. 7(a), can be identified more easily if we
change its original coordinate system [see Fig. 7(b)]. In such
condition, we only need two coordinates, which are the left-
bottom corner and right-top corner of a rectangle, as shown
in Fig. 7(b), to record the overlapped area instead of using
four coordinates. The equations used to transform coordinate
system are shown in (1) and (2). Suppose the location of a
point in the original coordinate system is denoted by (x, y).
After coordinate transformation, the new coordinate is
denoted by (x‟, y’).

Then, we can find which flip-flops are merge able according
to whether their feasible regions overlap or not. Since the
feasible placement region of each flip-flop can be easily

identified after the coordinate transformation, we simply use
(3) and (4) to determine whether two flip-flops overlap or

not.

where W(f1) and H(f1) [W(f2) and H(f2)] denote the width
and height of R(f1) [R(f2)], respectively, in Fig. 8, and the
function DIS_X(f1, f2) and (DIS_Y(f1, f2)) calculates the
distance between centers of R(f1) and R(f2) in x-direction
(y-direction).

Figure 5: (a) Feasible regions (p1) and Rp(p2) for pins p1
and p2 which are enclosed by dotted lines, and the legal

region R(f1) for f1 which is enclosed by solid lines. (b) Legal
placement regions R(f1) and R(f2) for f1 and f2,

and the feasible area R3 which is the overlap region of R(f1)
and R(f2). (c) New flip-flop f3 that can be used to replace f1
and f2 without violating timing constraints for all pins p1, p2,

p3, and p4.

Figure 6: Overlapping relation between available placement
regions of f 1 and f 2.

4.2.5 Build a Combination Table
If we want to replace several flip-flops by a new flip-flop fi‟
(note that the bit width of f I should equal to the summation
of bit widths of these flip-flops), we have to make sure that
the New flip-flop fi‟ is provided by the library L when the
feasible regions of these flip-flops overlap. In this paper, we
will build a combination table, which records all possible
combinations of flip-flops to get feasible flip-flops before
replacements. Thus, we can gradually replace flip-flops
according to the order of the combinations of flip-flops in
this table. Since only one combination of flip-flops needs to
be considered in each time, the search time can be reduced
greatly.

We use a binary tree to represent one combination for
simplicity. Each node in the tree denotes one type of a flip-
flop in L. The types of flip-flops denoted by leaves will
constitute the type of the flip-flop in the root. For each node,
the bit width of the corresponding flip-flop equals to the bit
width summation of flip-flops denoted by its left and right
child [Fig. 9(e)]. Let ni denote one combination in T, and
b(ni) denote its bit width. In the beginning, we initialize a
combination ni for each kind of flip-flops in L (see Line 1).
Then, in order to represent all combinations by using a binary
tree, we may add pseudo types, which denote those flip-flops
that are not provided by the library. For example, assume that
a library only supports two kinds of flip-flops whose bit
widths are 1 and 4, respectively.

In order to use a binary tree to denote a combination whose
bit width is 4, there must exist flip-flops whose bit widths are
2 and 3 in L [please see the last two binary trees in Fig. 9(e)
for example].the combination table has been created by
creating two pseudotypes. For example, suppose a library L
only provides two types of flip-flops, whose bit widths are 1
and 4 (i.e., bmin = 1 and bmax = 4), in Fig. 9(a). We first
initialize two combinations n1 and n2 to represent these two
types of flip-flops in the table T [see Fig. 9(a)]. Next, the
function Insert Pseudo Type is performed to check whether
the flip-flop types with bit widths between 1 and 4 exist or
not. Thus, two kinds of flip-flop types whose bit widths are 2
and 3 are added into L, and all types of flip-flops in L are
sorted according to their bit widths [see Fig. 9(b)]. Now, for
each combination in T, we would build a binary tree with 0-
level, and the root of the binary tree denotes the combination.
Next, we try to build new legal combinations according to the
present combinations. By combing two 1-bit flip-flops in the
first combination, a new combination n3 can be obtained [see
Fig. 9(c)]. Similarly, we can get a new combination n4 (n5)
by combining n1 and n3(two n3‟s) [see Fig. 9(d)]. Finally, n6
is obtained by combing n1 and n4. All possible combinations
of flip-flops are shown in Fig. 9(e). Among these

Paper ID: NOV162979 1679

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

combinations, n5 and n6 are duplicated since they both
represent the same condition, which replaces four 1-bit flip-
flops by a 4-bit flip-flop. To speed up our program, n6 is
deleted from T rather than n5 because its height is larger.
After this procedure, n4 becomes an unused combination [see
Fig. 9(e)] since the root of binary tree of n4 corresponds to
the pseudo type, type3, in L and it is only included in n6.
After deleting n6, n4 is also need to be deleted.

The last combination table T is shown in Fig. 9(f). In order to
enumerate all possible combinations in the combination
table, all the flip-flops whose bit widths range between b max
and b min and do not exist in L should be inserted into L in
the above procedure. However, this is time consuming. To
improve the running time, only some types of flip-flops need
to be inserted. There exist several choices if we want to build
a binary tree corresponding to a type j. However, the
complete binary tree has the smallest height. Thus, for
building a binary tree of a certain combination ni whose type
is type j , only the flip-flops whose bit widths are (_b(type j
)/2_) and (b(type j)–_b(type j)/2_) should exist in L. New
method for inserting flip-flop in two pseudo type has been
carried out In the new procedure, it first adds two pseudo
types of flip-flops whose bit widths are 3 and 4, respectively,
for the flip-flop with 7-bit (i.e., L becomes [1 3 4 7]). Next,
the flip-flop whose bit width is 2 is added to L for the flip-
flop with 4-bit (i.e., L becomes [1 2 3 4 7]). For the flip-flop
with 3-bit, the procedure stops because flop-flops with 1 and
2 bits already exist in L. In the new procedure, we do not
need to insert 5- and 6-bit pseudo types to L.

Fig. 7. Example of building the combination table. (a)
Initialize the library L and the combination table T . (b)
Pseudo types are added into L, and the corresponding binary
tree is also build for each combination in T. (c) New
combination n3 is obtained from combining two n1s. (d)
New combination n4 is obtained from combining n1 and n3,
and the combination n5 is obtained from combining two n3s.
(e) New combination n6 is obtained from combining n1 and
n4. (f) Last combination table is obtained after deleting the
unused combination in (e).

4.2.6 Merge Flip-Flops
We have shown how to build a combination table in Section
III-B. Now, we would like to show how to use the
combination table to combine flip-flops in this subsection. To
reduce the complexity, we first divide the whole placement
region into several sub regions, and use the combination table
to replace flip-flops in each sub region.

Then, several sub regions are combined into a larger sub
region and the flip-flops are replaced again so that those flip-
flops in the neighboring sub regions can be replaced further.
Finally, those flip-flops with pseudo types are deleted in the
last stage because they are not provided by the supported
library. Fig. 10 shows this flow.

1) Region Partition (Optional): To speed up our problem, we
divide the whole chip into several sub regions. By suitable
partition, the computation complexity of merging flip-flops
can be reduced significantly (the related quantitative analysis
will be shown in Section V). As shown in Fig. 11, we divide
the region into several sub regions, and each sub region
contains six bins, where a bin is the smallest unit of a sub
region.

2) Replacement of Flip-flops in Each Sub region: Before
illustrating our procedure to merge flip-flops, we first give an
equation to measure the quality if two flip-flops are going to
be replaced by a new flip-flop as follows:

Cost = routing length − α × √available_area (5)

Where routing_length denotes the total routing length
between the new flip-flop and the pins connected to it, and
available_ area represents the available area in the feasible
region for placing the new flip-flop. α is a weighting factor

Paper ID: NOV162979 1680

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

(the related analysis of the value α will be shown in Section
V). The cost function includes the term routing_length to
favor a replacement that induces shorter wire length. Besides,
if the region has larger available space to place a new flip-
flop, it implies that it has higher opportunities to combine
with other flip-flops in the future and more power reduction.
Thus, we will give it a smaller cost. Once the flip-flops
cannot be merged to a higher-bit type (as the 4-bit
combination n4 in Fig. 9), we ignore the available area in the
cost function, and hence α is set to 0. After a combination has
been built, we will do the replacements of flip-flops
according to the combination table.

First, we link flip-flops below the combinations
corresponding to their types in the library. Then, for each
combination n in T, we serially merge the flip-flops linked
below the left child and the right child of n from leaves to
root. Based on its binary tree, we can find the combinations
associated with the left child and right child of the root.
Hence, the flip-flops in the lists, named lleft and lright, linked
below the combinations of its left child and its right child are
checked (see Lines 2 and 3). Then, for each flip-flop f i in
left, the best flip-flop best in right, which is the flip-flop that
can be merged with f i with the smallest cost recorded in
cbest, is picked. For each pair of flip-flops in the respective
list, the combination cost [based on (5)] is computed if they
can be merged and the pair with the smallest cost is chosen
.finally, we add a new flip-flop f’ in the list of the
combination n and remove the picked flip-flops which
constitutes the f „.For example, given a library containing
three types of flip-flops (1-, 2-, and 4-bit), we first build a
combination table T as shown in Fig. 12(a). In the beginning,
the flip-flops with various types are, respectively, linked
below n1, n2, and n3 in T according to their types. Suppose
we want to form a flip flop in n4, which needs two 1-bit flip-
flops according to the combination table.

Each pair of flip-flops in n1 are selected and checked to see
if they can be combined (note that they also have to satisfy
the timing and capacity constraints described in Section II). If
there are several possible choices, the pair with the smallest
cost value is chosen to break the tie. In Fig. 12(a), f1 and f2
are chosen because their combination gains the smallest cost.
Thus, we add a new node f3 in the list below n4, and then
delete f1 and f2 from their original list [see Fig. 12(b)].
Similarly, f4 and f5 are combined to obtain a new flip-flop f6,
and the result is shown in Fig. 12(c). After all flip-flops in the
combinations of 1-level trees (n4 and n5) are obtained as
shown in Fig. 12(d), we start to form the flip-flops in the
combinations of 2-level trees (n6, and n7). In Fig. 12(e),
there exist some flip-flops in the lists below n2 and n4, and
we will merge them to get flip-flops in n6 and n7,
respectively. Suppose there is no overlap region between the
couple of flip-flops in n2 and n4. It fails to form a 4-bit flip-
flop in n6. Since the 2-bit flip-flops f3 and f6 are merge able,
we can combine them to obtain a 4-bit flip-flop f10 in n7.

 Finally, because there exists no couple of flip-flops that can
be combined further, the procedure finishes as shown in Fig.
12(f). If the available overlap region of two flip-flops exists,
we can assign a new one to replace those flip-flops. Once

there is sufficient space to place the new flip-flop in the
available region, the algorithm will perform the replacement,
and the new generated flip-flop will be placed in the grid that
makes the wire length between the flip-flop and its connected
pins smallest. If the capacity constraint of the bin, Bk, which
the grid belongs to will be violated after the new flip-flop is
placed on that grid, we will search the bins near Bk to find a
new available grid for the new flip-flop. If none of bins
which are overlapped with the available region of new flip-
flop can satisfy the capacity constraint after the placement of
new flip-flop, the program will stop the replacement of the
two flip-flops.

3) Bottom-Up Flow of Sub region Combinations (Optional):
As shown in Fig. 13(a), there may exist some flip-flops in the
boundary of each sub region that cannot be replaced by any
flip-flop in its sub region. However, these flip-flops may be
merged with other flip-flops in neighboring sub regions as
shown in Fig. 13(b). Hence, to reduce power consumption
furthermore, we can combine several sub regions to obtain a
larger sub region and perform the replacement again in the
new sub region again.

The procedure repeats until we cannot achieve any
replacement in the new sub region. Fig. 14 gives an example
for this hierarchical flow. As shown in Fig. 14(a), suppose we
divide a chip into 16 sub regions in the beginning. After the
replacement of flip-flops is finished in each sub region, four
sub regions are combined to get a larger one as shown in Fig.
14(b). Suppose some flip-flops in new sub regions still can
be replaced by new flip-flops in other new sub regions, we
would combine four sub regions in Fig. 14(b) to get a larger
one as shown in Fig. 14(c) and perform the replacement in
the new sub region again.

As the procedure repeats in a higher level, the number of
merge able flip-flops gets fewer. However, it would spend
much time to get little improvement for power saving. To
consider this issue, there exists a trade-off between power
saving and time consuming
in our program.

Figure 10: Detailed flow to merge flip-flops.

For example, if there still exists a flip-flop, fi , belonging to
n3 after replacements in Fig. 9(f), we have to de-replace fi
into two flip-flops originally belongs to n1. After de-
replacing, we will do the replacements of flip-flops according
to T without consideration of the combinations whose
corresponding type is pseudo in L.

Paper ID: NOV162979 1681

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 13: Combination of flip-flops near sub region
boundaries. (a) Result of replace flip-flops in each sub

region. (b) Result of replace flip-flops in each new sub region
which is obtained from combining twelve sub region in (a).

Figure 14: Combination of sub regions to a larger one. (a)
Placement is originally partitioned into 16 sub regions for

replacement. (b) Sub region bounded by bold line is obtained
from combining four neighboring sub regions in (a). (c) Sub
region bounded by bold line is obtained from combining four

sub regions in (b).

4.2.7 Boolean Expressions
Boolean Expression: Combining the variables and operation
yields Boolean expressions. Boolean Function: A Boolean
function typically has one or more input values and yields a
result, based on these input value, in the range {0, 1}.

A Boolean operator can be completely described using a
table that list inputs, all possible values for these inputs, and
the resulting values of the operation. A truth table shows the
relationship, in tabular form, between the input values and
the result of a specific Boolean operator or function on the
input variables.

The AND operator is also known as a Boolean product. The
Boolean expression xy is equivalent to the expression x * y
and is read “x and y.” The behavior of this operator is
characterized by the truth table.

4.2.8 Boolean Identities
Boolean expression can be simplified, but we need new
identities, or laws, that apply to Boolean algebra instead of
regular algebra.

Table 5: Basic Identities of Boolean Algebra

4.2.9 Flip-Flops
Many people use the terms latch and flip-flop
interchangeably. Technically, a latch is level triggered,
whereas a flip-flop is edge triggered.

In order to “remember” a past state, sequential circuits rely
on a concept called feedback. This simply means the output
of a circuit is fed back as an input to the same circuit. A more
useful feedback circuit is not composed of two NOR do gates
resulting in the most basic memory unit call an SR flip-flop.
SR stands for “set/reset.”
Q(t) means the value of the output at time t. Q(t+1) is the
value of Q after the next clock pulse.

When both S and R are 1, the SR flip-flop is unstable.

5. Conclusion

This is evidence in section 7 and 8 where the Flip Flop
Extensions at 87.5% active states utilization is designed with
one gate less than the conventional SR-Flip Flop. The
uniqueness of this study is that computer memory speed
performance can be enhanced through conventional SR-FF
modification just as it is currently being done with its
processor counterpart. This is a great advantage in
performance over the conventional Flip Flops because fewer
gates enhance performance (i.e., gate delay represents
performance). The Flip Flop extension memory cell is also
portable (less transistors) and cheaper because it requires
fewer transistors as against the conventional Flip Flops. An
important issue in digital device design is that numbers of
transistors represent hardware cost because in essence,
maximizing performance and minimizing cost in digital
devices are part of the factors in seeking alternative design on
more efficient and effective Flip flops. Efforts should be
geared towards verifying the effectiveness and efficiency of
these newly design Flip Flops Extension over the existing
conventional Flip Flops.

References

[1] J. P. Abraham and S. Mathew, An Attempt to Improve
the Processor Performance by Proper Memory
Management for Branch Handling, IJCSEA, 2013,
Vol.3, No.4

[2] F. Hamzaoglu, Y. Te, A. Keshavarzi, and K. Zhang,
Dual Vt-SRAM cells with full-swing single-ended bit

Paper ID: NOV162979 1682

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

line sensing for high-performance on-chip cache in
0.13μm technology generation, International
Symposium on Low Power Electronics and Design, pp.
15–19, 2000

[3] J. Inouye, P Molloy and M. Wisler, Overcoming the
Memory Wall, Oregon State University, 2012

[4] L. Jamal, Sharmin, A. Mottalib, H. Babu, Design and
Minimization of Reversible Circuits for a Data
Acquisition and Storage System, IJET, 2012, Vol. 2

[5] Jyoti, M. R. Tripathy and Vijeta, Comparison of
Conditional Internal Activity Techniques for Low
Power Consumption and High Performance Flip-Flops,
International Journal of Computer Science and
Telecommunications, ISSN 2047-3338, 2012, Volume
3, Issue 2

[6] T. Kavitha and V. Sumalatha, A new Reduced Clock
Power Flip Flop for future System On-Chip (SOC)
Applications, IJCTT, 2012, Vol. 3.

[7] C. Kim and K. Roy, Dynamic Vt SRAM: a leakage
tolerant cache memory for low voltage microprocessor,
in Proc. of International Symposium on Low Power
Electronics and Design, pp. 251-254, 2002

[8] J. P. Abraham and S. Mathew, An Attempt to Improve
the Processor Performance by Proper Memory
Management for Branch Handling, IJCSEA, 2013,
Vol.3, No.4

[9] F. Hamzaoglu, Y. Te, A. Keshavarzi, and K. Zhang,
Dual Vt-SRAM cells with full-swing single-ended bit
line sensing for high-performance on-chip cache in
0.13μm technology generation, International
Symposium on Low Power Electronics and Design, pp.
15–19, 2000

[10] J. Inouye, P Molloy and M. Wisler, Overcoming the
Memory Wall, Oregon State University, 2012

[11] L. Jamal, Sharmin, A. Mottalib, H. Babu, Design and
Minimization of Reversible Circuits for a Data
Acquisition and Storage System, IJET, 2012, Vol. 2

[12] Jyoti, M. R. Tripathy and Vijeta, Comparison of
Conditional Internal Activity Techniques for Low
Power Consumption and High Performance Flip-Flops,
International Journal of Computer Science and
Telecommunications, ISSN 2047-3338, 2012, Volume
3, Issue 2

[13] T. Kavitha and V. Sumalatha, A new Reduced Clock
Power Flip Flop for future System On-Chip (SOC)
Applications, IJCTT, 2012, Vol. 3.

[14] C. Kim and K. Roy, Dynamic Vt SRAM: a leakage
tolerant cache memory for low voltage microprocessor,
in Proc. of International Symposium on Low Power
Electronics and Design, pp. 251-254, 2002.

[15] A.S.Syed Navaz, C.Prabhadevi & V.Sangeetha”Data
Grid Concepts for Data Security in Distributed
Computing” January 2013, International Journal of
Computer Applications, Vol 61 – No 13, pp 6-11.

[16] A.S.Syed Navaz, H.Iyyappa Narayanan & R.Vinoth.”
Security Protocol Review Method Analyzer
(SPRMAN)”, August – 2013, International Journal of
Advanced Studies in Computers, Science and
Engineering, Vol No – 2, Issue No – 4, pp. 53-58.

Author Profile

M.Valli received M.Sc in Information Technology
and M.Phil in Computer Science. Currently she is
working as an Asst.Professor at St.Joseph College of
Arts & Science (Autonomous), Cuddalore. India. Her
areas of interest are Network Security, Computer

Graphics & Data mining.

Dr. R. Periyasamyi received M.Sc., M.Phil.,
PGDCA., PhD. Currently she is working as an
Associate Professor at Nehru Memorial College
(Autonomous), Trichy. India. His areas of interest are
Data mining & Neural Networks.

Paper ID: NOV162979 1683

