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Abstract: In this paper, we present a novel method to efficiently process SR flip flop spatial queries with conjunctive Boolean 
constraints on textual content. Our method combines an R-tree with an inverted index by the inclusion of spatial references in posting 
lists. The result is a disk resident, dual-index data structure that is used to proactively prune the search space. R-tree nodes are visited in 
best-first order. A node entry is placed in the priority queue if there exists at least one object that satisfies the Boolean condition in the 
sub tree pointed by the entry; otherwise, the Sub tree is not further explored. We show via extensive experimentation with real spatial 
databases that our method has increased performance over alternate techniques while scaling to large number of objects. 
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1. Introduction 

Boolean algebra forms a cornerstone of computer science 
and digital system design. Many problems in digital logic 
design and testing, artificial intelligence, and combinatory 
can be expressed as a sequence of operations on Boolean 
functions. Such applications would benefit from efficient 
algorithms for representing and manipulating Boolean 
functions symbolically. Unfortunately, many of the tasks one 
would like to perform with Boolean functions, such as testing 
whether there exists any assignment of input variables such 
that a given Boolean expression evaluates to 1 , or two 
Boolean expressions denote the same function (equivalence) 
require solutions to NP-Complete or Complete problems . 
Consequently, all known approaches to performing these 
operations require, in the worst case, an amount of computer 
time that grows exponentially with the size of the problem. 
This makes it difficult to compare the relative efficiencies of 
different approaches to representing and manipulating 
Boolean functions. In the worst case, all known approaches 
perform as poorly as the naive approach of representing 
functions by their truth tables and defining all of the desired 
operations in terms of their effect on truth table entries. In 
practice, by utilizing more clever representations and 
manipulation algorithms, we can often avoid these 
exponential computations. Flip-Flops are digital circuits with 
two stable, self-maintaining states that are used as storage/ 
memory elements such as Random Access Memory, Caches 
Memory and Read Only Memory. They are also very useful 
in the following electronic digital devices design; Sequence 
Detector, Data Synchronizer, Frequency Divider, Registers, 
Counters and Registers in Central Processing Unit  for data 
transfer. They are derived from Sequential Logic Circuits 
which are the main electronics circuits that make the 
development of computers possible. The ability of computer 
systems to operate without the continuous human 
intervention is solely achieved through sequential logic 
circuits, the building blocks of Flip Flops. With the growing 
popularity of portable devices, power reduction has become a 
popular design goal for advanced design application, whether 
mobile or not. Reducing power consumption in chips enables 

better, cheaper products to be designed and power-related 
chip failures to be minimized. As a result, how to minimize 
power consumption has become an important design goal 
that every chip designer must take care. Several lower power 
design techniques have played an important role in the design 
flow. Clock gating methodology is used for the register bank 
to replace the multiplexers and it can avoid the operation of 
reloading the same data value. The clock gating technique 
could reduce the dynamic power consumption efficiently. 
The multi-Vth concept is aimed at using multi-Vth cell with 
satisfying performance to reduce leakage consumption, and 
replace lower Vth (LVT) cells by high Vth (HVT) ones, if 
there is room for slack. Multiple Supply Multiple Voltage 
(MSMV) supplies of different voltages are used for core 
logic, base on satisfy performance or functional requirement 
to adjust operating voltage for each domain, even shut off 
this domain. 

Given a design that the locations of the cells have been 
determined; the power consumed by clocking can be reduced 
further by replacing several flip-flops with multi-bit flip-
flops. During clock tree synthesis, less number of flip-flops 
means less number of clock sinks. Thus, the resulting clock 
network would have smaller power consumption and uses 
less routing resource. Multi-bit flip-flop is an effective 
power-saving implementation methodology by merging 
single-bit flip-flops in the design. Using multi-bit flip-flops 
can reduce clock dynamic power and the total flip-flop area 
effectively 

Figure 1: Example of ASIC chip power distribution
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Figure 1 is an ASIC chip power distribution. We can see that 
the flip-flops on clock tree accounted for a large proportion 
of power consumption. Although the power distribution will 
vary with different ASIC design, reducing power 
consumption of the flip-flop on clock tree can eliminate total 
power consumption efficiently. 

1.1 Motivation for the study 

It has been observed that computer performance is primarily 
affected by the processor and memory. If either one reaches 
its limits (which may initially be the memory), the 
performance of the whole system degrades. As 
semiconductor technology advances, the performance gap 
between processor - the Central Processing Unit and main 
memory - the Random Access Memory has become one of 
the major issues in computer design. In the past 35 years, an 
exponential rate of improvement has been witnessed in 
semiconductor technology. This imbalance has become one 
major bottleneck in further improving the computer 
performance. One reason memory system performance has 
consistently lagged processor performance is that memory 
systems typically consist of one or more chips that are 
designed and manufactured separately from the processor, 
and the performance of the interconnected multi-chip 
memory system is difficult to scale to achieve higher data 
rate and lower access latency. Memory system data rates are 
increasing with each new generation of memory devices at 
the rate of 100% every three years, and memory row cycle 
times. The collective trends are increasing the ratio of row 
cycle times to the duration of data bursts on the data bus.
This is why it is imperative to critically evaluate the existing 
conventional SR-FF and the need to bridge the speed gap 
between memory and processor by enhancing the memory 
speed through logical modification frameworks of the 
conventional SR-FF which utilizes states. With the 
development of information technology, data volumes 
processed by many applications will routinely cross the scale 
threshold, which would in turn increase the computational 
requirements. Efficient parallel clustering algorithms and 
implementation techniques are the key to meeting the 
scalability and performance requirements entailed in such 
scientific data analyses. So far, several researchers have 
proposed some parallel clustering algorithms. They assume 
that all objects can reside in main memory at the same time; 
b) their parallel systems have provided restricted 
programming models and used the restrictions to parallelize 
the computation automatically. Both assumptions are 
prohibitive for very large datasets with millions of objects. 
Therefore, dataset oriented parallel clustering algorithms 
should be developed. Map Reduce is a programming model 
and an associated implementation for processing and 
generating large datasets that is amenable to a broad variety 
of real-world tasks. Users specify the computation in terms of 
a map and a reduce function, and the underlying runtime 
system automatically parallelizes the computation across 
large-scale clusters of machines, handles machine failures, 
and schedules inter-machine communication to make 
efficient use of the network and disks. It Reduce runtimes 
with fault tolerance and dynamic flexibility support .In this 
paper, we adapt k-means algorithm in map Reduce 
framework which is implemented by the clustering method 

applicable to large scale data. We conduct comprehensive 
experiments to evaluate the proposed algorithm. The results 
demonstrate that our algorithm can effectively deal with large 
scale datasets. The rest of the paper is organized as follows.  
We presented our parallel k-means algorithm based on Map 
Reduce framework. In this paper, we propose an efficient 
method for solving systems of Boolean equations. Rather 
than confining ourselves to the Boolean domain, our idea is 
to convert the problem so that we operate in the integer 
domain. The integer domain is a richer domain to work with, 
as algorithms there are well-developed.  

2. Related Works 

Efficiently Evaluating Complex Boolean Expressions ,
Marcus Fontoura, 2010,The problem of efficiently 
evaluating a large collection of complex Boolean expressions 
– beyond simple conjunctions and Disjunctive/Conjunctive 
Normal Forms (DNF/CNF)– occurs in many emerging online 
advertising applications such as advertising exchanges and 
automatic targeting. The simple solution of normalizing 
complex Boolean expressions to DNF or CNF form, and then 
using existing methods for evaluating such expressions is not 
always effective because of the exponential blow-up in the 
size of expressions due to normalization. We thus propose a 
novel method for evaluating complex expressions, which 
leverages existing techniques for evaluating leaf-level 
conjunctions, and then uses a bottom-up evaluation technique 
to only process the relevant parts of the complex expressions 
that contain the matching conjunctions. We develop two such 
bottom-up evaluation techniques, one based on Dewey IDs 
and another based on mapping Boolean expressions to one-
dimensional intervals. Our experimental evaluation based on 
data obtained from an online advertising exchange shows that 
the proposed techniques are efficient and scalable, both with 
respect to space usage as well as evaluation time.

A Shannon Based Low Power Adder Cell for Neural 
Network Training K.Nehru, 2010,The proposed full adders 
for low power and high performance neural network training 
circuits has been implemented using Shannon decomposition 
based technique for sum and carry operation. The hardware 
includes multiplier circuit for product term and an adder 
circuit to perform summation. The proposed full adder is 
designed using tanner EDA tools and the resulting 
parameters such as 25.6% improvement in power dissipation 
and 20% improvement in transistor count from the simulated 
output when compared with MC IT based adder cell.

Debajit Sensarma, On An Optimization Technique Using 
Binary Decision Diagram, 2012, Two-level logic 
minimization is a central problem in logic synthesis, and has 
applications in reliability analysis and automated reasoning. 
This paper represents a method of minimizing Boolean sum 
of products function with binary decision diagram and with 
disjoint sum of product minimization. Due to the symbolic 
representation of cubes for large problem instances, the 
method is orders of magnitude faster than previous 
enumerative techniques. But the quality of the approach 
largely depends on the variable ordering of the underlying 
BDD. The application of Binary Decision Diagrams (BDDs) 
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as an efficient approach for the minimization of Disjoint 
Sums-of-Products (DSOPs). DSOPs are a starting point for 
several applications. The use of BDDs has the advantage of 
an implicit representation of terms. Due to this scheme the 
algorithm is faster than techniques working on explicit 
representations and the application to large circuits that could 
not be handled so far becomes possible. Theoretical studies 
on the influence of the BDDs to the search space are carried 
out. In experiments the proposed technique is compared to 
others. The results with respect to the size of the resulting 
DSOP are as good or better as those of the other techniques.

Randal E. Bryant, Graph-Based Algorithms For Boolean 
Function Manipulation, 2008, in this paper we present a 
new data structure for representing Boolean functions and an 
associated set of manipulation algorithms. Functions are 
represented by directed, acyclic graphs in a manner similar to 
the representations introduced but with further restrictions on 
the ordering of decision variables in the graph. Although a 
function requires, in the worst case, a graph of size 
exponential in the number of arguments, many of the 
functions encountered in typical applications have a more 
reasonable representation. Our algorithms have time 
complexity proportional to the sizes of the graphs being 
operated on, and hence are quite efficient as long as the 
graphs do not grow too large. We present experimental 
results from applying these algorithms to problems in logic 
design verification that demonstrate the practicality of our 
approach.

D. Markovic, A General Method In Synthesis Of Pass-
Transistor Circuits, 2000, A general method in synthesis 
and signal arrangement in different pass-transistor network 
topologies is analyzed. Several pass-transistor logic families 
have been introduced recently, but no systematic synthesis 
method is available that takes into account the impact of 
signal arrangement on circuit performance. In this paper we 
develop a Karnaugh map based method that can be used to 
efficiently synthesize pass transistor logic circuits, which 
have balanced loads on true and complementary input 
signals. The method is applied to the generation of basic two-
input and three-input logic gates in CPL, DPL and DVL. The 
method is general and can be extended to synthesize any 
pass-transistor network.

Weizhong Zhao, BlastReduce: High Performance Short 
Read Mapping with MapReduce,2007,Next-generation 
DNA sequencing machines generate sequence data at an 
unprecedented rate, but traditional single-processor sequence 
alignment algorithms are struggling to keep pace with them. 
Blast Reduce is a new parallel read mapping algorithm 
optimized for aligning sequence data from those machines to 
reference genomes, for use in a variety of biological analyses, 
including SNP discovery, genotyping, and personal 
genomics. It is modeled after the widely used BLAST 
sequence alignment algorithm, but uses the open-source 
Hadoop implementation of Map Reduce to parallelize 
execution to multiple compute nodes. To evaluate its 
performance, Blast Reduce was used to map next generation 
sequence data to a reference bacterial genome in a variety of 
configurations. 

Alan Mishchenko, Fast Heuristic Minimization of 
Exclusive-Sums-of-Products, Exclusive-Sums-Of-Products 
(ESOPs) play an important role in logic synthesis and design-
for-test. This paper presents an improved version of the 
heuristic ESOP minimization procedure proposed . The 
improvements concern three aspects of the procedure :(1) 
computation of the starting ESOP cover;  increase of the 
search space for solutions by applying a larger set of cube 
transformations;  development of specialized data structures 
for robust manipulation of ESOP covers. Comparison of the 
new heuristic ESOP minimize EXORCISM-4 with other 
minimizes (EXMIN2 , MINT , EXORCISM and 
EXORCISM show that, in most cases, EXORCISM-4
produces results of comparable or better quality on average 
ten times faster. 

3. Problem Statement 

For Boolean logic functions of variables more than six, it is 
difficult to handle the minimization process using K-map 
technique. To get optimum solution one must be sure that the 
best selection has been made. The tabulation method 
overcomes this difficulty. It is a specific step-by-step 
procedure that is guaranteed to produce a simplified 
standard-form expression for a Boolean logic function. It can 
be applied to problems with many variables and has the 
advantage of being suitable for machine computation. 
However, it is quite tedious and is prone to mistakes because 
of its routine, and it is a monotonous process. It is 
cumbersome to manipulate Boolean expressions by hand, so 
a tool to verify the results is helpful. We developed a 
“minimization function checker” which verifies the 
correctness of the minimization results of Boolean logic 
functions. 

4. Proposed Work 

4.1 Flip flop based Boolean function 

In this, we present a novel method to efficiently process SR 
flip flop spatial queries with conjunctive Boolean constraints 
on textual content. Our method combines an R-tree with an 
inverted index by the inclusion of spatial references in 
posting lists. The result is a disk resident, dual-index data 
structure that is used to proactively prune the search space. 
The nodes are visited in best-first order. A node entry is 
placed in the priority queue if there exists at least one object 
that satisfies the Boolean condition in the sub tree pointed by 
the entry; a novel method for evaluating complex 
expressions, which leverages existing techniques for 
evaluating leaf-level conjunctions, and then uses a bottom-up 
evaluation technique to only process the relevant parts of the 
complex expressions that contain the matching conjunctions. 
We develop two such bottom-up evaluation techniques, one 
based on Dewey IDs and another based on mapping Boolean 
expressions to one-dimensional intervals. Our experimental 
evaluation based on data obtained from an online advertising 
exchange shows that the proposed techniques are efficient 
and scalable, both with respect to space usage as well as 
evaluation time. In the integer domain better and more 
efficient methodologies for solving equations are available. 
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The conversion leads us to a system of polynomial equations 
obeying certain characteristics. A method is proposed for 
solving these equations. The most computationally 
demanding step is the repeated multiplication of polynomials. 
We develop a method for this problem that is significantly 
faster than the standard approach. We also introduce another 
variant of the method, the so-called hybrid approach that 
leads to reduced memory requirements. Such applications 
would benefit from efficient algorithms for representing and 
manipulating Boolean functions symbolically. Unfortunately, 
many of the tasks one would like to perform with Boolean 
functions, such as testing whether there exists any assignment 
of input variables such that a given Boolean expression 
evaluates to 1. 

Figure 1: Logic Circuit of Conventional SR-Flip flop 

Figure 2: Logic Circuit of Conventional SR-Flip Flop 

Figure 3: NOR gates SR-FF based on K-map 

4.2 Module Description 

4.2.1 Single bit Flip Flop 
A single-bit flip-flop has two latches (Master latch and slave 
latch). The latches need “Clk” and “Clk‟ ” signal to perform 
operations, such as Figure2 shows. In order to have better 
delay from Clk-> Q, we will regenerate “Clk” from “Clk‟ ”. 
Hence we will have two inverters in the clock path. 

Figure 2: Single bit flipflop 

4.2.2 Merging of Flip Flop 
Figure 3 shows an example of merging two 1-bit flip-flops 
into one 2-bit flip-flop. Each 1-bit flip-flop contains two 
inverters, master-latch and slave-latch. Due to the 
manufacturing rules, inverters in flip-flops tend to be 
oversized. As the process technology advances into smaller 
geometry nodes like 65nm and beyond, the minimum size of 
clock drivers can drive more than one flip-flop. Merging 
single-bit flip-flops into one multi-bit flip-flop can avoid 
duplicate inverters, and lower the total clock dynamic power 
consumption. The total area contributing to flip-flops can be 
reduced as well. 

Figure 3: An example of merging two 1-bit flip-flops into 
one 2-bit flip-flop.

4.2.3 Multi bit Flip Flop 
Figure 4.a shows an example of dual-bit flip-flop cell. It has 
two data input pins, two data output pins, one clock pin and 
reset pin. Use dual-bit flip-flop can get the benefits of lower 
power consumption then single-bit, and almost no other 
additional costs to pay. Figure 4.b shows the true table of 
dual-bit flip-flop cell. We could find that when CK is 
positive edge, the value of Q1 will pass to D1, and the value 
of Q2 will pass to D2. Or Q1 and Q2 will keep original value

Figure 4 (a): A dual-bit flip-flop cell. 

4.2 4 Transformation of Placement Space 
We have shown that the shape of a feasible placement region 
associated with one pin pi connecting to a flip-flop fi would 
be diamond in previous analysis. Since there may exist 
several pins connecting to fi,the legal placement region of f i
are the overlapping area of several regions. As shown in Fig. 
6(a), there are two pins p1 and p2 connecting to a flip-flop f1,
and the feasible placement regions for the two pins are 
enclosed by dotted lines, which are denoted by Rp (p1) and 
Rp(p2), respectively. Thus, the legal placement region R (f1) 
for f1 is the overlapping part of these regions. In Fig. 6(b), R
(f1) and R (f2) represent the legal placement regions of f1 and 
f2. Because R( f1) and R( f2) overlap, we can replace f1 and 
f2  by a new flip-flop f3 without violating the timing 
constraint, as shown in Fig. 6(c).  
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However, it is not easy to identify and record feasible 
placement regions if their shapes are diamond. Moreover, 
four coordinates are required to record an overlapping region 
[see Fig. 7(a)]. Thus, if we can rotate each segment 45°, the 
shapes of all regions would become rectangular, which 
makes identification of overlapping regions become very 
simple. For example, the legal placement region, enclosed by 
dotted lines in Fig. 7(a), can be identified more easily if we 
change its original coordinate system [see Fig. 7(b)]. In such 
condition, we only need two coordinates, which are the left-
bottom corner and right-top corner of a rectangle, as shown 
in Fig. 7(b), to record the overlapped area instead of using
four coordinates. The equations used to transform coordinate 
system are shown in (1) and (2). Suppose the location of a 
point in the original coordinate system is denoted by (x, y).
After coordinate transformation, the new coordinate is 
denoted by (x‟, y’).

Then, we can find which flip-flops are merge able according 
to whether their feasible regions overlap or not. Since the 
feasible placement region of each flip-flop can be easily 

identified after the coordinate transformation, we simply use 
(3) and (4) to determine whether two flip-flops overlap or 

not.

where W( f1) and H( f1) [W( f2) and H( f2)] denote the width 
and height of R( f1) [R( f2)], respectively, in Fig. 8, and the 
function DIS_X( f1, f2) and (DIS_Y( f1, f2)) calculates the 
distance between centers of R( f1) and R( f2) in x-direction 
(y-direction). 

Figure 5: (a) Feasible regions (p1) and Rp(p2) for pins p1
and p2 which are enclosed by dotted lines, and the legal 

region R( f1) for f1 which is enclosed by solid lines. (b) Legal 
placement regions R( f1) and R( f2) for f1 and f2,

and the feasible area R3 which is the overlap region of R( f1)
and R( f2). (c) New flip-flop f3 that can be used to replace f1
and f2 without violating timing constraints for all pins p1, p2, 

p3, and p4.

Figure 6: Overlapping relation between available placement 
regions of f 1 and f 2.

4.2.5 Build a Combination Table 
If we want to replace several flip-flops by a new flip-flop fi‟ 
(note that the bit width of f I should equal to the summation 
of bit widths of these flip-flops), we have to make sure that 
the New flip-flop fi‟ is provided by the library L when the 
feasible regions of these flip-flops overlap. In this paper, we 
will build a combination table, which records all possible 
combinations of flip-flops to get feasible flip-flops before 
replacements. Thus, we can gradually replace flip-flops 
according to the order of the combinations of flip-flops in 
this table. Since only one combination of flip-flops needs to 
be considered in each time, the search time can be reduced 
greatly.   

We use a binary tree to represent one combination for 
simplicity. Each node in the tree denotes one type of a flip-
flop in L. The types of flip-flops denoted by leaves will 
constitute the type of the flip-flop in the root. For each node,
the bit width of the corresponding flip-flop equals to the bit 
width summation of flip-flops denoted by its left and right 
child [Fig. 9(e)]. Let ni denote one combination in T, and 
b(ni ) denote its bit width. In the beginning, we initialize a 
combination ni for each kind of flip-flops in L (see Line 1).
Then, in order to represent all combinations by using a binary 
tree, we may add pseudo types, which denote those flip-flops 
that are not provided by the library. For example, assume that 
a library only supports two kinds of flip-flops whose bit 
widths are 1 and 4, respectively.  

In order to use a binary tree to denote a combination whose 
bit width is 4, there must exist flip-flops whose bit widths are 
2 and 3 in L [please see the last two binary trees in Fig. 9(e) 
for example].the combination table has been created by 
creating two pseudotypes. For example, suppose a library L
only provides two types of flip-flops, whose bit widths are 1 
and 4 (i.e., bmin = 1 and bmax = 4), in Fig. 9(a). We first 
initialize two combinations n1 and n2 to represent these two 
types of flip-flops in the table T [see Fig. 9(a)]. Next, the 
function Insert Pseudo Type is performed to check whether 
the flip-flop types with bit widths between 1 and 4 exist or 
not. Thus, two kinds of flip-flop types whose bit widths are 2 
and 3 are added into L, and all types of flip-flops in L are 
sorted according to their bit widths [see Fig. 9(b)]. Now, for 
each combination in T, we would build a binary tree with 0-
level, and the root of the binary tree denotes the combination. 
Next, we try to build new legal combinations according to the 
present combinations. By combing two 1-bit flip-flops in the 
first combination, a new combination n3 can be obtained [see 
Fig. 9(c)]. Similarly, we can get a new combination n4 (n5)
by combining n1 and n3(two n3‟s) [see Fig. 9(d)]. Finally, n6
is obtained by combing n1 and n4. All possible combinations 
of flip-flops are shown in Fig. 9(e). Among these 
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combinations, n5 and n6 are duplicated since they both 
represent the same condition, which replaces four 1-bit flip-
flops by a 4-bit flip-flop. To speed up our program, n6 is 
deleted from T rather than n5 because its height is larger. 
After this procedure, n4 becomes an unused combination [see 
Fig. 9(e)] since the root of binary tree of n4 corresponds to 
the pseudo type, type3, in L and it is only included in n6. 
After deleting n6, n4 is also need to be deleted.  

The last combination table T is shown in Fig. 9(f). In order to 
enumerate all possible combinations in the combination 
table, all the flip-flops whose bit widths range between b max 
and b min and do not exist in L should be inserted into L in 
the above procedure. However, this is time consuming. To 
improve the running time, only some types of flip-flops need 
to be inserted. There exist several choices if we want to build 
a binary tree corresponding to a type j. However, the 
complete binary tree has the smallest height. Thus, for 
building a binary tree of a certain combination ni whose type 
is type j , only the flip-flops whose bit widths are (_b(type j 
)/2_) and (b(type j )–_b(type j )/2_) should exist in L. New 
method for inserting flip-flop in two pseudo type has been 
carried out In the new procedure, it first adds two pseudo 
types of flip-flops whose bit widths are 3 and 4, respectively, 
for the flip-flop with 7-bit (i.e., L becomes [1 3 4 7]). Next, 
the flip-flop whose bit width is 2 is added to L for the flip-
flop with 4-bit (i.e., L becomes [1 2 3 4 7]). For the flip-flop 
with 3-bit, the procedure stops because flop-flops with 1 and 
2 bits already exist in L. In the new procedure, we do not 
need to insert 5- and 6-bit pseudo types to L.

Fig. 7. Example of building the combination table. (a) 
Initialize the library L and the combination table T . (b) 
Pseudo types are added into L, and the corresponding binary 
tree is also build for each combination in T. (c) New 
combination n3 is obtained from combining two n1s. (d) 
New combination n4 is obtained from combining n1 and n3, 
and the combination n5 is obtained from combining two n3s. 
(e) New combination n6 is obtained from combining n1 and 
n4. (f) Last combination table is obtained after deleting the 
unused combination in (e). 

4.2.6 Merge Flip-Flops 
We have shown how to build a combination table in Section 
III-B. Now, we would like to show how to use the 
combination table to combine flip-flops in this subsection. To 
reduce the complexity, we first divide the whole placement 
region into several sub regions, and use the combination table 
to replace flip-flops in each sub region.

Then, several sub regions are combined into a larger sub 
region and the flip-flops are replaced again so that those flip-
flops in the neighboring sub regions can be replaced further. 
Finally, those flip-flops with pseudo types are deleted in the 
last stage because they are not provided by the supported 
library. Fig. 10 shows this flow.  

1) Region Partition (Optional): To speed up our problem, we 
divide the whole chip into several sub regions. By suitable 
partition, the computation complexity of merging flip-flops 
can be reduced significantly (the related quantitative analysis 
will be shown in Section V). As shown in Fig. 11, we divide 
the region into several sub regions, and each sub region 
contains six bins, where a bin is the smallest unit of a sub 
region.

2) Replacement of Flip-flops in Each Sub region: Before 
illustrating our procedure to merge flip-flops, we first give an 
equation to measure the quality if two flip-flops are going to 
be replaced by a new flip-flop as follows: 

Cost = routing length − α × √available_area                 (5)

Where routing_length denotes the total routing length 
between the new flip-flop and the pins  connected to it, and 
available_ area represents the available area in the feasible 
region for placing the new flip-flop. α is a weighting factor 
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(the related analysis of the value α will be shown in Section 
V). The cost function includes the term routing_length to 
favor a replacement that induces shorter wire length. Besides, 
if the region has larger available space to place a new flip-
flop, it implies that it has higher opportunities to combine 
with other flip-flops in the future and more power reduction. 
Thus, we will give it a smaller cost. Once the flip-flops 
cannot be merged to a higher-bit type (as the 4-bit 
combination n4 in Fig. 9), we ignore the available area in the 
cost function, and hence α is set to 0. After a combination has 
been built, we will do the replacements of flip-flops 
according to the combination table.  

First, we link flip-flops below the combinations 
corresponding to their types in the library. Then, for each 
combination n in T, we serially merge the flip-flops linked 
below the left child and the right child of n from leaves to 
root. Based on its binary tree, we can find the combinations 
associated with the left child and right child of the root. 
Hence, the flip-flops in the lists, named lleft and lright, linked 
below the combinations of its left child and its right child are 
checked (see Lines 2 and 3). Then, for each flip-flop f i in 
left, the best flip-flop best in right, which is the flip-flop that 
can be merged with f i with the smallest cost recorded in 
cbest, is picked. For each pair of flip-flops in the respective 
list, the combination cost [based on (5)] is computed if they 
can be merged and the pair with the smallest cost is chosen 
.finally, we add a new flip-flop f’ in the list of the 
combination n and remove the picked flip-flops which 
constitutes the f „.For example, given a library containing 
three types of flip-flops (1-, 2-, and 4-bit), we first build a 
combination table T as shown in Fig. 12(a). In the beginning, 
the flip-flops with various types are, respectively, linked 
below n1, n2, and n3 in T according to their types. Suppose 
we want to form a flip flop in n4, which needs two 1-bit flip-
flops according to the combination table.  

Each pair of flip-flops in n1 are selected and checked to see 
if they can be combined (note that they also have to satisfy 
the timing and capacity constraints described in Section II). If 
there are several possible choices, the pair with the smallest 
cost value is chosen to break the tie. In Fig. 12(a), f1 and f2
are chosen because their combination gains the smallest cost. 
Thus, we add a new node f3 in the list below n4, and then 
delete f1 and f2 from their original list [see Fig. 12(b)]. 
Similarly, f4 and f5 are combined to obtain a new flip-flop f6,
and the result is shown in Fig. 12(c). After all flip-flops in the 
combinations of 1-level trees (n4 and n5) are obtained as 
shown in Fig. 12(d), we start to form the flip-flops in the 
combinations of 2-level trees (n6, and n7). In Fig. 12(e), 
there exist some flip-flops in the lists below n2 and n4, and 
we will merge them to get flip-flops in n6 and n7, 
respectively. Suppose there is no overlap region between the 
couple of flip-flops in n2 and n4. It fails to form a 4-bit flip-
flop in n6. Since the 2-bit flip-flops f3 and f6 are merge able,
we can combine them to obtain a 4-bit flip-flop f10 in n7.

 Finally, because there exists no couple of flip-flops that can 
be combined further, the procedure finishes as shown in Fig. 
12(f). If the available overlap region of two flip-flops exists, 
we can assign a new one to replace those flip-flops. Once 

there is sufficient space to place the new flip-flop in the 
available region, the algorithm will perform the replacement, 
and the new generated flip-flop will be placed in the grid that 
makes the wire length between the flip-flop and its connected 
pins smallest. If the capacity constraint of the bin, Bk, which 
the grid belongs to will be violated after the new flip-flop is 
placed on that grid, we will search the bins near Bk to find a 
new available grid for the new flip-flop. If none of bins 
which are overlapped with the available region of new flip-
flop can satisfy the capacity constraint after the placement of 
new flip-flop, the program will stop the replacement of the 
two flip-flops. 

3) Bottom-Up Flow of Sub region Combinations (Optional): 
As shown in Fig. 13(a), there may exist some flip-flops in the 
boundary of each sub region that cannot be replaced by any 
flip-flop in its sub region. However, these flip-flops may be 
merged with other flip-flops in neighboring sub regions as 
shown in Fig. 13(b). Hence, to reduce power consumption 
furthermore, we can combine several sub regions to obtain a 
larger sub region and perform the replacement again in the 
new sub region again.  

The procedure repeats until we cannot achieve any 
replacement in the new sub region. Fig. 14 gives an example 
for this hierarchical flow. As shown in Fig. 14(a), suppose we 
divide a chip into 16 sub regions in the beginning. After the 
replacement of flip-flops is finished in each sub region, four 
sub regions are combined to get a larger one as shown in Fig. 
14(b). Suppose some flip-flops in new sub regions still can 
be replaced by new flip-flops in other new sub regions, we 
would combine four sub regions in Fig. 14(b) to get a larger 
one as shown in Fig. 14(c) and perform the replacement in 
the new sub region again.  

As the procedure repeats in a higher level, the number of 
merge able flip-flops gets fewer. However, it would spend 
much time to get little improvement for power saving. To 
consider this issue, there exists a trade-off between power 
saving and time consuming 
in our program. 

Figure 10: Detailed flow to merge flip-flops. 

For example, if there still exists a flip-flop, fi , belonging to 
n3 after replacements in Fig. 9(f), we have to de-replace fi
into two flip-flops originally belongs to n1. After de-
replacing, we will do the replacements of flip-flops according 
to T without consideration of the combinations whose 
corresponding type is pseudo in L.

Paper ID: NOV162979 1681



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 13: Combination of flip-flops near sub region 
boundaries. (a) Result of replace flip-flops in each sub 

region. (b) Result of replace flip-flops in each new sub region 
which is obtained from combining twelve sub region in (a). 

Figure 14: Combination of sub regions to a larger one. (a) 
Placement is originally partitioned into 16 sub regions for 

replacement. (b) Sub region bounded by bold line is obtained 
from combining four neighboring sub regions in (a). (c) Sub 
region bounded by bold line is obtained from combining four 

sub regions in (b). 

4.2.7 Boolean Expressions 
Boolean Expression: Combining the variables and operation 
yields Boolean expressions. Boolean Function: A Boolean 
function typically has one or more input values and yields a
result, based on these input value, in the range {0, 1}.  

A Boolean operator can be completely described using a 
table that list inputs, all possible values for these inputs, and 
the resulting values of the operation. A truth table shows the 
relationship, in tabular form, between the input values and 
the result of a specific Boolean operator or function on the 
input variables.  

The AND operator is also known as a Boolean product. The 
Boolean expression xy is equivalent to the expression x * y 
and is read “x and y.” The behavior of this operator is 
characterized by the truth table. 

4.2.8 Boolean Identities 
Boolean expression can be simplified, but we need new 
identities, or laws, that apply to Boolean algebra instead of 
regular algebra.  

Table 5: Basic Identities of Boolean Algebra  

4.2.9 Flip-Flops 
Many people use the terms latch and flip-flop 
interchangeably. Technically, a latch is level triggered, 
whereas a flip-flop is edge triggered.  

In order to “remember” a past state, sequential circuits rely 
on a concept called feedback. This simply means the output 
of a circuit is fed back as an input to the same circuit. A more 
useful feedback circuit is not composed of two NOR do gates 
resulting in the most basic memory unit call an SR flip-flop.
SR stands for “set/reset.” 
Q(t) means the value of the output at time t. Q(t+1) is the 
value of Q after the next clock pulse.  

When both S and R are 1, the SR flip-flop is unstable.

5. Conclusion 

This is evidence in section 7 and 8 where the Flip Flop 
Extensions at 87.5% active states utilization is designed with 
one gate less than the conventional SR-Flip Flop. The 
uniqueness of this study is that computer memory speed 
performance can be enhanced through conventional SR-FF
modification just as it is currently being done with its 
processor counterpart. This is a great advantage in 
performance over the conventional Flip Flops because fewer 
gates enhance performance (i.e., gate delay represents 
performance). The Flip Flop extension memory cell is also 
portable (less transistors) and cheaper because it requires 
fewer transistors as against the conventional Flip Flops. An 
important issue in digital device design is that numbers of 
transistors represent hardware cost because in essence, 
maximizing performance and minimizing cost in digital 
devices are part of the factors in seeking alternative design on 
more efficient and effective Flip flops. Efforts should be 
geared towards verifying the effectiveness and efficiency of 
these newly design Flip Flops Extension over the existing 
conventional Flip Flops.  
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