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Abstract: In this paper, we are using the extended sech function method along with a type of cole-Hopf  transformation to obtain the 
solutions for the nonlinear Korteweg –de Vries (KdV) equation. These types of solutions are represented as the hyperbolic function 
solutions including the solitary wave solution, shock wave solution and trigonometric function solution when the modulus 
m approaches to 1 and 0. Mathematica software is used in calculation and graphics. 
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1. Introduction 
 
It is well known that the Korteweg –de Vries equation is the 
generic outcome of a weakly nonlinear long-wave asymptotic 
analysis of many physical systems. It is categorized by its 

family of solitary wave solutions, with the familiar “ 2Sech ” 
profile. However, in those circumstances when they are two 
wave modes with nearly coincident linear long wave speeds. 
Nonlinear Partial differential equations (PDE’s) have a 
crucial role in various Scientific fields. The nonlinear wave 
phenomena such as dispersion, dissipation, diffusion… etc, 
are essential in nonlinear wave equations. Those waves are 
normally kink shaped with tanh-solutions and bell shaped 
with the sech-solutions. Last decades, a variety of powerful 
methods are proposed and established for obtaining   an 
explicit solitary traveling wave solution of the nonlinear 
PDE’s [4], [9], [23]-[25], [29] who are interested in 
nonlinear physical phenomena. Tanh-sech methods[1], [6], 
[7]. extended tanh method [11]. For integrable nonlinear 
differential equations, the inverse scattering transformation 
method  [3], the Hirota method [9], the truncated painlevé 
expansion method [23], the Backlund transformation method 
[15], the exp-Function method and the Sech method [2]-[7], 
[10], [17], are used in looking for exact solution. There are 
many different methods to look for the exact solutions of 
those equations. 

  
In the presented work, we implemented the Extended sech 
function method and the Cole-Hopf transformation to obtain 
the solitary travelling wave solutions of the nonlinear 
Korteweg –de Vries equation (KdV)  of the form:    
 

      0t x xxxu uu u                              (1) 
 
Where  and  are real constants and to be determined 
later. 

2. Description of the used Method 
 

2.1 The Methodology of The Extended Sech function 
method 

 
The extended sech function method proposes that a given 
nonlinear Partial differential equation (PDE) in one 
dimension of the form: 

      , , , , 0Φ
t x xx

u u u u                                  (2) 
is transformed into a nonlinear ordinary differential equation 
(ODE) (3), using the wave variable  kx t   so that 

( , ) ( )u x t U  . Therefore: 

      , , , , 0Ψ U U U U                             (3) 
 A new independent variable is introduced of  the form :  

 sech( )Y                                           (4) 

The first and all higher derivatives is derived similarly  to be: 
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The extended  sech function  method admits the solution of 
(3) takes the form: 

0 1

( , ) ( ) ( ) ( )
n n

i i

i i

i i

u x t U a Y bY  

 

     (6) 

 
Then we define the degree of ( )U  as   D U n  , which 
gives rise to the degree of other expression as 
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. Thus we can obtain the value of 

n  in (6) by balancing the derivative term of the highest order 
with the nonlinear term. Substituting (6) into (3) and setting 
all coefficients of ,i iY Y  to zero, an algebraic system for the 
unknown coefficients ia and 

ib is generated and to be solved. 
Consider, the KdV equation (1) and using kx t   ,  

( , ) ( )u x t U  with the change of derivatives (5). The 
obtained ODE takes the form: 
 

 2 3 0U kU U k U         (7) 
 
All terms in the ODE (7) contain derivatives, for simplicity, 
it is integrated so that the constant of integration is set to be 
zero , gives: 
 

 3 3 0
3
k

U U k U


       (8) 

Balancing the highest order derivative (U  ) with nonlinear 
term ( 3U )in (8) gives 2n  .Thus, (6) admits  the expansion: 
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Substituting (9) into (8) the following algebraic system is 
obtained for ( ), 4 4iY i

    : 
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       (10) 

The parameters , ,k   and  are assumed to be  nonzero,  
solitary wave solutions are built with the solution of (10), by 
aid of Mathematica software: 
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Returning the values of 0 1 22 1, , , , ,a a a b b  from (11) and 
(12) into (9), the solitary wave solutions are built in the 
following forms:  

 3
2 2

2 ,
8 12) 4( ( ) t
k k

U kx kY
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Taking in consideration (4) The graphics of the obtained 
surfaces in (13) and (14) are presented in figure.2 and 
figure.3 respectively,  for given values. 

 
Figure 1 The Extended Sech Function of (13) with 
6, 0.25, 1k    , 10 10x    and 7 72 10 10 10t 

   . 

 
Figure 2 The Extended Sech Function of (14) with 
6, 0.25, 1k    , 10 10x    and 7 72 10 10 10t 

   . 
 
2.2 The Cole Hopf Transformation and the analytical 

solution of the KdV equation 
 
In this section, we discuss the Korteweg –de Vries (KdV) 
equation (1) which is transformed into the nonlinear ordinary 
differential equation (ODE) after integrating with zero 
constant of integration, to become: 

 3 0U kUU k U         (15) 
Integrating with respect to   and taking into account that the 
integration constant to be zero, the ordinary differential 
equation (15)  takes the following form; 
 

 2 0pU qU rU     (16) 
Where : 

Paper ID: NOV162942 1599



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 4, April 2016 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

 3, ,
2

k
p q r k


     (17) 

Consider the Cole-Hopf  transformation : 
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The first and the second derivatives would have the form: 
 1 2 3 3
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Substituting by the transformation ( )U  , (18), and its 
derivatives (19) and (20). The Equation in (16) is reduced to 
the following: 
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The power classification for , 1 4i
G i     is to be: 
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  4 4: 6 0G q r G



   (25) 

From (24) and (25) we obtain the condition 6q r , which 
leads to  the undetermined nonlinear coefficient: 

 212 k    (26) 
 
From (22) by integrating twice with considering the 
integrating constants equal to zero, to take the form: 

 2 2
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Its solution is: 
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Let 2 22

1

, 0 1
c

m m
c

   , then (29) becomes, the Jacobi-

Glaisher functions for elliptic function which can be found 
[5], [16] : 
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Noting that as a modulus 1m  , the solution of the 
Korteweg –de Vries equation tends to the hyperbolic function 

 2sech  . 
 
A graphical representation of the solution (30) is shown in 
figure .3, figre.4 and figure.5 for some values of the modulus 
m .   

 
Figure 3: The Cole- hopf surface (30) with 

1, 0.25, 1, 0.75, , 0.015625m k        10 10x    

and 7 72 10 10 10t 
   . 

 
Figure 4 The Cole- hopf surface (30) with 
0.5, 0.25, 1, 0.75, , 0.015625m k         

10 10x    and 7 72 10 10 10t 
   . 

 
Figure 5 The Cole- hopf surface (30) with 
0.0001, 0.25, 1, 0.75, , 0.015625m k       

10 10x    and 7 72 10 10 10t 
   . 
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3. Conclusion 
 
In this study, we employed the extended sech function 
method and the Cole-Hopf  transformation for finding the 
solitary travelling wave solutions of the Korteweg –de Vries 
equation (KdV). The methods have been shown to 
computationally efficient in solving the equation of our 
interest. The last observation is that, with an appropriate 
value of the modulus  m  in (30) the solution tends to the 
hyperbolic function sech. By means of Mathematica all 
Graphics and computations are achieved . 
 
4. A Appendix A : Properties of the Jacobi 

elliptic functions 
 

I. They satisfy The identities: 2 2cn sn 1,    
2 2 2dn sn 1m    

II. Derivatives of the Jacobi elliptic functions 
sn cn dn ,    cn sn dn ,    

2dn sn cnm      . 
 Where m is a modulus. The Jacobi –Glaisher functions for 
elliptic function can be found in [5], [16]. 
III. A modulus m tends to one gives, 

1
lim sn tanh ,
m

 


  

1
lim cn sech ,
m

 



1

lim dn sech
m

 


 , and for m  

tends to zero we get 
0

lim sn sin ,
m

 


  

0 0
lim cn cos , lim dn 1
m m

  
 

   
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