A Note on Fuzzy Upper and Lower Weakly Semi - Precontinuous Multifunction

Saurabh Saxena

Hitkarini College of Engineering & Technology Jabalpur (M.P.), India

Abstract: This paper is devoted to the introduction and study of fuzzy lower and upper weakly semi-precontinuous multifunction between a general topological space (X,τ) and a fuzzy topological space (Y,σ) using the lower inverse f and upper f^+ several equivalent conditions of a lower and upper weakly Semi-precontinuous multifunctions are obtained.

Keywords: Fuzzy Continuity, Fuzzy Semicontinuous, Fuzzy semipre-continuous, Fuzzy multifunctions

1. Introduction

Through the paper by(x,τ) or simply by X we will mean a topological space in a classical sense and (y,σ) or simply by Y will stand for a fuzzy topological space (fts, for short) as defined by chang [2], Fuzzy sets in to Y will be denoted λ , μ , ϑ & etc. And interior and closure fuzzy sets λ in an fts Y will be denoted by int λ and $cl(\lambda)$ and respectively a fuzzy set λ of fts Y is called fuzzy α - open set (fuzzy α - closed) if $A \leq int \ cl(\lambda)$). Then α - closure and α -interior of λ are defined as follows:

 $\alpha cl = D \{ \mu / \mu \text{ is fuzzy } \alpha \text{ closed and } 1 \leq \mu \}$

When a fuzzy set 1 is quasi-coincident (q-coincident, for short) with a fuzzy set λ in (y,σ) we shell write lq,m if λ and μ are not quasi-coincident denoted by $(\lambda q \mu)$. The words 'neighbourhood' and fuzzy topological space 'will be abbreviated as 'nbd' and 'fts' respectively.

On Fuzzy Weakly Semi-precontinuous Multifunctions

Definition (1.1.1) Let (X,τ) be a topological space in the classical sens and (y,σ) be a fuzzy topological space f:x!y is called fuzzy multifunction for each $x \ 2 \ X., f(x)$ is a fuzzy set in y.

Definition (1.1.2) For a fuzzy multifunction $f:x \to y$ the f(A) of fuzzy set A in Y are defined as follows:

 $f(A) = f(x) \varepsilon X : F(x)qA,$ $f(A) = f(x) \varepsilon X : F(x) \le A$

Paper ID: NOV162904

Theorem (1.1.1) For a fuzzy multifunction $f: x \rightarrow y$ we have f(1-A) = x - f(A) for any fuzzy set A in Y.

Definition (1.13) For a fuzzy multifunction $f: x \rightarrow y$ is called:

- (a) Fuzzy lower and precontinuous at a point $x_0 \, \epsilon \, X$ if for every fuzzy open set V in Y will $x_0 \, \epsilon \, F(V)$, there exist a semi preopen nbd U of x_0 in X such that U $\dot{C} \, F(v)$.
- (b) Fuzzy upper and precontinuous at a point $x_0 \varepsilon X$ if for every fuzzy open set V in Y will $x_0 \varepsilon F^+(V)$, there exist a semi preopen nbd U of x_0 in X such that U F(v).
- (c) Fuzzy lower semii- precontinuous on X iff it is respectively so that each $x_0 \in X$.

(d) Fuzzy semi-pre continuous on X,iff it is fuzzy lower semi-precontinuous and fuzzy upper semi precontinuous mapping.

Definition (1.14) For a fuzzy multifunction $f: x \to y$ is called:

- (a) Fuzzy lower weakly semi-continuous at a point $x_0 \, \epsilon \, X$. Iff for every fuzzy open set V in Y will $x_0 \, \epsilon f(v)$, there exists a semi open nbd U of x_0 in X such that U ϵ $f_0(SCIV)$.
- (b) Fuzzy lower weakly semi-continuous at a point $x_0 \, \epsilon \, X$ iff for every fuzzy open set V in Y will $x_0 \, \epsilon \, f(v)$, there exists a semi open nbd U of x_0 in X such that U $\epsilon \, f0(SCIV)$.
- (c) Fuzzy lower weakly semi-continuous on X iff it is respectively so each x_0 ϵ X.
- (d) Fuzzy weakly semi-continuous on X iff it is fuzzy lower weakly semi-continuous and fuzzy upper weakly semi-continuous mapping.

2. Lower and Upper Weakly Semi-Precontinuous Fuzzy Multifunctions

Definition (2.1) For a fuzzy multifunction $f: x \to y$ is called .

- (a) Fuzzy lower weakly semi-precontinuous at a point $x0 \ \epsilon$ X iff for every fuzzy open set V in Y will $x_0 \ \epsilon$.F(v).There exist a semi preopen nbd of U of x_0 in X such that UĊF(SCLV).
- (b) Fuzzy lower weakly semi-precontinuous at a point $x_0 \in X$ iff for every fuzzy open set V in Y will $x_0 \in F(v)$. There exist a semi preopen nbd of U of x_0 in X such that $U\dot{C}F(SCLV)$.
- (c) Fuzzy lower weakly semi-precontinuous on X iff it is respectively so at each $x_0 \in X$.
- (d) Fuzzy weakly semi-precontinuous on X iff it is fuzzy lower weakly semi-precontinuous and fuzzy upper weakly semi-precontinuous mapping.

Theorem (2.3) Let $f: x \to y$ is fuzzy lower weakly semi-precontinuous iff every fuzzy open set V in $F(V)_SP$ int F(SCIV) (respectively, $F(v) \to SP$ int F(SCIV).

Volume 5 Issue 4, April 2016

International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Theorem (2.4) If $f: x \to y$ is lower weakly semi-precontinuous, for every fuzzy pre-semiopen set V in F(v) \dot{C} SPint F(SCIV).

Theorem (2.5) Iff: $x \to y$ is fuzzy upper weakly semi-precontinuous for every fuzzy pre-semiopen set V in Y, $F(V) \ \dot{C} \ SPint \ F(SCIV)$.

Theorem(2.6) If $f: x \to y$ is fuzzy lower weakly semi-precontinuous on X ,Then SPCL f(V) \dot{C} F(SCLV) for any fuzzy open set V in Y.

Theorem (2.7) If $f: x \to y$ is fuzzy upper weakly semi-precontinuous on X, Then SPCL $f(V) \dot{C} F(SCLV)$ for any fuzzy open set V in Y.

Theorem (2.8) Let $f: x \to y$ is fuzzy multifunction then following are equivalent:

- (a) F is lower weakly semi-precontinuous.
- (b) For any fuzzy open set V in Y,F(V) \dot{C} SP int F(SCLV) int F(SCLV) and F(V) \dot{C} F(SCLV).

Theorem (2.9) Let $f: x \to y$ is fuzzy lower weakly semiprecontinuous if for each fuzzy open V,F(SCLV) is fuzzy semi-pre-open set.

Definition(2.2) For a fuzzy multifunctiom $f:x\to y$ the F^- (A) and F^+ (A) of a fuzzy set

 λ in Y are defined as follows:

 $F(\lambda) = f(x) \varepsilon X : F(x)q\lambda$

 $F^{+}(\lambda) = f(x) \varepsilon X : F(x)\lambda$

Definition (2.3) A fuzzy multifunction f: (x,τ) \rightarrow (y,σ) is said to be :

- (a) Fuzzy upper continuous at a point x of X for any fuzzy open set λ of Y such that $F(x) \leq \lambda$ there exist u ϵ τ containing x such that $F(u) \leq \lambda$ for all u ϵ U.
- (b) Fuzzy upper continuous at a point x of X for any fuzzy open set λ of Y such that F(x)qλ, there exist u ε τ containing x such that F(u)qλ for all u ε U.
- (c) For upper (resp.fuzzy lower) continuous if it is fuzzy upper (resp.lower) continuous at every point of X.

Definition (2.4): A fuzzy multifunction $f: x \to y$ is called:

- (a) A fuzzy lower weakly α-continuous at a point x ε X if for every fuzzy open set λ in Y with x ε X such that F (λ). There exist a nbd u of x₀ in X such that U C F ((Cl(λ))
- (b) A fuzzy upper weakly α-continuous at a point x ε X if for every fuzzy open set λ in Y with x ε X such that F+(λ). There exist a nbd u of x₀ in X such that U Ċ F+ ((Cl(λ))

3. Lower and Upper Weakly α -Continuous Fuzzy Multifunctions

Definition (3.1): For a fuzzy multifunction $f: x \to y$ is called:

(a) Fuzzy lower weakly α -continuous at a point $x \in X$ if for every fuzzy open set λ in Y with $x \in F^-(\lambda)$. There exist a α -nbd u of x_0 in X such that $U\dot{C}F^-(\alpha(cl(\lambda))$.

- (b) Fuzzy lower weakly α -continuous at a point $x \in X$ if for every fuzzy openset λ in Y with $x_0 \in F^+(\lambda)$. There exist a α -nbd u of x_0 in X such that $U \ \dot{C} \ F^+(\alpha \ (cl(\lambda)).$
- (c) Fuzzy lower weakly α -continuous on X if it is respectively so as each $x_0 \in X$.
- (d) Fuzzy weakly α -continuous on X if it is fuzzy lower weakly α continuous and fuzzy upper weakly continuous.

Theorem (3.1) Let $f: x \to y$ is fuzzy multifunction, Then following are equivalent:

- (a) F is fuzzy weakly α -continuous.
- (b) For any fuzzy open set in Y,F $(\lambda)\dot{C}$ α int F $(\alpha$ cl $(\lambda))$. **Proof:** Evident.

Theorem (3.2): Let $f: x \to y$ is fuzzy lower weakly α -continuous if for each fuzzy open set $\lambda, F^-(cl(\lambda))$ is fuzzy α -open set.

Proof: Straight forward.

References

- [1] Ajamal N and Sharma R.D.Fuzzy subcontinuity inverse fuzzy subcontinuity and a new category of fuzzy topological spaces. Fuzzy sets and systems,73(1995),13-24.
- [2] Chang C.L.Fuzzy topological spaces J.Math.Anal.24(1968),182-190.
- [3] Ekici.E.On some types of continuous functions, Appl. Math. E-Not 4(2004), 21-25.
- [4] Ewert J. On normal fuzzy topologiical spaces ,Mathematics,31(54)(1989),39-45.
- [5] Ewert J.Fuzzy valued maps ,Math,Nachr,137(1998),79-87.
- [6] Mukherjee, M.N. and Malakar, S., On almost continuous and weakly continuous fuzzy multifunctions, Fuzzy sets and Systems, 41(1991), 113-125.
- [7] Nanda S. On Fuzzy topological spaces, Fuzzy Sets Systems 42(1991),259-262.
- [8] Papageorgiou, N.S,Fuzzy topology and fuzzy multifunctions, jour.Math.Anal,Appl, 109(1985),397-425..
- [9] Thakur S.S.and Malviya R, Pairwise fuzzy irresolute mappings, Math Bohemica 121(3)(1996),273-280.
- [10] Zadeh A.Fuzzy sets ,Inform and Control,8(1965),338-358.