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Abstract: Nonparametric estimation based on quantile regression methodology of Koenker and Basset (1978) and conventional
parametric regression approaches were applied to a river regime to estimate volatility in streamflow discharge levels. Consistency and
asymptotic normality properties of estimators obtained from both approaches were given. From the study results non-parametric
quantile regression approach yielded better results than other methods. Other than for boundary effects which require boundary
modifications, the model validation results implied good performance of the nonparametric model in estimating critical streamflow
discharge levels.
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1. Introduction 

Flood processes, by their nature, are inherently complex,
nonlinear and many times life threatening. As a natural
phenomenon, floods, in real sense, cannot be completely
controlled. Engineering designs for flood control structures
such as flood control reservoirs and dykes are based on
previous flood events. The levels of these events can,
however, are exceeded by future floods. One way of
reducing losses due to floods is by use of flood early
warning systems (FEWS). Such a system consists of
streamflow monitoring and forecasting as well as public
information system. Various methods are employed in
hydrological stream flow monitoring and forecasting.
Statistical models for hydrological applications are usually
based on regression relationships derived from paired
catchment and catchment treatment experiments, see
Muthusi (2004). For a response variable of interest, for
instance, streamflow discharge levels, Yt given a covariate
Xt in Ft-1, both parametric and nonparametric regression
methods can be applied to estimate critical streamflow
discharge levels. This paper examines the difference in
model performances in estimation of critical streamflow
discharge levels using both parametric and nonparametric
regression approaches. In this paper nonparametric
estimation focuses on quantile regression methodology
introduced in Koenker and Basset (1978) while parametric
estimation is based on the conventional mean-variance
regression.

2. The Study Model (Critical Streamflow 
discharge level) for Nonparametric 
Estimation 

Assume that the underlying hydrological process of interest 
is of the form 

Yt = mθ (Xt) + et.                               (2.1) 

where Yt is the stream flow discharge at time t measured in
cubic meters per second, (cubecs). The variableXt = ( Yt-1,
……., Yt-d) is a d-dimensional vector consisting of the past 
observations of Yt. The conditional quantile function mθ(Xt)
is the streamflow discharge level at θ  (0, 1). The errors, et,
are assumed to be zero quantile with some scale function ζθ   

Here, model (2.1) can be viewed as a robust generalization 
of Autoregressive (AR) – Autoregression Conditional 
Heteroscedastic (ARCH) models introduced in Weiss(1984) 
and their nonparametric generalizations reviewed by Hardle 
(1989), see Franke and Mwita (2003) and Mwita (2005) for 
more details.  

If we choose Xt = ( Yt-1, ……., Yt-d, Ut-1) where the 
random vector Ut consists of observations from other time 
series such as soil moisture budget(SMB), precipitation,
evapotranspiration, El Nino Southern Oscillations( ENSO),
Pacific Decadal Oscillations(PDO), then model (2.1) would 
become a quantile autoregressive model with exogenous 
components.  

2.1 Nonparametric Estimation of critical streamflow 
discharge level 

We consider the model (2.1), and define a true conditional 
distribution function Fx(y) of Yt given Xt = x as  

Fx(y) = P(Yt ≤ y │Xt = x) = E[It, y│ Xt = x]           (2.2) 

where It, y = I{Yt ≤y} is an indicator function with 
Pr(Yt≤y|Xt = x ) = 1 and 0 otherwise. 

For any θ  (0, 1), we define the true critical streamflow 
discharge level as  

mθ(x)= inf{ y R│Fx(y) ≥ θ }                        (2.3) 

The distribution function in (2.2) can be estimated by the 
Nadaraya (1964) and Watson (1964) estimator as  
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where K(u) is a d-dimensional kernel and Kh(u) = h-d 
K(u/h) is the rescaled kernel, see Franke and Mwita (2003) 
and Mwita(2005). 

Therefore the kernel estimator for the critical streamflow 
discharge level is given by  

)(F̂}(y)F̂|inf{R(x)m̂ 1-
xx  
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which is a pure jump function of y.

2.2 Asymptotic Normality 

Assume that the time series (Yt, Xt) satisfies α-mixing 
conditions. According to Masry and Tjostheim (1995, 1997),
both ARCH processes and nonlinear additive autoregressive 
models with exogenous variables are stationary and α-
mixing under some mild conditions. As Franke and Mwita 
(2003) demonstrated, if we choose Xt = Yt-d in (2.1) and 
assuming the time series Yt is α - mixing, we get an example 
of a quantile autoregressive process for which (Yt, Xt) and 
It, y in (2.4) are α -mixing as well.  

The following assumptions are necessary for proving 
asymptotic normality of

(x)m̂

Henceforth, g (x) denotes the stationary probability density 
of Xt at point x.  

(A1)For all uR 
K (u) ≥ 0 
K is Lipschitz continuous i.e. │K(u)- K(v)│≤ Ck│u - v│,
for all Ck, u, vR and Ck>0 
│K(u) │≤ K∞, with K∞ being a constant 
∫K(u)du = 1, ∫uK(u)du = 0 and ∫║ u ║ 2 k(u)du < ∞
(A2) For all y, x satisfying 0 <Fx(y) <1, g(x) > 0  
1) Fx(y)and g(x) are twice continuously differentiable and 

bounded in y, x 
fx(mθ(x)) > 0, for all x.

2) (A3) The process (Yt, Xt) is stationary and α- mixing 
with mixing coefficients satisfying α(s) = O(s-(2 + δ) ) 
for some δ >0, n≥ 1, and {sn }is an increasing sequence 
of positive integers.  

can be found in Franke and Mwita (2003).  

Here, we only state the theorems.  

Theorem 3.1 

Assume that (A1)- (A3) hold. As n → ∞, let the sequence of
bandwidths h> 0 converge to 0 such that nhd →∞. Then 

that is

(Y)f
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 (2.6) 
Further if, the bandwidths are chosen such that nhd+4 is
either 1 or converges to 0, then 
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(2.7) 
where, B(y) and V2(y) are the bias and variance expansion 
for the conditional distribution estimator in (2.4) 

2.3 Uniform consistency and uniform convergence 

For uniform consistency and uniform convergence of the 
quantile autoregressive estimate, Franke and Mwita(2003) 
first establish the uniform consistency of the Nadaraya-
Watson kernel estimate (2.4). For this purpose, the following 
conditions are imposed.  

(B1) for some compact set G, there are ε>0, γ >0, such that 
g(x) ≥ γ for all x in the 
ε-neighborhood {x;║x-u║< ε for some u G} of G.

(B2) (Yt, Xt) is stationary and α-mixing with mixing 
coefficients α(n), n≥ 1, and there is an increasing sequence 
sn, n≥ 1, of positive integers such that for some finite A 
(n/sn) α 2sn/(3n)(sn) ≤ A, 1≤ sn≤ n/2 for all n≥1.

Uniform consistency and uniform rate of convergence 
properties of the estimator under the regularity conditions in
Franke and Mwita, (2003) are given in Theorem 3.2.  

Theorem 3.2 
Assume (A1), (A2), (B1), and (B2). If, as n→ ∞, the 
bandwidthh→0such that  

 1)log(ˆ nsnhS n
d

n

then (3.2.4) is uniformly consistent on G in the strong sense. 
That is, for xG 

0|)()(ˆ| 


yFyFsup xx
Gx a.s 

In this section, we have shown that the estimate of our
nonparametric quantile function is consistent and 
asymptotically normally distributed, and under suitable 
conditions, the estimator converges uniformly with an
appropriate rate. The asymptotic normality property is used 
to construct the required confidence intervals for our
estimator. These are strong properties that significantly 
imply sufficiency of the estimator is accurate in estimation 
of the critical streamflow discharge level. 
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3. Real Data Results 

The application of the estimator was performed with data 
from the gauge at River Nyando, in Western Kenya, (River 
Station No. IGD03) in the wider Nyando Basin, located at
35.2 oE longitude and -0.1oS latitude and covering an area 
of 3, 587 km2. The drainage area downstream of the outlet 
of the catchment (IGD03) was found to accommodate all the 
discharge in the river channel. For this reason, monthly 
maximum streamflow data from gauging station IGD03 for 
the period 1970 – 1997 was used for calibrating the model. 
Also, the twenty-seven year period was considered long 
enough to capture diverse weather conditions, thus making 
the model to be a good representative of the basin. 

Figure 3.1 gives the daily streamflow hydrograph of ground 
station gauging data for twenty-seven years, from 1970 –
1997. From the hydrograph, it is clear that the river regime 
experiences both peak and extremely high flows which are 
responsible for flood inundations experienced in flood plain 
areas of the Nyando basin. 
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Figure 3.1: Daily streamflow discharges for River Nyando 
(1970 – 1997) Station (IGD03) 

Considering the critical streamflow discharge level to be our 
target variable, we first present hydrograph for monthly 
maximum streamflow for the period 1970 – 1997 in Figure 
3.2.  
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Figure 3.2: Monthly maximum streamflow discharges for 
River Nyando (1970 – 1997) for Station (IGD03) 

The hydrograph of figure 5.2 shows that the river pattern of
low flows, peak flows and extremely high flows is preserved 

by the monthly maximum streamflow time series of our
ground station gauging data. 

Figure 3.3 gives the volatility of the monthly maximum 
streamflow discharges. The hydrograph of these deviations 
depict the turbulence experienced by the Nyando River 
regime with an observable increase in trend. 
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Figure 3.3: Volatility of monthly maximum streamflow 
discharge for River Nyando. 

Figures 3.4 gives the monthly maximum streamflow 
discharge levels together with 0.95 and 0.99 conditional 
quantiles respectively. 

Figure 3.4: Monthly maximum streamflow discharges with 
0.95 and 0.99 quantiles. 

The dotted curve represents the 0.95 conditional quantile 
while the dashed curve represents the 0.99 conditional 
quantile. Streamflow discharge levels above the 0.95-
quantile curve represent critical streamflow discharge levels 
responsible for flood inundations at 95% confidence level. 
Such a level calls for some site-specific operational 
instructions to be issued by authorities monitoring the river 
catchment. The instructions may include shutting of
floodgates and other engineering measures. Discharges 
above the 0.99 quantile curve represent extreme river flow 
levels. Such levels call for flood control teams to respond to
imminent flood conditions and operate a warning system for 
the public as well as industries.  
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3.1 Parametric Estimation of critical stream flow 
discharge level 

To compare model performances and the quality of our
estimator quantitatively, a comparative assessment was 
carried out with two different assumptions on the river flow 
data. 

3.1.1 Mean-Variance method 
Under this method we assume normality of the streamflow 
discharge data. Our hydrologic model is then modified to
take the following form of a quantile autoregressive- 
heteroscedastic process  

Yt = µ(Xt) + ζ (Xt)et                              (3.1) 
whereµ (Xt) is the conditional mean of Yt given Xt and 
ζ (Xt) is the conditional standard deviation of Yt given Xt . 
Using the Nadaraya-Watson estimator of µ (Xt) 
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Therefore, the estimator of the innovations εt is given by
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The conditional quantile function estimator of mθ(Xt) using 
(3.1) becomes,

  (x)ˆ(x)ˆ(x)m̂ 

Where εθ are the true quantiles of et ~ N(0, 1) i.i.d random 
variables. 

3.1.1.1 Asymptotic properties of the mean-variance 
estimator  
The consistency of the conditional mean and conditional 
variance estimator is shown in the following preposition, see 
Hardle (1989). 

Proposition 3.1.1.2 
Assume the stochastic design model with a one-dimensional 
predictor variable X and  
(D1) K(u) du <,

(D2) 
0)( 


uuKlim

|u|

(D3) EY2 <,
(D4) hn 0, nhn as n ,

Then, at every point of continuity of (x), f(x) and 2(x),
with f(x) > 0 

)()(ˆ xx p  

For convergence, we first define the mean squared error at a 
point x as follows 

2)]()(ˆ[),( xmxEhxd hM  

The following theorem gives the speed of dM(x, h) as a 
function of h and n. See Hardle(1989). 

Theorem 3.1.2(Gasser and Muller 1984) 

Assume the random design model with a one-dimensional 
predictor variable X and define  
CK = K2(u)du,
dK =  u2K(u)du. 
Assume  
(F0) K has support [-1, 1] with K(-1) = K(1) = 0,
(F1)  C2,
(F2) maxi|Xi– Xi-1| = O(n-1),
(F3) var(i) = 2, i = 1, ……….., n,
(F4) n, h  0, nh. 
Then 
dM(x, h)  (nh)-12ck + h4dK2[(x)]2 /4. 

The mean squared error splits up into the two parts, variance 
and bias. The theorem shows that the variance and bias goes 
to zero as n→∞, and h →0, respectively.  

3.1.2 Historical simulation 
Here, we assume independence and identical distribution 
(iid) of the streamflow discharge data.  

Let Yt, t = 1, 2, ……………be a sequence of iid random 
variables, with a distribution function F(y), now to represent 
streamflow discharge level at time t.  

We denote Yt = Y since Yt are iid. For some probability θ 
(0, 1), consider the  
θ -quantile as

qθ y = inf{yR│F(y)≥ θ } 

If F is continuous, then P( y = qθ y ) = 0 and F(qθ y ) = θ,
while if F is discontinuous in  
qθ y, then P( y = qθ y ) > 0 and F(qθ y) = P(y ≤ qθ y) > θ.

Consider the order statistics y1, n ≤ y2, n ≤ ………..≤ yk+1,
n ≤…………….yn, nas the sorted values of n-tuple ( y1, y2,
………, yn) and let k = [n(1 – θ)] ( = maxmN {m≤ n(1 – θ
})be the integer part of n(1 – θ). The set of observations 
which constitute the 100(1 – θ)% largest of the total values 
in the sample is represented by the largest k observations 
(outcomes)  
{yk, n ……….. y1, n}. As usual, yk+1, n denotes the 
empirical quantile which we may write as, qθy, n where θ
stands for the proportion of observations below yk, n.

3.1.2.1 Asymptotic properties of yk+1, n under the iid
assumption 
We assume that F has a density function, f and P (yk, n>
yk+1, n) = 1.
With n-k = nθ + o(n1/2), i.e k/n = 1 – θ + o(n-1/2), then by
central limit theorem  

θ (1 – θ)
qθyn~ N(qθy, ———— ) 
nf2(qθy)
where qθy is the asymptotic quantile and θ((1 – θ)
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, ———— being the asymptotic variance, nf2(qθy)
See Mwita(2003) and references therein. This asymptotic 
normality property is used to construct the required 
confidence intervals for the estimator. 

Figure 3.5 gives the 0.95 conditional quantiles obtained 
under the two assumptions (mean- variance and i.i.d) 
together with the 0.95-th quantile using model (2.1). The 
dotted straight line represents the 0.95-th quantile under iid 
assumption. The dotted curve represents the 0.95-th quantile 
under model (2.1) while the dashed curve (not visibly clear) 
with a similar pattern to the solid (actual streamflow 
discharge curve) represents the 0.95 conditional quantile 
under the assumption of normality. From the graph, both the 
iid and mean-variance methods appeared to underestimate 
the critical streamflow discharge level and therefore 
performing poorer than model (2.1) at the 95% level.  

3.5: 0.95 quantile estimates Under mean variance and iid 
assumptions together with0.95 quantile under QAR.  

Consequently, the nonparametric model is considered to be
adequate and better in performance in the estimations of
critical stream flow discharge levels. 

4. Conclusion  

In this paper, a nonparametric quantile regression approach 
was considered. By avoiding assumptions on the form of the
conditional distribution of the streamflow discharge in a 
river regime, our method of estimating critical streamflow 
discharge level yields better results than other methods,
which make assumptions on the underlying conditional 
distribution function of the streamflow discharges. 
Furthermore, the critical streamflow discharge level 
estimates obtained from the study model fits the quantile 
data well apart from the extreme ends, which is attributed to
data scarcity at the extremes. However, the estimator 
obtained from our method suffers from boundary effects and 
therefore requires boundary modifications, see Mwita 
(2003). Other than the singular drawback of boundary 
effects, the study model’s validation results implies a good 
performance of the model in estimation of critical 
streamflow discharge levels. 
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